1
|
Shu W, Yang L, Lan W, Yu M, Yuan L, Liu C, Li Z. Efficient and facile biphasic pretreatment for corn stover fractionation with comprehensive utilization of cellulose, xylan and lignin. Int J Biol Macromol 2024; 289:138919. [PMID: 39701241 DOI: 10.1016/j.ijbiomac.2024.138919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Developing a mild and efficient pretreatment technique to fully utilize lignocellulosic biomass remains a challenge. In this work, a biphasic system with 2-phenoxyethanol (EPH) organic solvent and phosphotungstic acid (PTA) aqueous solution was employed to pretreat corn stover. The prominent synergistic effect between EPH and PTA was revealed to play a key role in the fractionation of corn stover. The excellent separation efficiency with 88.55 % cellulose retention, 85.02 % xylan removal, and 86.68 % lignin removal was achieved under mild pretreatment conditions. The 62.18 % of xylose in aqueous phase, and 83.44 % of lignin from organic phase were recovered after the EPH/PTA biphasic pretreatment. Furthermore, the solid residue was digested with high enzymatic glucose yield of 92.69 %, and the xylose was oxidated with xylonic acid yield of 50.06 %. Meanwhile, the high-performance lignin-based films were manufactured by using the recovered lignin. This study presented a promising way for high-value utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Weiwei Shu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Lu Yang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Manman Yu
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China; School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Chuanfu Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zengyong Li
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
2
|
Li Y, Kang X, You Z, He T, Su T, Zhang J, Zhuang X, Zhang Z, Ragauskas AJ, Song X, Li K. Establishment of efficient system for bagasse bargaining: Combining fractionation of saccharides, recycling of high-viscosity solvent and dismantling. BIORESOURCE TECHNOLOGY 2024; 413:131482. [PMID: 39270989 DOI: 10.1016/j.biortech.2024.131482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Sugarcane bagasse (SCB) has a recalcitrant structure, which hinders its component dismantling and subsequent high value utilization. Some organic solvents are favorable to dismantle lignocellulose, but their high viscosity prevents separation of components and reuse of solvents. Herein, ethylene glycol phenyl ether (EGPE)-acid system is used as an example to develop green and efficient methods to dismantle SCB, purify polysaccharides and lignin, and reuse solvents. Results show that dismantling SCB at 130 °C, 0.5 % H2SO4, and 100 min can obtain 85.5 % cellulose recovery, 94.1 % hemicellulose removal and 83.7 % lignin removal. Different molecular weight saccharides are separated by membranes filtration and centrifugation, and lignin recovered by antisolvent precipitation. The solvent recovered by distillation, achieving high dismantling efficiency of 89.2 % cellulose recovery, 94.1 % hemicellulose removal and 94.4 % lignin removal after four recycles. Results show a promising approach for the closed-loop process of dismantling lignocellulose, fractionating saccharides, and reusing solvents in high-viscosity systems.
Collapse
Affiliation(s)
- Yihan Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China
| | - Xiheng Kang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zi You
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Tianming Su
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Junhua Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Kai Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China.
| |
Collapse
|
3
|
Yang W, Li J, Yao Z. High-solids saccharification of non-pretreated citrus peels through tailored cellulase. Int J Biol Macromol 2024; 282:136863. [PMID: 39454926 DOI: 10.1016/j.ijbiomac.2024.136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Citrus peels, characterized by their low lignin and high sugar content, have been drawing increasing attention as a valuable lignocellulosic biomass with significant potential in biorefinery. Notably, in this study, the citrus waste was found to be enzymatically accessible without any pretreatment. Moreover, to promote the high-solids saccharification of the citrus peels, a tailored cellulase cocktail was formulated by response surface methodology (RSM), along with a fed-batch strategy aiming to obtain a high substrate loading. The study resulted in an optimized cellulase cocktail (7.08 U/g DM of β-glucosidase, 164.17 U/g DM of hemicellulase, 47.38 mg/g DM of sophorolipid, and 64.68 mg/g DM of Tween 80) and achieved solids loading of 22 % with a total sugar concentration of 123.84 g/L, corresponding to a yield of 93.12 % (65.28 % in batch operation). These findings provided essential validation for the efficient utilization of citrus waste, ensuring them promising potential as feedstock for sugar platforms.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Xu F, Sun D, Wang Z, Li M, Yin X, Li H, Xu L, Zhao J, Bao X. Highly Efficient Production of Cellulosic Ethanol from Poplar Using an Optimal C6/C5 Co-Fermentation Strain of Saccharomyces cerevisiae. Microorganisms 2024; 12:1174. [PMID: 38930556 PMCID: PMC11205669 DOI: 10.3390/microorganisms12061174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cellulosic ethanol is the key technology to alleviate the pressure of energy supply and climate change. However, the ethanol production process, which is close to industrial production and has a high saccharification rate and ethanol yield, still needs to be developed. This study demonstrates the effective conversion of poplar wood waste into fuel-grade ethanol. By employing a two-step pretreatment using sodium chlorite (SC)-dilute sulfuric acid (DSA), the raw material achieved a sugar conversion rate exceeding 85% of the theoretical value. Under optimized conditions, brewing yeast co-utilizing C6/C5 enabled a yield of 35 g/L ethanol from 10% solid loading delignified poplar hydrolysate. We increased the solid loading to enhance the final ethanol concentration and optimized both the hydrolysis and fermentation stages. With 20% solid loading delignified poplar hydrolysate, the final ethanol concentration reached 60 g/L, a 71.4% increase from the 10% solid loading. Our work incorporates the pretreatment, enzymatic hydrolysis, and fermentation stages to establish a simple, crude poplar waste fuel ethanol process, expanding the range of feedstocks for second-generation fuel ethanol production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianzhi Zhao
- Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | | |
Collapse
|
5
|
Zhang D, Liu J, Xu H, Liu H, He YC. Improving saccharification efficiency of corn stover through ferric chloride-deep eutectic solvent pretreatment. BIORESOURCE TECHNOLOGY 2024; 399:130579. [PMID: 38479628 DOI: 10.1016/j.biortech.2024.130579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
An effective deep eutectic solvent (DES) and Iron(III) chloride (FeCl3) combination pretreatment system was developed to improve the removal efficiency of lignin and hemicellulose from corn stover (CS) and enhance its saccharification. N-(2-hydroxyethyl)ethylenediamine (NE) was selected as the hydrogen-bond-donor for preparing ChCl-based DES (ChCl:NE), and a mixture of ChCl:NE (60 wt%) and FeCl3 (0.5 wt%) was utilized for combination pretreatment of CS at 110 ℃ for 50 min. FeCl3/ChCl:NE effectively removed lignin (87.0 %) and xylan (55.9 %) and the enzymatic hydrolysis activity of FeCl3/ChCl:NE-treated CS was 5.5 times that of CS. The reducing sugar yield of pretreated CS was 98.6 %. FeCl3/ChCl:NE significantly disrupted the crystal structure of cellulose in CS and improved the removal of lignin and hemicellulose, enhancing the conversion of cellulose and hemicellulose into monomeric sugars. Overall, this combination of FeCl3 and DES pretreatment methods has high application potential for the biological refining of lignocellulose.
Collapse
Affiliation(s)
- Danping Zhang
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Jia Liu
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Haixu Xu
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Hanxiao Liu
- College of Food Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Yu-Cai He
- School of Pharmacy, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Jiang H, Nie J, Zeng L, Zhu F, Gao Z, Zhang A, Xie J, Chen Y. Selective Removal of Hemicellulose by Diluted Sulfuric Acid Assisted by Aluminum Sulfate. Molecules 2024; 29:2027. [PMID: 38731518 PMCID: PMC11085920 DOI: 10.3390/molecules29092027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Hemicellulose can be selectively removed by acid pretreatment. In this study, selective removal of hemicellulose was achieved using dilute sulfuric acid assisted by aluminum sulfate pretreatment. The optimal pretreatment conditions were 160 °C, 1.5 wt% aluminum sulfate, 0.7 wt% dilute sulfuric acid, and 40 min. A component analysis showed that the removal rate of hemicellulose and lignin reached 98.05% and 9.01%, respectively, which indicated that hemicellulose was removed with high selectivity by dilute sulfuric acid assisted by aluminum sulfate pretreatment. Structural characterizations (SEM, FTIR, BET, TGA, and XRD) showed that pretreatment changed the roughness, crystallinity, pore size, and functional groups of corn straw, which was beneficial to improve the efficiency of enzymatic hydrolysis. This study provides a new approach for the high-selectivity separation of hemicellulose, thereby offering novel insights for its subsequent high-value utilization.
Collapse
Affiliation(s)
- Huabin Jiang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Jiaqi Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Lei Zeng
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Fei Zhu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Zhongwang Gao
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Aiping Zhang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Jun Xie
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| | - Yong Chen
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, China; (H.J.); (L.Z.); (F.Z.); (Z.G.); (Y.C.)
| |
Collapse
|
7
|
Zabed HM, Akter S, Yun J, Elshobary ME, Haldar SS, Zhao M, Chowdhury FI, Li J, Qi X. Tailoring whole slurry bioprocessing for sugary stovers to augment sugar production by integrating soluble and insoluble carbohydrates. JOURNAL OF CLEANER PRODUCTION 2024; 450:141844. [DOI: 10.1016/j.jclepro.2024.141844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
8
|
Liu Y, Zhou W, Zhao M, Ma Q, Zhang J, Zhou W, Gong Z. Combination of alkaline biodiesel-derived crude glycerol pretreated corn stover with dilute acid pretreated water hyacinth for highly-efficient single cell oil production by oleaginous yeast Cutaneotrichosporon oleaginosum. BIORESOURCE TECHNOLOGY 2024; 395:130366. [PMID: 38266783 DOI: 10.1016/j.biortech.2024.130366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Single cell oil (SCO) prepared from biodiesel-derived crude glycerol (BCG) and lignocellulosic biomass (LCB) via oleaginous yeasts is an intriguing alternative precursor of biodiesel. Here, a novel strategy combining alkaline BCG pretreated corn stover and dilute acid pretreated water hyacinth for SCO overproduction was developed. The mixed pretreatment liquors (MPLs) were naturally neutralized and adjusted to a proper carbon-to-nitrogen ratio beneficial for SCO overproduction by Cutaneotrichosporon oleaginosum. The toxicity of inhibitors was relieved by dilution detoxification. The enzymatic hydrolysate of solid fractions was suitable for SCO production either separately or simultaneously with MPLs. Fed-batch fermentation of the MPLs resulted in high cell mass, SCO content, and SCO titer of 80.7 g/L, 75.7 %, and 61.1 g/L, respectively. The fatty acid profiles of SCOs implied high-quality biodiesel characteristics. This study offers a novel BCG&LCB-to-SCO route integrating BCG-based pretreatment and BCG/LCB hydrolysates co-utilization, which provides a cost-effective technical route for micro-biodiesel production.
Collapse
Affiliation(s)
- Yantao Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Qishuai Ma
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Junlu Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China; HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| |
Collapse
|
9
|
Xu C, Wang Y, Zhang C, Liu J, Fu H, Zhou W, Gong Z. Highly-efficient lipid production from hydrolysate of Radix paeoniae alba residue by oleaginous yeast Cutaneotrichosporon oleaginosum. BIORESOURCE TECHNOLOGY 2024; 391:129990. [PMID: 37931762 DOI: 10.1016/j.biortech.2023.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Valorization of herbal extraction residues (HERs) into value-added products is pivotal for the sustainability of Chinese medicine industry. Here, seven different enzymatic hydrolysates of dilute acid pretreated HERs were evaluated for lipid production by Cutaneotrichosporon oleaginosum. Among them, the highest sugar yield via hydrolysis and the maximum lipid production were obtained from Radix paeoniae alba residue (RPAR). More interestingly, high proportion of sugar polymers was disintegrated into fermentable sugars during the pretreatment step, allowing a cheap non-enzymatic route for producing sugars from RPAR. A repeated dilute acid pretreatment gained a high sugar concentration of 241.6 g/L through reusing the pretreatment liquor (PL) for four times. Biomass, lipid concentration, and lipid content achieved 49.5 g/L, 35.7 g/L and 72.2 %, respectively, using fed-batch culture of PL. The biodiesel parameters indicated lipids produced from HERs were suitable for biodiesel production. This study offers a cost-effective way to upgrade the HERs waste into micro-biodiesel.
Collapse
Affiliation(s)
- Chen Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Yanan Wang
- National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Chuying Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Junheng Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Hanqi Fu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, People's Republic of China.
| |
Collapse
|