1
|
Coenye T, Ahonen M, Anderson S, Cámara M, Chundi P, Fields M, Foidl I, Gnimpieba EZ, Griffin K, Hinks J, Loka AR, Lushbough C, MacPhee C, Nater N, Raval R, Slater-Jefferies J, Teo P, Wilks S, Yung M, Webb JS. Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy. Biofilm 2024; 8:100210. [PMID: 39221168 PMCID: PMC11364012 DOI: 10.1016/j.bioflm.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Priority question exercises are increasingly used to frame and set future research, innovation and development agendas. They can provide an important bridge between the discoveries, data and outputs generated by researchers, and the information required by policy makers and funders. Microbial biofilms present huge scientific, societal and economic opportunities and challenges. In order to identify key priorities that will help to advance the field, here we review questions from a pool submitted by the international biofilm research community and from practitioners working across industry, the environment and medicine. To avoid bias we used computational approaches to group questions and manage a voting and selection process. The outcome of the exercise is a set of 78 unique questions, categorized in six themes: (i) Biofilm control, disruption, prevention, management, treatment (13 questions); (ii) Resistance, persistence, tolerance, role of aggregation, immune interaction, relevance to infection (10 questions); (iii) Model systems, standards, regulatory, policy education, interdisciplinary approaches (15 questions); (iv) Polymicrobial, interactions, ecology, microbiome, phage (13 questions); (v) Clinical focus, chronic infection, detection, diagnostics (13 questions); and (vi) Matrix, lipids, capsule, metabolism, development, physiology, ecology, evolution environment, microbiome, community engineering (14 questions). The questions presented are intended to highlight opportunities, stimulate discussion and provide focus for researchers, funders and policy makers, informing future research, innovation and development strategy for biofilms and microbial communities.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Merja Ahonen
- Satakunta University of Applied Sciences, Finland
| | - Skip Anderson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Miguel Cámara
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Matthew Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ines Foidl
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Kristen Griffin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jamie Hinks
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | | | - Cait MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nater
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Rasmita Raval
- National Biofilms Innovation Centre, Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jo Slater-Jefferies
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Pauline Teo
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Sandra Wilks
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Maria Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | - Jeremy S. Webb
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Bozan M, Berreth H, Lindberg P, Bühler K. Cyanobacterial biofilms: from natural systems to applications. Trends Biotechnol 2024:S0167-7799(24)00215-4. [PMID: 39214791 DOI: 10.1016/j.tibtech.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cyanobacteria are the ancestors of oxygenic photosynthesis. Fueled by light and water, their ability to reduce CO2 to sugar holds potential for carbon-neutral production processes. Due to challenges connected to cultivation and engineering issues, cyanobiotechnology has yet to be able to establish itself broadly in industry. In recent years, applying cyanobacterial biofilms as whole-cell biocatalysts instead of suspension cultures has emerged as a novel concept to counteract low cell densities and low reaction stability, critical challenges in cyanobacterial applications. This review explores the potential of cyanobacterial biofilms for biotechnology and bioremediation. It briefly introduces cyanobacteria as primary producers in natural structured microbial communities; describes various applications in biotechnology and bioremediation; and discusses innovations, challenges, and future trends in this exciting research field.
Collapse
Affiliation(s)
- Mahir Bozan
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Hannah Berreth
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany.
| |
Collapse
|
3
|
Liu X, Tang K, Hu J. Application of Cyanobacteria as Chassis Cells in Synthetic Biology. Microorganisms 2024; 12:1375. [PMID: 39065143 PMCID: PMC11278661 DOI: 10.3390/microorganisms12071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it possible to break through laboratory research into large-scale industrial applications. The synthesis of a range of biochemicals has been demonstrated in cyanobacteria; however, low product titers are the biggest barrier to the commercialization of cyanobacterial biotechnology. This review summarizes the applied improvement strategies from the perspectives of cyanobacteria chassis cells and synthetic biology. The harvest advantages of cyanobacterial products and the latest progress in improving production strategies are discussed according to the product status. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in the application and development of cyanobacteria genetic tool kits in biochemical synthesis, environmental monitoring, and remediation were assessed.
Collapse
Affiliation(s)
| | | | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.L.); (K.T.)
| |
Collapse
|
5
|
Griehl C, Schmid A, Wilhelm C. Meilensteine in der Algenbiotechnologie. BIOSPEKTRUM : ZEITSCHRIFT DER GESELLSCHAFT FUR BIOLOGISHE CHEMIE (GBCH) UND DER VEREINIGUNG FUR ALLGEMEINE UND ANGEWANDTE MIKROBIOLOGIE (VAAM) 2023; 29:306-309. [PMID: 37275943 PMCID: PMC10230451 DOI: 10.1007/s12268-023-1942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent progress in algal biotechnology has identified new products based on their broad evolutionary origin. Novel metabolites were found for pharmacy, food industry, medicine e.g. tumor suppression and antibiotics. However, sustainable and economical algal production for crude oil replacement is limited by extremely low space time yields in photobioreactors. The consequences are a high energy burden for mass flow dependent processes and the need of space being in conflict with sustainable landscape management. New concepts using algae not as biomass producers but as living catalysts may open new options.
Collapse
Affiliation(s)
- Carola Griehl
- Kompetenzzentrum Algenbiotechnologie, Hochschule Anhalt, Köthen, Deutschland
| | - Andreas Schmid
- Department Solare Materialien, UFZ Leipzig-Halle, Leipzig, Deutschland
| | - Christian Wilhelm
- Institut für Biologie, Universität Leipzig, D-04318 Leipzig, Permoserstraße 15, Deutschland
| |
Collapse
|