1
|
Wu Y, Zhang H, Lin Q, Zhu R, Zhao L, Wang X, Ren J, Meng L. Fractionation of lignin and fermentable sugars from wheat straw using an alkaline hydrogen peroxide/pentanol biphasic pretreatment. J Biotechnol 2024; 396:62-71. [PMID: 39426411 DOI: 10.1016/j.jbiotec.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
To breakthrough the delignification saturation point (DSP) of alkaline hydrogen peroxide (AHP) pretreatment, a biphasic AHP/pentanol (AHPP) pretreatment was proposed in this work. The temperature and H2O2 concentration were evaluated. Under the optimal conditions (110 °C, 2 h, 4 % H2O2), 70.73 % of lignin was removed, which was increased by 11.65 % than the traditional AHP pretreatment, indicating successful overcoming of the DSP by adding pentanol. 85.74 % and 88.62 % of glucan and xylan digestibility were achieved, respectively, which increased by 7.41 % and 5.87 % as compared to AHP pretreatment. Furthermore, the lignin extracted from the organic phase accounted for 38.51 % of the delignification, and it had a low molecular weight, effectively preserving the β-O-4 bonds. Finally, satisfied pentanol recovery (77.91 %) and delignification (57.19 %) along with excellent glucan (76.11 %) and xylan (77.52 %) digestibility were reached after fourth recycling of AHPP pretreatment. Therefore, AHPP pretreatment was a promising method for biomass valorization within biorefinery concept.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Hui Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Ruonan Zhu
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lihong Zhao
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xingjie Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Ling Meng
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Khounani Z, Abdul Razak NN, Hosseinzadeh-Bandbafha H, Madadi M, Sun F, Mohammadi P, Mahlia TMI, Aghbashlo M, Tabatabaei M. Biphasic pretreatment excels over conventional sulfuric acid in pinewood biorefinery: An environmental analysis. ENVIRONMENTAL RESEARCH 2024; 248:118286. [PMID: 38280524 DOI: 10.1016/j.envres.2024.118286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.
Collapse
Affiliation(s)
- Zahra Khounani
- Department Electrical Engineering, College of Engineering (CoE), Institute of Energy Infrastructure (IEI), Universiti Tenega Nasional (UNITEN), Jalan IKRAM-UNITEN, Selangor, Malaysia
| | - Normy Norfiza Abdul Razak
- Department Electrical Engineering, College of Engineering (CoE), Institute of Energy Infrastructure (IEI), Universiti Tenega Nasional (UNITEN), Jalan IKRAM-UNITEN, Selangor, Malaysia.
| | | | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Pouya Mohammadi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - T M Indra Mahlia
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW, 2220, Australia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
3
|
Chen M, Ralph J, Luterbacher JS, Shi QS, Xie X. Selecting Suitable Near-Native Lignins for Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20751-20761. [PMID: 38065961 DOI: 10.1021/acs.jafc.3c04973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
There are several methods to isolate near-native lignins, including milled-wood lignin, enzymatic lignin, cellulolytic enzyme lignin, and enzymatic mild-acidolysis lignin. Which one is the most representative of the native lignin? Herein, near-native lignins were isolated from different plant groups and structurally analyzed to determine how well these lignins represented their native lignin counterparts. Analytical methods were applied to understand the molecular weight, monomer composition, and distribution of interunit linkages in the structure of the lignins. The results indicated that either enzymatic lignin or cellulolytic enzyme lignin may be used to represent native lignin in softwoods and hardwoods. None of the lignins, however, appeared to represent native lignins in grasses (monocot plants) because of substantial syringyl/guaiacyl differences. Complicating the understanding of grass lignin structure, large amounts of hydroxycinnamates acylate their polysaccharides and, when released, are often conflated with actual lignin monomers.
Collapse
Affiliation(s)
- Mingjie Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeremy S Luterbacher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Qing-Shan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
4
|
Tanis MH, Wallberg O, Galbe M, Al-Rudainy B. Lignin Extraction by Using Two-Step Fractionation: A Review. Molecules 2023; 29:98. [PMID: 38202680 PMCID: PMC10779531 DOI: 10.3390/molecules29010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Lignocellulosic biomass represents the most abundant renewable carbon source on earth and is already used for energy and biofuel production. The pivotal step in the conversion process involving lignocellulosic biomass is pretreatment, which aims to disrupt the lignocellulose matrix. For effective pretreatment, a comprehensive understanding of the intricate structure of lignocellulose and its compositional properties during component disintegration and subsequent conversion is essential. The presence of lignin-carbohydrate complexes and covalent interactions between them within the lignocellulosic matrix confers a distinctively labile nature to hemicellulose. Meanwhile, the recalcitrant characteristics of lignin pose challenges in the fractionation process, particularly during delignification. Delignification is a critical step that directly impacts the purity of lignin and facilitates the breakdown of bonds involving lignin and lignin-carbohydrate complexes surrounding cellulose. This article discusses a two-step fractionation approach for efficient lignin extraction, providing viable paths for lignin-based valorization described in the literature. This approach allows for the creation of individual process streams for each component, tailored to extract their corresponding compounds.
Collapse
Affiliation(s)
| | | | | | - Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (M.H.T.); (O.W.); (M.G.)
| |
Collapse
|
5
|
Yong KJ, Wu TY. Recent advances in the application of alcohols in extracting lignin with preserved β-O-4 content from lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 384:129238. [PMID: 37245662 DOI: 10.1016/j.biortech.2023.129238] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
Utilizing lignocellulosic biomass wastes to produce bioproducts is essential to address the reliance on depleting fossil fuels. However, lignin is often treated as a low-value-added component in lignocellulosic wastes. Valorization of lignin into value-added products is crucial to improve the economic competitiveness of lignocellulosic biorefinery. Monomers obtained from lignin depolymerization could be upgraded into fuel-related products. However, lignins obtained from conventional methods are low in β-O-4 content and, therefore, unsuitable for monomer production. Recent literature has demonstrated that lignins extracted with alcohol-based solvents exhibit preserved structures with high β-O-4 content. This review discusses the recent advances in utilizing alcohols to extract β-O-4-rich lignin, where discussion based on different alcohol groups is considered. Emerging strategies in employing alcohols for β-O-4-rich lignin extraction, including alcohol-based deep eutectic solvent, flow-through fractionation, and microwave-assisted fractionation, are reviewed. Finally, strategies for recycling or utilizing the spent alcohol solvents are also discussed.
Collapse
Affiliation(s)
- Khai Jie Yong
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Department of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
6
|
Fernández-Bautista M, Martínez-Gómez S, Rivas S, Alonso JL, Parajó JC. Advances on Cellulose Manufacture in Biphasic Reaction Media. Int J Mol Sci 2023; 24:12404. [PMID: 37569779 PMCID: PMC10418468 DOI: 10.3390/ijms241512404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cellulose is produced industrially by the kraft and sulfite processes. The evolution of these technologies in biorefineries is driven by the need to obtain greater added value through the efficient use of raw materials and energy. In this field, organosolv technologies (and within them, those using liquid phases made up of water and one partly miscible organic solvent, known as "biphasic fractionation" in reference to the number of liquid phases) represent an alternative that is receiving increasing interest. This study considers basic aspects of the composition of lignocellulosic materials, describes the fundamentals of industrial cellulose pulp production processes, introduces the organosolv methods, and comprehensively reviews published results on organosolv fractionation based on the use of media containing water and an immiscible solvent (1-butanol, 1-pentanol or 2-methyltetrahydrofuran). Special attention is devoted to aspects related to cellulose recovery and fractionation selectivity, measured through the amount and composition of the treated solids.
Collapse
Affiliation(s)
- Marcos Fernández-Bautista
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Sergio Martínez-Gómez
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Sandra Rivas
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - José Luis Alonso
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| | - Juan Carlos Parajó
- Faculty of Science, Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain; (M.F.-B.); (S.M.-G.); (S.R.); (J.L.A.)
- CINBIO, University of Vigo (Campus Lagoas-Marcosende), 36310 Vigo, Spain
| |
Collapse
|
7
|
Madadi M, Liu D, Qin Y, Zhang Y, Karimi K, Tabatabaei M, Gupta VK, Aghbashlo M, Ali SS. Integrated pretreatment of poplar biomass employing p-toluenesulfonic acid catalyzed liquid hot water and short-time ball milling for complete conversion to xylooligosaccharides, glucose, and native-like lignin. BIORESOURCE TECHNOLOGY 2023:129370. [PMID: 37343805 DOI: 10.1016/j.biortech.2023.129370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
This work aimed to study an integrated pretreatment technology employing p-toluenesulfonic acid (TsOH)-catalyzed liquid hot water (LHW) and short-time ball milling for the complete conversion of poplar biomass to xylooligosaccharides (XOS), glucose, and native-like lignin. The optimized TsOH-catalyzed LHW pretreatment solubilized 98.5% of hemicellulose at 160 °C for 40 min, releasing 49.8% XOS. Moreover, subsequent ball milling (20 min) maximized the enzymatic hydrolysis of cellulose from 65.8% to 96.5%, owing to the reduced particle sizes and cellulose crystallinity index. The combined pretreatment reduced the crystallinity by 70.9% while enlarging the average pore size and pore volume of the substrate by 29.5% and 52.4%, respectively. The residual lignin after enzymatic hydrolysis was rich in β-O-4 linkages (55.7/100 Ar) with a less condensed structure. This lignin exhibited excellent antioxidant activity (RSI of 66.22) and ultraviolet absorbance. Thus, this research suggested a sustainable waste-free biorefinery for the holistic valorization of biomass through two-step biomass fractionation.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Dan Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yuanhang Qin
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yinchao Zhang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sameh Samir Ali
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|