1
|
da Silva NEP, Bezerra LCA, Araújo RF, Moura TA, Vieira LHS, Alves SBS, Fregolente LG, Ferreira OP, Avelino F. Coconut shell-based biochars produced by an innovative thermochemical process for obtaining improved lignocellulose-based adsorbents. Int J Biol Macromol 2024; 275:133685. [PMID: 38971283 DOI: 10.1016/j.ijbiomac.2024.133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/15/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The urgent need for a simple and cost-effective thermochemical process to produce biochar has prompted this study. The aim was to develop a straightforward thermochemical process under O2-limited conditions for the production of coconut-based biochar (CBB) and to assess its ability to remove methylene blue (MB) through adsorption, comparing it with CBB produced by slow pyrolysis. CBBs were obtained under different atmospheric conditions (O2-limited, muffle furnace biochar (MFB); and inert, pyrolytic reactor biochar (PRB)), at 350, 500, and 700 °C, and for 30 and 90'. MFB and PRB were characterized using FTIR, RAMAN, SEM, EDS, and XRD analyses. Adsorption tests were conducted using 1.0 g L-1 of MFB and PRB, 10 mg L-1 of MB at 25 °C for 48 h. Characterization revealed that atmospheric conditions significantly influenced the yield and structural features of the materials. PRB exhibited higher yields and larger cavities than MFB, but quite similar spectral features. Adsorption tests indicated that MFB and PRB had qt values of 33.1 and 9.2 mg g-1, respectively, which were obtained at 700 °C and 90', and 700 °C and 30', respectively. This alternative method produced an innovative and promising lignocellulose-based material with great potential to be used as a biosorbent.
Collapse
Affiliation(s)
| | - Luiz Carlos Alves Bezerra
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil
| | - Rayanne Ferreira Araújo
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil
| | - Thiago A Moura
- Department of Physics, Federal University of Ceará, 60455-900 Fortaleza, CE, Brazil
| | | | | | | | - Odair P Ferreira
- Department of Physics, Federal University of Ceará, 60455-900 Fortaleza, CE, Brazil; Department of Chemistry, State University of Londrina, 86050-482 Londrina, PR, Brazil
| | - Francisco Avelino
- Department of Research, Extension and Production, Federal Institute of Education, Science and Technology of Ceará, 63503-790 Iguatu, CE, Brazil.
| |
Collapse
|
2
|
Ibitoye SE, Loha C, Mahamood RM, Jen TC, Alam M, Sarkar I, Das P, Akinlabi ET. An overview of biochar production techniques and application in iron and steel industries. BIORESOUR BIOPROCESS 2024; 11:65. [PMID: 38960979 PMCID: PMC11222365 DOI: 10.1186/s40643-024-00779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Integrating innovation and environmental responsibility has become important in pursuing sustainable industrial practices in the contemporary world. These twin imperatives have stimulated research into developing methods that optimize industrial processes, enhancing efficiency and effectiveness while mitigating undesirable ecological impacts. This objective is exemplified by the emergence of biochar derived from the thermo-chemical transformation of biomass. This review examines biochar production methods and their potential applications across various aspects of the iron and steel industries (ISI). The technical, economic, and sustainable implications of integrating biochar into the ISI were explored. Slow pyrolysis and hydrothermal carbonization are the most efficient methods for higher biochar yield (25-90%). Biochar has several advantages- higher heating value (30-32 MJ/kg), more porosity (58.22%), and significantly larger surface area (113 m2/g) compared to coal and coke. However, the presence of biochar often reduces fluidity in a coal-biochar mixture. The findings highlighted that biochar production and implementation in ISI often come with higher costs, primarily due to the higher expense of substitute fuels compared to traditional fossil fuels. The economic viability and societal desirability of biochar are highly uncertain and vary significantly based on factors such as location, feedstock type, production scale, and biochar pricing, among others. Furthermore, biomass and biochar supply chain is another important factor which determines its large scale implementation. Despite these challenges, there are opportunities to reduce emissions from BF-BOF operations by utilizing biochar technologies. Overall, the present study explored integrating diverse biochar production methods into the ISI aiming to contribute to the ongoing research on sustainable manufacturing practices, underscoring their significance in shaping a more environmentally conscious future.
Collapse
Affiliation(s)
- Segun E Ibitoye
- Department of Mechanical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
- School of Engineering, Woxsen University, Kamkole Village, Sadasivpet, Sangareddy District, Hyderabad, Telangana, 502345, India.
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India.
| | - Chanchal Loha
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Rasheedat M Mahamood
- Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 524, Auckland Park, 2006, South Africa
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8ST, UK
| | - Tien-Chien Jen
- Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, P. O. Box 524, Auckland Park, 2006, South Africa
| | - Meraj Alam
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Ishita Sarkar
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Partha Das
- Energy Research and Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Esther T Akinlabi
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle, NE1 8ST, UK
| |
Collapse
|
3
|
Satpati GG, Devi A, Kundu D, Dikshit PK, Saravanabhupathy S, Rajlakshmi, Banerjee R, Chandra Rajak R, Kamli MR, Lee SY, Kim JW, Davoodbasha M. Synthesis, delineation and technological advancements of algae biochar for sustainable remediation of the emerging pollutants from wastewater-a review. ENVIRONMENTAL RESEARCH 2024; 258:119408. [PMID: 38876417 DOI: 10.1016/j.envres.2024.119408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The use of algae for value-added product and biorefining applications is enchanting attention among researchers in recent years due to its remarkable photosynthetic ability, adaptability, and capacity to accumulate lipids and carbohydrates. Algae biomass, based on its low manufacturing costs, is relatively renewable, sustainable, environmentally friendly and economical in comparison with other species. High production rate of algae provides a unique opportunity for its conversion to biochar with excellent physicochemical properties, viz. high surface area and pore volume, high adsorption capacity, abundant functional groups over surface, etc. Despite several potential algal-biochar, a detailed study on its application for removal of emerging contaminants from wastewater is limited. Therefore, this technical review is being carried out to evaluate the specific elimination of inorganic and organic pollutants from wastewater, with a view to assessing adsorption performances of biochar obtained from various algae species. Species-specific adsorption of emerging pollutants from wastewater have been discussed in the present review. The promising methods like pyrolysis, gasification, dry and wet torrefaction for the production of algae biochar are highlighted. The strategies include chemical and structural modifications of algae biochar for the removal of toxic contaminants have also been considered in the current work. The overall aim of this review is to confer about the synthesis, technological advancements, delineation and application of algae biochar for the treatment of wastewater.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, 19 Rajkumar Chakraborty Sarani, Kolkata 700009, West Bengal, India.
| | - Anuradha Devi
- Department of Environmental Microbiology (DEM), School of Earth and Environmental Sciences (SEES), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Debajyoti Kundu
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Amaravati, Andhra Pradesh 522240, India
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur-522502, India; Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | | | - Rajlakshmi
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Rintu Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Rajiv Chandra Rajak
- Department of Botany, Marwari College, Ranchi University, Ranchi 834008, India
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sang-Yul Lee
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jung-Wan Kim
- Centre for Surface Technology and Applications, Korea Aerospace University, Goyang-si, Republic of Korea
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India; Crescent Global Outreach Mission (CGOM), B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
| |
Collapse
|
4
|
Liu F, Xia K, Chen Y, Zhu L, Zhu L, Zhao X, Sha R, Huang J. Inhibition of hyphal formation together with biochar addition promotes erythritol production by Yarrowia lipolytica. Biotechnol Bioeng 2024; 121:1937-1949. [PMID: 38548668 DOI: 10.1002/bit.28704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
This study aimed to investigate the effect of hyphal formation in Yarrowia lipolytica and biochar addition on erythritol production by submerged fermentation. Hyphal formation significantly inhibited erythritol production by Y. lipolytica. Transcriptome analysis suggested that the impaired erythritol synthesis of hyphal cells was associated with the differential expression of genes involved in amino acid metabolism, lipid metabolism, and cell wall stability. Deletion of RAS2 responsible for yeast-to-hypha transition and EYD1 included in erythritol degradation blocked hyphal formation and improved erythritol production. Biochar prepared from corncob, sugarcane bagasse (SB), corn straw, peanut shell, coconut shell, and walnut shell (WS) had a positive effect on erythritol production, of which WS pyrolyzed at 500°C (WSc) performed the best in flask fermentation. In a 3.7 L bioreactor, 220.20 ± 10 g/L erythritol with a productivity of 2.30 ± 0.10 g/L/h was obtained in the presence of 1.4% (w/v) WSc and 0.7% SBc (SB pyrolyzed at 500°C) within 96 h. These results suggest that inhibition of hyphal formation together with biochar addition is an efficient way to promote erythritol production.
Collapse
Affiliation(s)
- Fangmei Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Kai Xia
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yuqing Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ling Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lingzhi Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xuequn Zhao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
5
|
Yasin MU, Haider Z, Munir R, Zulfiqar U, Rehman M, Javaid MH, Ahmad I, Nana C, Saeed MS, Ali B, Gan Y. The synergistic potential of biochar and nanoparticles in phytoremediation and enhancing cadmium tolerance in plants. CHEMOSPHERE 2024; 354:141672. [PMID: 38479680 DOI: 10.1016/j.chemosphere.2024.141672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Cadmium (Cd) is classified as a heavy metal (HM) and is found into the environment through both natural processes and intensified anthropogenic activities such as industrial operations, mining, disposal of metal-laden waste like batteries, as well as sludge disposal, excessive fertilizer application, and Cd-related product usage. This rising Cd disposal into the environment carries substantial risks to the food chain and human well-being. Inadequate regulatory measures have led to Cd bio-accumulation in plants, which is increasing in an alarming rate and further jeopardizing higher trophic organisms, including humans. In response, an effective Cd decontamination strategy such as phytoremediation emerges as a potent solution, with innovations in nanotechnology like biochar (BC) and nanoparticles (NPs) further augmenting its effectiveness for Cd phytoremediation. BC, derived from biomass pyrolysis, and a variety of NPs, both natural and less toxic, actively engage in Cd removal during phytoremediation, mitigating plant toxicity and associated hazards. This review scrutinizes the application of BC and NPs in Cd phytoremediation, assessing their synergistic mechanism in influencing plant growth, genetic regulations, structural transformations, and phytohormone dynamics. Additionally, the review also underscores the adoption of this sustainable and environmentally friendly strategies for future research in employing BC-NP microaggregates to ameliorate Cd phytoremediation from soil, thereby curbing ecological damage due to Cd toxicity.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Sulaman Saeed
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bahar Ali
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Cervantes-Díaz A, Alonso-Prados E, Alonso-Prados JL, Sandín-España P. Assessing the effect of organic amendments on the degradation of profoxydim in paddy soils: Kinetic modeling and identification of degradation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169072. [PMID: 38048997 DOI: 10.1016/j.scitotenv.2023.169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The fate and behavior of herbicides can be altered in an unpredictable way when organic amendments are added to soil as a beneficial management tool. The objective of this work was to investigate the effect exerted by the addition of two different organic amendments (alperujo compost and biochar) to soil in the degradation of one of the most relevant new generation rice herbicides, profoxydim. In unamended soils, the degradation of profoxydim was quite fast and was governed by both chemical (DT50steril soil = from 1.52 to 9.21 days) and microbial (DT50nonsterile soil = from 0.47 to 0.53 days) processes. Alperujo- and biochar-amended soils significantly increased the persistence of the herbicide in both soils, especially in the presence of biochar, due to the high capacity absorption of this amendment, increasing DT90 from 1.92 to 3.54 days for DT90unamended to 41.02-48.41 days for DT90biochar amended. Different kinetics models applied to fit the observed dissipation datasets showed that a HS biphasic model fits well with the dissipation of profoxydim in amended and unamended soils. For the first time, five degradation products (DPs) were identified by HPLC-QTOF-MS/MS in soil and a degradation pathway was described. Main DP was generated via oxidation of the sulfur atom to give rise to the corresponding sulfoxide derivative, with this DP being more persistent than the active substance. These outcomes can be very useful for the assessment of the environmental risk associated with the use of profoxydim in rice crops and the application of organic amendments as potential measures for minimizing the risk of contamination of natural water resources.
Collapse
Affiliation(s)
- A Cervantes-Díaz
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - E Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - J L Alonso-Prados
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain
| | - P Sandín-España
- Plant Protection Products Unit / Plant Protection Department, National Institute for Agricultural and Food Research and Technology INIA-CSIC, Ctra. La Coruña, Km. 7.5, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Atinafu DG, Choi JY, Yun BY, Nam J, Kim HB, Kim S. Energy storage and key derives of octadecane thermal stability during phase change assembly with animal manure-derived biochar. ENVIRONMENTAL RESEARCH 2024; 240:117405. [PMID: 37838193 DOI: 10.1016/j.envres.2023.117405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The design of eco-friendly and renewable energy infrastructure is highly desirable to advance the global energy landscape. Phase-change materials (PCMs) are used to mitigate intermittency issues and reversibly store high densities of thermal energy in the form of heat during the phase transition process and provide ample potential for the advancement of renewable energy infrastructure. However, the leakage and low thermal stability of pristine PCMs along with the complicated synthesis strategies and environmental issues of the supporting materials cause significant drawbacks, thereby requiring a sustainable confining agent. In this study, a green phase change composite was developed using biowaste-derived biochar and octadecane via a vacuum impregnation strategy. The structural, morphological, thermal, and shape stabilities, as well as the chemical compatibilities of both the composite components and the octadecane-biochar composite, were investigated. The supporting biochar provides sufficient physical and thermal support besides high encapsulating capacity due to high specific surface area (135.2 m2 g-1) and predominant mesoporous proportion (86%). The results displayed that the composite material revealed a high leakage-proof capability (above the melting point of pure octadecane) with a low leakage rate (<12.5%) for a long heating time, excellent thermal stability, and high latent heat retention (89.5%) after 1000 heating-cooling cycles. The fabricated composite attained satisfactory phase change enthalpy storage, which was 130% and 168.9% higher than that of rice-husk-paraffin and garlic peel-derived carbon-paraffin, respectively, indicating promising thermal management performance. This study opens avenues for the development of green composite materials and renewable energy storage and conversion, which will play a significant role in various sectors such as building energy-saving and heat recovery systems.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Yong Choi
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Yeol Yun
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihee Nam
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyun Bae Kim
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|