1
|
Liu J, Hu M, Hu M, Wang J, Zhang T, Wang Y, Wang X. Responses of suspended sludge and biofilm in a SNAD system under C/N elevation: Microbial activity, nitrogen conversion flux and molecular ecological network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176236. [PMID: 39299341 DOI: 10.1016/j.scitotenv.2024.176236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The simultaneous partial nitrification, anammox and denitrification (SNAD) process had received widespread attention as an advanced wastewater treatment process. In this study, the SNAD mainstream nitrogen removal process with the incorporation of polyurethane sponge packing under different C/N conditions was investigated. Results showed that the highest nitrogen removal efficiency of the system was achieved at the C/N of 2.0, while the high C/N (3.5) significantly deteriorate the nitrogen removal efficiency. Meanwhile, high C/N (3.5) significantly inhibited the activity and abundance of anammox bacteria (mainly Candidatus_Kuenenia), resulting in the decreased contribution of anammox (from 63.14 % to 48.09 %). The significant divergence of microbial interactions in the suspended sludge and biofilm was observed with increasing C/N. Compared with suspended sludge, biofilm facilitated higher abundance and activity of anammox bacteria, and the molecular ecological network of biofilm displayed better stability and more efficient mass transfer efficiency between microorganisms. The C/N of 3.5 simplified the subnetworks of Chloroflexi and Proteobacteria but increased the positive interactions between Planctomycetota and other microbes. Anammox bacteria were found as keystone species only in biofilm system. This study provided a theoretical basis and technical guidance for the application of SNAD process in municipal wastewater treatment.
Collapse
Affiliation(s)
- Junyu Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meina Hu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mei Hu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaao Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuling Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Wang R, Liu J, Zhang Q, Li X, Wang S, Peng Y. Robustness of the anammox process at low temperatures and low dissolved oxygen for low C/N municipal wastewater treatment. WATER RESEARCH 2024; 252:121209. [PMID: 38309058 DOI: 10.1016/j.watres.2024.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Low water temperatures and ammonium concentrations pose challenges for anammox applications in the treatment of low C/N municipal wastewater. In this study, a 10 L-water bath sequencing batch reactor combing biofilm and suspended sludge was designed for low C/N municipal wastewater treatment. The nitrogen removal performance via partial nitrification anammox-(endogenous) denitrification anammox process was investigated with anaerobic-aerobic-anoxic mode at low temperatures and dissolved oxygen (DO). The results showed that with the decrease of temperature from 30 to 15℃, the influent and effluent nitrogen concentrations and nitrogen removal efficiencies were 73.7 ± 6.5 mg/L, 7.8 ± 2.8 mg/L, and 89.4 %, respectively, with aerobic hydraulic retention time of only 6 h and DO concentration of 0.2-0.5 mg/L. Among that, the stable anammox process compensated for the inhibitory effects of the low temperatures on the nitrification and denitrification processes. Notably, from 30 to 15℃, the anammox activity and relative abundance of the dominant Brocadia genus were increased from 39.7 to 45.5 mgN/gVSS/d and 7.3 to 12.0 %, respectively; the single gene expression level of the biofilm increased 9.0 times. The anammox bacteria showed a good adaptation to temperatures reduction. However, nitrogen removal by anammox was not improved by increasing DO (≥ 4 mg/L) at 8-4℃. Overall, the results of this study demonstrate the feasibility of the mainstream anammox process at low temperatures.
Collapse
Affiliation(s)
- Rui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
3
|
Chang G, Yang J, Li X, Liao H, Li S, Hou J, Zhong G, Wang J, Deng M, Xue Y. Iron-modified carriers accelerate biofilm formation and resist anammox bacteria loss in biofilm reactors for partial denitrification-anammox. BIORESOURCE TECHNOLOGY 2024; 394:130223. [PMID: 38113948 DOI: 10.1016/j.biortech.2023.130223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
The slow formation of anammox biofilms presents a bottleneck for resolving anammox bacterial loss and achieving stable performance in biofilm-based partial denitrification-anammox (PD-A) processes. This study utilized iron-modified (K1/Fe3O4 NPs) carriers, which were prepared and used for the first time in PD-A processes. Parallel moving bed biofilm reactors (MBBRs) indicated that iron-modified carriers facilitated the formation of biofilms at a faster rate than K1 carriers, consequently improving the nitrogen removal performance of the process by over 40 %. 16S rDNA analysis showed that anammox bacteria were approximately four times more abundant in the iron-modified carrier biofilm than in the K1 carrier biofilm. XPS and zeta potential analysis suggested that the improved microbial affinity of the iron-modified carrier surface caused this. As a result, the iron-modified carriers facilitated the formation of anammox biofilms and enhanced PD-A performance.
Collapse
Affiliation(s)
- Genwang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Jinjin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Science, Beijing Normal University, Beijing 100875, China
| | - Shaokang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junhua Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Genmao Zhong
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junjie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingtao Deng
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yiheng Xue
- State Key Laboratory of Environmental Criteria and Risk Assessment & State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
4
|
Tang M, Du R, Cao S, Berry M, Peng Y. Tracing and utilizing nitrogen loss in wastewater treatment: The trade-off between performance improvement, energy saving, and carbon footprint reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119525. [PMID: 37948961 DOI: 10.1016/j.jenvman.2023.119525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Biological nitrogen removal is widely applied to reduce the discharge of inorganic nitrogen and mitigate the eutrophication of receiving water. However, nitrogen loss is frequently observed in wastewater treatment systems, yet the underlying principle and potential enlightenment is still lacking a comprehensive discussion. With the development and application of novel biological technologies, there are increasing achievement in the deep understanding and mechanisms of nitrogen loss processes. This article reviews the potential and novel pathways of nitrogen loss, occurrence mechanisms, influential factors, and control strategies. A survey of recent literature showed that 3%∼73% of nitrogen loss beyond the nitrogen budget can be ascribed to the unintentional presence of simultaneous nitrification/denitrification, partial nitrification/anammox, and endogenous denitrification processes, under low dissolved oxygen (DO) and limited available organic carbon source at aerobic conditions. Key influential parameters, including DO, aeration strategies, solid retention time (SRT), hydraulic retention time (HRT), temperature and pH, significantly affect both the potential pathways of nitrogen loss and its quantitative contribution. Notably, the widespread and spontaneous growth of anammox bacteria is an important reason for ammonia escape at anaerobic/anoxic conditions, leading to 7%∼78% of nitrogen loss through anammox pathway. Moreover, the unwanted nitrous oxide (N2O) emission should also be considered as a key pathway in nitrogen loss. Future development of new nitrogen removal technologies is proposed to suppress the generation of harmful nitrogen losses and reduce the carbon footprint of wastewater treatment by controlling key influential parameters. Transforming "unintentional observation" to "intentional action" as high-efficiency and energy-efficient nitrogen removal process provides a new approach for the development of wastewater treatment.
Collapse
Affiliation(s)
- Meihui Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China; Chair of Water Chemistry and Water Technology, Engler-Bunte-Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Maxence Berry
- Department of Process Engineering and Bioprocesses, Polytech Nantes, Campus of Gavy, Saint-Nazaire, 44603, France
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
5
|
Pan Z, Li Z, Zeng B, Shen L, Lin H. Enhanced denitrification performance of granular sludge for the treatment of waste brine from ion exchange resin process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118473. [PMID: 37413732 DOI: 10.1016/j.jenvman.2023.118473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Ion exchange resin process is a widely used process in wastewater treatment plants, but its waste brine is characterized by high salinity and nitrate concentration, leading to costly treatment. This study innovatively explored the use of an up-flow anaerobic sludge bed (USB) for the treatment of waste brine from ion exchange resin process, following a pilot-scale ion exchange resin process. Specifically, the D890 ion exchange resin was employed for nitrate removal from secondary effluent, with resin regeneration using 4% NaCl solution. The USB was inoculated with anaerobic granular sludge and acclimated under various single-factor conditions, which revealed the optimal pH range of 6.5-9, salt concentration of 2%, hydraulic retention time of 12 h, C/N ratio of 3.3, and up-flow velocity of 1.5 m/h for reactor operation. This study provides a novel approach for the cost-effective treatment of waste brine from ion exchange resin process. The study found that the denitrification efficiency was highest when the NO3--N concentration was around 200 mg/L, with NO3--N and TN removal rates exceeding 95% and 90%, respectively, under optimal operating conditions. Characterization of the granular sludge during different phases of the operation revealed a significant increase in proteobacteria and gradually became the dominant species over time. This study presents a novel, cost-effective approach to treat waste brine from ion exchange resin process, and the long-term stable operation of the reactor offers a reliable option for resin regeneration wastewater treatment.
Collapse
Affiliation(s)
- Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhongqiang Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bizhen Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
6
|
Li X, Yu Z, Ge X, Zhang W, Fang Y, Liu W, Wang A. Volatile fatty acids bio-production using extracellular polymeric substances disengaged from sludge for carbon source recycling. BIORESOURCE TECHNOLOGY 2023; 386:129565. [PMID: 37506926 DOI: 10.1016/j.biortech.2023.129565] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Excessive waste-activated sludge (WAS) and insufficient carbon source (CS) for biological nitrogen removal (BNR) often coexist in municipal sewage treatment. Although the production of volatile fatty acids (VFAs) from WAS has been recognized as a promising solution, the development is limited by low VFAs production efficiency and dewatering deterioration of sludge. This study extracted the extracellular polymeric substances (EPS) from sludge by low-temperature thermal-hydrolysis (LTH) and high-speed hydro-cyclone (HSHC) pretreatment and recovered it for high-quality VFAs bio-production in thermophilic fermentation. Microbial mechanism analysis disclosed that interspecific interaction networks composed of functional flora, which accumulate VFAs by bio-converting EPS primarily and supplemented by EPS synthesis, guaranteed the efficient bio-production of VFAs. This process scheme shows promise in providing alternative denitrification CSs and avoiding deterioration of sludge dewaterability.
Collapse
Affiliation(s)
- Xiqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhe Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xiaoli Ge
- Tianjin Municipal Engineering Design & Research Institute Co. Ltd., Tianjin 300000, China
| | - Wenzhe Zhang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingke Fang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450002, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|