1
|
Hu J, Cao X, Qu L, Khodseewong S, Zhang S, Sakamaki T, Li X. Study on the mechanism of mitigating membrane fouling in MFC-AnMBR coupling system treating sodium and magnesium ion-containing wastewater. ENVIRONMENTAL TECHNOLOGY 2024; 45:6210-6223. [PMID: 38488119 DOI: 10.1080/09593330.2024.2329916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 12/05/2024]
Abstract
Anaerobic Membrane Bioreactors (AnMBR) offer numerous advantages in wastewater treatment, yet they are prone to membrane fouling after extended operation, impeding their long-term efficiency and stability. In this study, a coupled system was developed using modified conductive membranes as the filtration membrane for the AnMBR and as the anodic conductive membrane in the microbial electrochemical system, with a total volume of approximately 2.57 L. The research focused on understanding the membrane fouling characteristics of the AnMBR when treating wastewater containing sodium ion (Na+) and magnesium ion (Mg2+). When the system was treating wastewater containing Na+, organic pollutants such as proteins and polysaccharides were identified as the primary causes of membrane fouling. Three experimental groups generating different electric currents exhibited extended operational times compared to the open-circuit control group, with extensions of 30, 24, and 15 days, respectively. Conversely, when treating wastewater with Mg2+, organic-inorganic composite fouling, primarily driven by Mg2+ bridging, emerged as the key challenge, with the experimental groups showing operational extensions of 5, 8, and 23 days, respectively, in comparison to the control group. Analysis of proteins and polysaccharides indicated that electric current played a crucial role in reducing organic fouling in the sludge cake layer. When treating wastewater containing Na+, the effectiveness of membrane fouling control was directly proportional to the electric current, while when treating wastewater containing Mg2+, it was directly proportional to the voltage.
Collapse
Affiliation(s)
- Jijing Hu
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | - Xian Cao
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Liwei Qu
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| | | | - Shuai Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Takashi Sakamaki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Xianning Li
- College of Energy and Environment, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Liu Q, Zhou T, Liu Y, Wu W, Wang Y, Liu G, Wei N, Yin G, Guo J. Typical Heterotrophic and Autotrophic Nitrogen Removal Process Coupled with Membrane Bioreactor: Comparison of Fouling Behavior and Characterization. MEMBRANES 2024; 14:214. [PMID: 39452826 PMCID: PMC11509564 DOI: 10.3390/membranes14100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
There is limited research on the relationship between membrane fouling and microbial metabolites in the nitrogen removal process coupled with membrane bioreactors (MBRs). In this study, we compared anoxic-oxic (AO) and partial nitritation-anammox (PNA), which were selected as representative heterotrophic and autotrophic biological nitrogen removal-coupled MBR processes for their fouling behavior. At the same nitrogen loading rate of 100 mg/L and mixed liquor suspended solids (MLSS) concentration of 4000 mg/L, PNA-MBR exhibited more severe membrane fouling compared to AO-MBR, as evidenced by monitoring changes in transmembrane pressure (TMP). In the autotrophic nitrogen removal process, without added organic carbon, the supernatant of PNA-MBR had higher concentrations of protein, polysaccharides, and low-molecular-weight humic substances, leading to a rapid flux decline. Extracellular polymeric substances (EPS) extracted from suspended sludge and cake sludge in PNA-MBR also contributed to more severe membrane fouling than in AO-MBR. The EPS subfractions of PNA-MBR exhibited looser secondary structures in protein and stronger surface hydrophobicity, particularly in the cake sludge, which contained higher contents of humic substances with lower molecular weights. The higher abundances of Candidatus Brocadia and Chloroflexi in PNA-MBR could lead to the production of more hydrophobic organics and humic substances. Hydrophobic metabolism products as well as anammox bacteria were deposited on the hydrophobic membrane surface and formed serious fouling. Therefore, hydrophilic membrane modification is more urgently needed to mitigate membrane fouling when running PNA-MBR than AO-MBR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Ping Leyuan No. 100, Beijing 100124, China; (Q.L.); (T.Z.); (Y.L.); (W.W.); (Y.W.); (G.L.); (N.W.); (G.Y.)
| |
Collapse
|
3
|
Ye Y, Guo W, Ngo HH, Wei W, Cheng D, Bui XT, Hoang NB, Zhang H. Biofuel production for circular bioeconomy: Present scenario and future scope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:172863. [PMID: 38788387 DOI: 10.1016/j.scitotenv.2024.172863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
In recent years, biofuel production has attracted considerable attention, especially given the increasing worldwide demand for energy and emissions of greenhouse gases that threaten this planet. In this case, one possible solution is to convert biomass into green and sustainable biofuel, which can enhance the bioeconomy and contribute to sustainable economic development goals. Due to being in large quantities and containing high organic content, various biomass sources such as food waste, textile waste, microalgal waste, agricultural waste and sewage sludge have gained significant attention for biofuel production. Also, biofuel production technologies, including thermochemical processing, anaerobic digestion, fermentation and bioelectrochemical systems, have been extensively reported, which can achieve waste valorization through producing biofuels and re-utilizing wastes. Nevertheless, the commercial feasibility of biofuel production is still being determined, and it is unclear whether biofuel can compete equally with other existing fuels in the market. The concept of a circular economy in biofuel production can promote the environmentally friendly and sustainable valorization of biomass waste. This review comprehensively discusses the state-of-the-art production of biofuel from various biomass sources and the bioeconomy perspectives associated with it. Biofuel production is evaluated within the framework of the bioeconomy. Further perspectives on possible integration approaches to maximizing waste utilization for biofuel production are discussed, and what this could mean for the circular economy. More research related to pretreatment and machine learning of biofuel production should be conducted to optimize the biofuel production process, increase the biofuel yield and make the biofuel prices competitive.
Collapse
Affiliation(s)
- Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, PR China; Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia.
| | - Wei Wei
- Centre for Technology in Water and Wastewater, University of Technology Sydney, NSW 2007, Australia
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City 70000, Viet Nam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Sun JZ, Shu QC, Sun HW, Liu YC, Yang XY, Zhang YX, Wang G. High-Performance Macroporous Free-Standing Microbial Fuel Cell Anode Derived from Grape for Efficient Power Generation and Brewery Wastewater Treatment. Molecules 2024; 29:2936. [PMID: 38931000 PMCID: PMC11206865 DOI: 10.3390/molecules29122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Microbial fuel cells (MFCs) have the potential to directly convert the chemical energy in organic matter into electrical energy, making them a promising technology for achieving sustainable energy production alongside wastewater treatment. However, the low extracellular electron transfer (EET) rates and limited bacteria loading capacity of MFCs anode materials present challenges in achieving high power output. In this study, three-dimensionally heteroatom-doped carbonized grape (CG) monoliths with a macroporous structure were successfully fabricated using a facile and low-cost route and employed as independent anodes in MFCs for treating brewery wastewater. The CG obtained at 900 °C (CG-900) exhibited excellent biocompatibility. When integrated into MFCs, these units initiated electricity generation a mere 1.8 days after inoculation and swiftly reached a peak output voltage of 658 mV, demonstrating an exceptional areal power density of 3.71 W m-2. The porous structure of the CG-900 anode facilitated efficient ion transport and microbial community succession, ensuring sustained operational excellence. Remarkably, even when nutrition was interrupted for 30 days, the voltage swiftly returned to its original level. Moreover, the CG-900 anode exhibited a superior capacity for accommodating electricigens, boasting a notably higher abundance of Geobacter spp. (87.1%) compared to carbon cloth (CC, 63.0%). Most notably, when treating brewery wastewater, the CG-900 anode achieved a maximum power density of 3.52 W m-2, accompanied by remarkable treatment efficiency, with a COD removal rate of 85.5%. This study provides a facile and low-cost synthesis technique for fabricating high-performance MFC anodes for use in microbial energy harvesting.
Collapse
Affiliation(s)
- Jin-Zhi Sun
- Yantai Engineering & Technology College, Yantai 264006, China
| | - Quan-Cheng Shu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Hong-Wei Sun
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yu-Can Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiao-Yong Yang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yan-Xiang Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Gang Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
Nguyen HTT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song YC, Chae KJ. Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: Identification methods and pathways to large-scale implementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169766. [PMID: 38181955 DOI: 10.1016/j.scitotenv.2023.169766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
The rapid global economic growth driven by industrialization and population expansion has resulted in significant issues, including reliance on fossil fuels, energy scarcity, water crises, and environmental emissions. To address these issues, bioelectrochemical systems (BES) have emerged as a dual-purpose solution, harnessing electrochemical processes and the capabilities of electrochemically active microorganisms (EAM) to simultaneously recover energy and treat wastewater. This review examines critical performance factors in BES, including inoculum selection, pretreatment methods, electrodes, and operational conditions. Further, authors explore innovative approaches to suppress methanogens and simultaneously enhance the EAM in mixed cultures. Additionally, advanced techniques for detecting EAM are discussed. The rapid detection of EAM facilitates the selection of suitable inoculum sources and optimization of enrichment strategies in BESs. This optimization is essential for facilitating the successful scaling up of BES applications, contributing substantially to the realization of clean energy and sustainable wastewater treatment. This analysis introduces a novel viewpoint by amalgamating contemporary research on the selective enrichment of EAM in mixed cultures. It encompasses identification and detection techniques, along with methodologies tailored for the selective enrichment of EAM, geared explicitly toward upscaling applications in BES.
Collapse
Affiliation(s)
- Ha T T Nguyen
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School (OST), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Giang T H Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Sung-Gwan Park
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Trang T Q Le
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Gihan Lee
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Keunje Yoo
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Young-Chae Song
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|