1
|
Yang Q, Guo S, Ran Y, Zeng J, Qiao D, Xu H, Cao Y. Enhanced degradation of exogenetic citrinin by glycosyltransferases in the oleaginous yeast Saitozyma podzolica zwy-2-3. BIORESOURCE TECHNOLOGY 2024; 413:131468. [PMID: 39260733 DOI: 10.1016/j.biortech.2024.131468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
The contamination by the toxin citrinin (CIT), produced by fungi, has been reported in agricultural foods and is known to be nephrotoxic to humans. In this study, we found that CIT could be effectively degraded by the oleaginous yeast Saitozyma podzolica zwy-2-3. Four genes encoding glycosyltransferases (GTs) in S. podzolica zwy-2-3 (SPGTs) were identified by evolutionary and structural analyses. The overexpression of SPGTs enhanced CIT degradation to 0.56 mg/L/h in S. podzolica zwy-2-3 by increasing ATP and glutathione (GSH) contents to oxidize CIT and scavenge reactive oxygen species (ROS). Besides, SPGTs promoted lipid synthesis by 9.3 % of S. podzolica zwy-2-3 under CIT stress. These results suggest that SPGTs in oleaginous yeast play a pivotal role in enhancing CIT degradation and lipid accumulation. These findings provide a valuable basis for the application of GTs in oleaginous yeast to alleviate CIT contamination in agricultural production, which may contribute to food safety.
Collapse
Affiliation(s)
- Qingzhuoma Yang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shengtao Guo
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yulu Ran
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zeng
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
He Y, Lai H, Liang J, Cheng L, He L, Wang H, Teng Q, Cai W, Wang R, Zhu L, Pang Z, Zhang D, Dong X, Gao C. Optimization Co-Culture of Monascus purpureus and Saccharomyces cerevisiae on Selenium-Enriched Lentinus edodes for Increased Monacolin K Production. J Fungi (Basel) 2024; 10:503. [PMID: 39057388 PMCID: PMC11277982 DOI: 10.3390/jof10070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Selenium-enriched Lentinus edodes (SL) is a kind of edible fungi rich in organic selenium and nutrients. Monascus purpureus with high monacolin K (MK) production and Saccharomyces cerevisiae were selected as the fermentation strains. A single-factor experiment and response surface methodology were conducted to optimize the production conditions for MK with higher contents from selenium-enriched Lentinus edodes fermentation (SLF). Furthermore, we investigated the nutritional components, antioxidant capacities, and volatile organic compounds (VOCs) of SLF. The MK content in the fermentation was 2.42 mg/g under optimal fermentation conditions. The organic selenium content of SLF was 7.22 mg/kg, accounting for 98% of the total selenium content. Moreover, the contents of total sugars, proteins, amino acids, reducing sugars, crude fiber, fat, and ash in SLF were increased by 9%, 23%, 23%, 94%, 38%, 44%, and 25%, respectively. The antioxidant test results demonstrated that 1.0 mg/mL of SLF exhibited scavenging capacities of 40%, 70%, and 79% for DPPH, ABTS, and hydroxyl radicals, respectively. Using gas chromatography-ion mobility spectrometry technology, 34 unique VOCs were identified in SLF, with esters, alcohols, and ketones being the main components of its aroma. This study showed that fungal fermentation provides a theoretical reference for enhancing the nutritional value of SL.
Collapse
Affiliation(s)
- Yi He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huafa Lai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jinxiao Liang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| | - Lu Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lixia He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| | - Haolin Wang
- Suixian Public Inspection and Testing Center, Suizhou 441300, China;
| | - Qingqing Teng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenjing Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Rui Wang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lisha Zhu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhengbin Pang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| | - Dafu Zhang
- Hubei Hongyang Ecological Technology Co., Ltd., Suizhou 441300, China;
- Hubei Hetai Food Co., Ltd., Suizhou 441300, China
| | - Xingxing Dong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
- Hubei Zhongxing Food Co., Ltd., Suizhou 441300, China
| | - Chao Gao
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (Y.H.); (H.L.); (J.L.); (L.C.); (L.H.); (Q.T.); (W.C.); (R.W.); (L.Z.); (Z.P.); (X.D.)
| |
Collapse
|
3
|
Zheng H, Jiang J, Huang C, Wang X, Hu P. Effect of sugar content on characteristic flavour formation of tomato sour soup fermented by Lacticaseibacillus casei H1 based on non-targeted metabolomics analysis. Food Chem X 2024; 21:101116. [PMID: 38282824 PMCID: PMC10818199 DOI: 10.1016/j.fochx.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 01/30/2024] Open
Abstract
To reveal the formation mechanism of the characteristic flavour of tomato sour soup (TSS), metabolomics based on UHPLC-Q-TOF/MS was used to investigate the effect of sugar addition on TSS metabolomics during fermentation with Lacticaseibacillus casei H1. A total of 254 differentially abundant metabolites were identified in the 10% added-sugar group, which mainly belonged to organic acids and derivatives, fatty acyls, and organic oxygen compounds. Metabolic pathway analysis revealed that alanine aspartate and glutamate metabolism, valine leucine and isoleucine metabolism and butanoate metabolism were the potential pathways for the flavour of TSS formation. Lactic acid, acetic acid, Ala, Glu and Asp significantly contributed to the acidity and umami formation of TSS. This study showed that sugar regulation played an important role in the formation of the characteristic TSS flavour during fermentation, providing important support for understanding the formation mechanism of organic acids as the main characteristic flavour of TSS.
Collapse
Affiliation(s)
- Huaisheng Zheng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jingzhu Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chaobing Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoyu Wang
- College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Stalidzans E, Muiznieks R, Dubencovs K, Sile E, Berzins K, Suleiko A, Vanags J. A Fermentation State Marker Rule Design Task in Metabolic Engineering. Bioengineering (Basel) 2023; 10:1427. [PMID: 38136018 PMCID: PMC10740952 DOI: 10.3390/bioengineering10121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
There are several ways in which mathematical modeling is used in fermentation control, but mechanistic mathematical genome-scale models of metabolism within the cell have not been applied or implemented so far. As part of the metabolic engineering task setting, we propose that metabolite fluxes and/or biomass growth rate be used to search for a fermentation steady state marker rule. During fermentation, the bioreactor control system can automatically detect the desired steady state using a logical marker rule. The marker rule identification can be also integrated with the production growth coupling approach, as presented in this study. A design of strain with marker rule is demonstrated on genome scale metabolic model iML1515 of Escherichia coli MG1655 proposing two gene deletions enabling a measurable marker rule for succinate production using glucose as a substrate. The marker rule example at glucose consumption 10.0 is: IF (specific growth rate μ is above 0.060 h-1, AND CO2 production under 1.0, AND ethanol production above 5.5), THEN succinate production is within the range 8.2-10, where all metabolic fluxes units are mmol ∗ gDW-1 ∗ h-1. An objective function for application in metabolic engineering, including productivity features and rule detecting sensor set characterizing parameters, is proposed. Two-phase approach to implementing marker rules in the cultivation control system is presented to avoid the need for a modeler during production.
Collapse
Affiliation(s)
- Egils Stalidzans
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (R.M.); (K.B.)
| | - Reinis Muiznieks
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (R.M.); (K.B.)
| | - Konstantins Dubencovs
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Elina Sile
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
| | - Kristaps Berzins
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Street 1, LV-1004 Riga, Latvia; (R.M.); (K.B.)
| | - Arturs Suleiko
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Juris Vanags
- Bioreactors.net AS, Dzerbenes Street 27, LV-1006 Riga, Latvia (E.S.); (A.S.); (J.V.)
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| |
Collapse
|
5
|
Li L, Li N, Wang X, Gao S, Zhang J, Zhou J, Wu Z, Zeng W. Metabolic engineering combined with enzyme engineering for overproduction of ectoine in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 390:129862. [PMID: 37839643 DOI: 10.1016/j.biortech.2023.129862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Ectoine, a natural protective agent, is naturally synthesized at low titers by some extreme environment microorganisms that are usually difficult to culture. There is a need for an efficient and eco-friendly ectoine production process. In this study, Escherichia coli BL21(DE3) with the ectABC gene cluster from Halomonas venusta achieved 1.7 g/L ectoine. After optimizing the expression plasmid, 2.1 g/L ectoine was achieved. Besides, the aspartate kinase mutant LysCT311I from Corynebacterium glutamicum and aspartate semialdehyde dehydrogenase from Halomonas elongata were overexpressed to increase precursors supply. Furthermore, the rate-limiting enzyme EctB was semirationally engineered, and the E407D mutation enhanced ectoine production by 13.8 %. To improve acetyl-CoA supply, the non-oxidative glycolysis pathway was introduced. Overall, the optimized strain ECT9-5 produced 67.1 g/L ectoine by fed-batch fermentation with a 0.3 g/g of glucose and the kinetic model resulted in a good fit.
Collapse
Affiliation(s)
- Lihong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Juan Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Liu Y, Pan X, Zhang H, Zhao Z, Teng Z, Rao Z. Combinatorial protein engineering and transporter engineering for efficient synthesis of L-Carnosine in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 387:129628. [PMID: 37549716 DOI: 10.1016/j.biortech.2023.129628] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
L-Carnosine has various physiological functions and is widely used in cosmetics, medicine, food additives, and other fields. However, the yield of L-Carnosine obtained by biological methods is far from the level of industrial production. Herein, a cell factory for efficient synthesis of L-Carnosine was constructed based on transporter engineering and protein engineering. Firstly, a dipeptidase (SmpepD) was screened from Serratia marcescens through genome mining to construct a cell factory for synthesizing L-Carnosine. Subsequently, through rationally designed SmPepD, a double mutant T168S/G148D increased the L-Carnosine yield by 41.6% was obtained. Then, yeaS, a gene encoding the exporter of L-histidine, was deleted to further increase the production of L-Carnosine. Finally, L-Carnosine was produced by one-pot biotransformation in a 5 L bioreactor under optimized conditions with a yield of 133.2 mM. This study represented the highest yield of L-Carnosine synthesized in microorganisms and provided a biosynthetic pathway for the industrial production of L-Carnosine.
Collapse
Affiliation(s)
- Yunran Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhenqiang Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zixin Teng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
7
|
Tong Y, Li Y, Qin W, Wu S, Xu W, Jin P, Zheng Z. New insight into the metabolic mechanism of a novel lipid-utilizing and denitrifying bacterium capable of simultaneous removal of nitrogen and grease through transcriptome analysis. Front Microbiol 2023; 14:1258003. [PMID: 37965562 PMCID: PMC10642853 DOI: 10.3389/fmicb.2023.1258003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Issues related to fat, oil, and grease from kitchen waste (KFOG) in lipid-containing wastewater are intensifying globally. We reported a novel denitrifying bacterium Pseudomonas CYCN-C with lipid-utilizing activity and high nitrogen-removal efficiency. The aim of the present study was aim to explore the metabolic mechanism of the simultaneous lipid-utilizing and denitrifying bacterium CYCN-C at transcriptome level. Methods We comparatively investigated the cell-growth and nitrogen-removal performances of newly reported Pseudomonas glycinae CYCN-C under defined cultivation conditions. Transcriptome analysis was further used to investigate all pathway genes involved in nitrogen metabolism, lipid degradation and utilization, and cell growth at mRNA levels. Results CYCN-C could directly use fat, oil, and grease from kitchen waste (KFOG) as carbon source with TN removal efficiency of 73.5%, significantly higher than that (60.9%) with sodium acetate. The change levels of genes under defined KFOG and sodium acetate were analyzed by transcriptome sequencing. Results showed that genes cyo, CsrA, PHAs, and FumC involved in carbon metabolism under KFOG were significantly upregulated by 6.9, 0.7, 26.0, and 19.0-folds, respectively. The genes lipA, lipB, glpD, and glpK of lipid metabolic pathway were upregulated by 0.6, 0.4, 21.5, and 1.3-folds, respectively. KFOG also improved the denitrification efficiency by inducing the expression of the genes nar, nirB, nirD, and norR of denitrification pathways. Conclusion In summary, this work firstly provides valuable insights into the genes expression of lipid-utilizing and denitrifying bacterium, and provides a new approach for sewage treatment with reuse of KFOG wastes.
Collapse
Affiliation(s)
- Yaobin Tong
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
| | - Yiyi Li
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Wenpan Qin
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Shengchun Wu
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Weiping Xu
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang A & F University, Hangzhou, China
| | - Zhanwang Zheng
- School of Environmental & Resource, Zhejiang A & F University, Hangzhou, China
- Zhejiang Sunda Public Environmental Protection Co., Ltd., Hangzhou, China
| |
Collapse
|