1
|
Narayanasamy A, Patel SKS, Singh N, Rohit MV, Lee JK. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers (Basel) 2024; 16:2227. [PMID: 39125253 PMCID: PMC11314723 DOI: 10.3390/polym16152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility are major limiting factors. Now, using algal biomass for PHA production offers a potential solution to these challenges with a significant environmental benefit. Algae, with their unique ability to utilize carbon dioxide as a greenhouse gas (GHG) and wastewater as feed for growth, can produce value-added products in the process and, thereby, play a crucial role in promoting environmental sustainability. The sugar recovery efficiency from algal biomass is highly variable depending on pretreatment procedures due to inherent compositional variability among their cell walls. Additionally, the yields, composition, and properties of synthesized PHA vary significantly among various microbial PHA producers from algal-derived sugars. Therefore, the microalgal biomass pretreatments and synthesis of PHA copolymers still require considerable investigation to develop an efficient commercial-scale process. This review provides an overview of the microbial potential for PHA production from algal biomass and discusses strategies to enhance PHA production and its properties, focusing on managing GHGs and promoting a sustainable future.
Collapse
Affiliation(s)
- Anand Narayanasamy
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Neha Singh
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - M. V. Rohit
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Woon JM, Khoo KS, Al-Zahrani AA, Alanazi MM, Lim JW, Cheng CK, Sahrin NT, Ardo FM, Yi-Ming S, Lin KS, Lan JCW, Hossain MS, Kiatkittipong W. Epitomizing biohydrogen production from microbes: Critical challenges vs opportunities. ENVIRONMENTAL RESEARCH 2023; 227:115780. [PMID: 36990197 DOI: 10.1016/j.envres.2023.115780] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Hydrogen is a clean and green biofuel choice for the future because it is carbon-free, non-toxic, and has high energy conversion efficiency. In exploiting hydrogen as the main energy, guidelines for implementing the hydrogen economy and roadmaps for the developments of hydrogen technology have been released by several countries. Besides, this review also unveils various hydrogen storage methods and applications of hydrogen in transportation industry. Biohydrogen productions from microbes, namely, fermentative bacteria, photosynthetic bacteria, cyanobacteria, and green microalgae, via biological metabolisms have received significant interests off late due to its sustainability and environmentally friendly potentials. Accordingly, the review is as well outlining the biohydrogen production processes by various microbes. Furthermore, several factors such as light intensity, pH, temperature and addition of supplementary nutrients to enhance the microbial biohydrogen production are highlighted at their respective optimum conditions. Despite the advantages, the amounts of biohydrogen being produced by microbes are still insufficient to be a competitive energy source in the market. In addition, several major obstacles have also directly hampered the commercialization effors of biohydrogen. Thus, this review uncovers the constraints of biohydrogen production from microbes such as microalgae and offers solutions associated with recent strategies to overcome the setbacks via genetic engineering, pretreatments of biomass, and introduction of nanoparticles as well as oxygen scavengers. The opportunities of exploiting microalgae as a suastainable source of biohydrogen production and the plausibility to produce biohydrogen from biowastes are accentuated. Lastly, this review addresses the future perspectives of biological methods to ensure the sustainability and economy viability of biohydrogen production.
Collapse
Affiliation(s)
- Jia Min Woon
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Asla A Al-Zahrani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center- College of Science -Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Meznah M Alanazi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sun Yi-Ming
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
4
|
Huy Hoang Phan Q, Pham Phan T, Khanh Thinh Nguyen P. Mathematical modeling of dark fermentative hydrogen and soluble by-products generations from water hyacinth. BIORESOURCE TECHNOLOGY 2023:129266. [PMID: 37271462 DOI: 10.1016/j.biortech.2023.129266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The production of hydrogen and soluble metabolite products from water hyacinth via dark fermentation was modeled. The model was built on the assumption that the substrate exists in two forms (i.e., soluble and particulate) and undergoes two stages (i.e., hydrolysis and acidogenesis) in the dark fermentation process. The modified Michaelis-Menten and surface-limiting models were applied to describe the hydrolysis of soluble and particulate forms, respectively. Meanwhile, the acidogenesis stage was modeled based on the multi-substrate-single-biomass model. The effects of temperature, pH, and substrate concentration were integrated into the model to increase flexibility. As a result, the model prediction agreed with the experimental and literature data of water hyacinth-fed dark fermentation, with high coefficient of determination values of 0.92 - 0.97 for hydrogen and total soluble metabolite products. These results indicate that the proposed model could be further applied to dark fermentation's downstream and hybrid processes using water hyacinth and other substrates.
Collapse
Affiliation(s)
- Quang Huy Hoang Phan
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Thi Pham Phan
- Faculty of Food Science and Engineering, Lac Hong University, 10 Huynh Van Nghe Street, Buu Long Ward, Bien Hoa City, Dong Nai Province, Viet Nam
| | - Phan Khanh Thinh Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
5
|
Bhattacharya R, Sachin S, Sivakumar R, Ghosh S. Solid-state fermentation-based enzyme-assisted extraction of eicosapentaenoic acid-rich oil from Nannochloropsis sp. BIORESOURCE TECHNOLOGY 2023; 374:128763. [PMID: 36813049 DOI: 10.1016/j.biortech.2023.128763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Enzymatic treatment of microalgal biomass is a promising approach for extraction of microalgal lipid, but high cost of commercially sourcing enzyme is a major drawback in industrial implementation. Present study involves extraction of eicosapentaenoic acid-rich oil from Nannochloropsis sp. biomass using low cost cellulolytic enzymes produced from Trichoderma reesei in a solid-state fermentation bioreactor. Maximum total fatty acid recovery of 369.4 ± 4.6 mg/g dry weight (total fatty acid yield of 77%) was achieved in 12 h from the enzymatically treated microalgal cells, of which the eicosapentaenoic acid content was 11%. Sugar release of 1.70 ± 0.05 g/L was obtained post enzymatic treatment at 50 °C. The enzyme was reused thrice for cell wall disruption without compromising on total fatty acid yield. Additionally, high protein content of 47% in the defatted biomass could be explored as a potential aquafeed, thus enhancing the overall economics and sustainability of the process.
Collapse
Affiliation(s)
- Raikamal Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sharika Sachin
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Rohith Sivakumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sanjoy Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|