1
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
2
|
A triple-amplification differential pulse voltammetry for sensitive detection of DNA based on exonuclease III, strand displacement reaction and terminal deoxynucleotidyl transferase. Biosens Bioelectron 2019; 143:111609. [DOI: 10.1016/j.bios.2019.111609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 01/17/2023]
|
3
|
Identification of non-specific hybridization using an empirical equation fitted to non-equilibrium dissociation curves. J Microbiol Methods 2012; 90:29-35. [PMID: 22537822 DOI: 10.1016/j.mimet.2012.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 11/22/2022]
Abstract
Non-equilibrium dissociation curves (NEDCs) have the potential to identify non-specific hybridizations on high throughput, diagnostic microarrays. We report a simple method for the identification of non-specific signals by using a new parameter that does not rely on comparison of perfect match and mismatch dissociations. The parameter is the ratio of specific dissociation temperature (T(d-w)) to theoretical melting temperature (T(m)) and can be obtained by automated fitting of a four-parameter, sigmoid, empirical equation to the thousands of curves generated in a typical experiment. The curves fit perfect match NEDCs from an initial experiment with an R(2) of 0.998±0.006 and root mean square of 108±91 fluorescent units. Receiver operating characteristic curve analysis showed low temperature hybridization signals (20-48°C) to be as effective as area under the curve as primary data filters. Evaluation of three datasets that target 16S rRNA and functional genes with varying degrees of target sequence similarity showed that filtering out hybridizations with T(d-w)/T(m)<0.78 greatly reduced false positive results. In conclusion, T(d-w)/T(m) successfully screened many non-specific hybridizations that could not be identified using single temperature signal intensities alone, while the empirical modeling allowed a simplified approach to the high throughput analysis of thousands of NEDCs.
Collapse
|
4
|
Paliy O, Agans R. Application of phylogenetic microarrays to interrogation of human microbiota. FEMS Microbiol Ecol 2011; 79:2-11. [PMID: 22092522 DOI: 10.1111/j.1574-6941.2011.01222.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/09/2011] [Accepted: 09/28/2011] [Indexed: 12/22/2022] Open
Abstract
Human-associated microbiota is recognized to play vital roles in maintaining host health, and it is implicated in many disease states. While the initial surge in the profiling of these microbial communities was achieved with Sanger and next-generation sequencing, many oligonucleotide microarrays have also been developed recently for this purpose. Containing probes complementary to small ribosomal subunit RNA gene sequences of community members, such phylogenetic arrays provide direct quantitative comparisons of microbiota composition among samples and between sample groups. Some of the developed microarrays including PhyloChip, Microbiota Array, and HITChip can simultaneously measure the presence and abundance of hundreds and thousands of phylotypes in a single sample. This review describes the currently available phylogenetic microarrays that can be used to analyze human microbiota, delineates the approaches for the optimization of microarray use, and provides examples of recent findings based on microarray interrogation of human-associated microbial communities.
Collapse
Affiliation(s)
- Oleg Paliy
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
5
|
Kostić T, Stessl B, Wagner M, Sessitsch A, Bodrossy L. Microbial diagnostic microarray for food- and water-borne pathogens. Microb Biotechnol 2010; 3:444-54. [PMID: 21255342 PMCID: PMC3815810 DOI: 10.1111/j.1751-7915.2010.00176.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/21/2010] [Indexed: 11/27/2022] Open
Abstract
A microbial diagnostic microarray for the detection of the most relevant bacterial food- and water-borne pathogens and indicator organisms was developed and thoroughly validated. The microarray platform based on sequence-specific end labelling of oligonucleotides and the pyhylogenetically robust gyrB marker gene allowed a highly specific (resolution on genus/species level) and sensitive (0.1% relative and 10(4) cfu absolute detection sensitivity) detection of the target pathogens. Validation was performed using a set of reference strains and a set of spiked environmental samples. Reliability of the obtained data was additionally verified by independent analysis of the samples via fluorescence in situ hybridization (FISH) and conventional microbiological reference methods. The applicability of this diagnostic system for food analysis was demonstrated through extensive validation using artificially and naturally contaminated spiked food samples. The microarray-based pathogen detection was compared with the corresponding microbiological reference methods (performed according to the ISO norm). Microarray results revealed high consistency with the reference microbiological data.
Collapse
Affiliation(s)
- Tanja Kostić
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|
6
|
Aaron JA, Christianson DW. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases. ACTA ACUST UNITED AC 2010; 82:1585-1597. [PMID: 21562622 DOI: 10.1351/pac-con-09-09-37] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure.
Collapse
Affiliation(s)
- Julie A Aaron
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| | | |
Collapse
|
7
|
Robust detection and identification of multiple oomycetes and fungi in environmental samples by using a novel cleavable padlock probe-based ligation detection assay. Appl Environ Microbiol 2009; 75:4185-93. [PMID: 19395562 DOI: 10.1128/aem.00071-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Simultaneous detection and identification of multiple pathogenic microorganisms in complex environmental samples are required in numerous diagnostic fields. Here, we describe the development of a novel, background-free ligation detection (LD) system using a single compound detector probe per target. The detector probes used, referred to as padlock probes (PLPs), are long oligonucleotides containing asymmetric target complementary regions at both their 5' and 3' ends which confer extremely specific target detection. Probes also incorporate a desthiobiotin moiety and an internal endonuclease IV cleavage site. DNA samples are PCR amplified, and the resulting products serve as potential targets for PLP ligation. Upon perfect target hybridization, the PLPs are circularized via enzymatic ligation, captured, and cleaved, allowing only the originally ligated PLPs to be visualized on a universal microarray. Unlike previous procedures, the probes themselves are not amplified, thereby allowing a simple PLP cleavage to yield a background-free assay. We designed and tested nine PLPs targeting several oomycetes and fungi. All of the probes specifically detected their corresponding targets and provided perfect discrimination against closely related nontarget organisms, yielding an assay sensitivity of 1 pg genomic DNA and a dynamic detection range of 10(4). A practical demonstration with samples collected from horticultural water circulation systems was performed to test the robustness of the newly developed multiplex assay. This novel LD system enables highly specific detection and identification of multiple pathogens over a wide range of target concentrations and should be easily adaptable to a variety of applications in environmental microbiology.
Collapse
|
8
|
Uttamchandani M, Neo JL, Ong BNZ, Moochhala S. Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol 2008; 27:53-61. [PMID: 19008003 PMCID: PMC7114317 DOI: 10.1016/j.tibtech.2008.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/03/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
Abstract
The microarray is a platform with wide-ranging potential in biodefence. Owing to the high level of throughput attainable through miniaturization, microarrays have accelerated the ability to respond in an epidemic or crisis. Extending beyond diagnostics, recent studies have applied microarrays as a research tool towards understanding the etiology and pathogenicity of dangerous pathogens, as well as in vaccine development. The original emphasis was on DNA microarrays, but the range now includes protein, antibody and carbohydrate microarrays, and research groups have exploited this diversity to further extend microarray applications in the area of biodefence. Here, we discuss the impact and contributions of the growing range of microarrays and emphasize the concepts that might shape the future of biodefence research.
Collapse
Affiliation(s)
- Mahesh Uttamchandani
- Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore.
| | | | | | | |
Collapse
|
9
|
Abstract
This paper provides a brief overview of the fields of biological micro-electromechanical systems (bioMEMs) and associated nanobiotechnologies, collectively denoted as BioMicroNano. Although they are developing at a very rapid pace and still redefining themselves, several stabilized areas of research and development can be identified. Six major areas are delineated, and specific examples are discussed and illustrated. Various applications of the technologies are noted, and potential market sizes are compared.
Collapse
Affiliation(s)
- Paul L Gourley
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
10
|
Tankouo-Sandjong B, Sessitsch A, Stralis-Pavese N, Liebana E, Kornschober C, Allerberger F, Hächler H, Bodrossy L. Development of an oligonucleotide microarray method for Salmonella serotyping. Microb Biotechnol 2008; 1:513-22. [PMID: 21261872 PMCID: PMC3815293 DOI: 10.1111/j.1751-7915.2008.00053.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adequate identification of Salmonella enterica serovars is a prerequisite for any epidemiological investigation. This is traditionally obtained via a combination of biochemical and serological typing. However, primary strain isolation and traditional serotyping is time‐consuming and faster methods would be desirable. A microarray, based on two housekeeping and two virulence marker genes (atpD, gyrB, fliC and fljB), has been developed for the detection and identification of the two species of Salmonella (S. enterica and S. bongori), the five subspecies of S. enterica (II, IIIa, IIIb, IV, VI) and 43 S. enterica ssp. enterica serovars (covering the most prevalent ones in Austria and the UK). A comprehensive set of probes (n = 240), forming 119 probe units, was developed based on the corresponding sequences of 148 Salmonella strains, successfully validated with 57 Salmonella strains and subsequently evaluated with 35 blind samples including isolated serotypes and mixtures of different serotypes. Results demonstrated a strong discriminatory ability of the microarray among Salmonella serovars. Threshold for detection was 1 colony forming unit per 25 g of food sample following overnight (14 h) enrichment.
Collapse
Affiliation(s)
- B Tankouo-Sandjong
- Austrian Research Centers GmbH, Department of Bioresources, Seibersdorf, Austria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Appl Environ Microbiol 2008; 74:2200-9. [PMID: 18245235 DOI: 10.1128/aem.01962-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathogen detection tools with high reliability are needed for various applications, including food and water safety and clinical diagnostics. In this study, we designed and validated an in situ-synthesized biochip for detection of 12 microbial pathogens, including a suite of pathogens relevant to water safety. To enhance the reliability of presence/absence calls, probes were designed for multiple virulence and marker genes (VMGs) of each pathogen, and each VMG was targeted by an average of 17 probes. Hybridization of the biochip with amplicon mixtures demonstrated that 95% of the initially designed probes behaved as predicted in terms of positive/negative signals. The probes were further validated using DNA obtained from three different types of water samples and spiked with pathogen genomic DNA at decreasing relative abundance. Excellent specificity for making presence/absence calls was observed by using a cutoff of 0.5 for the positive fraction (i.e., the fraction of probes yielding a positive signal for a given VMG). A split multiplex PCR design for simultaneous amplification of the VMGs resulted in a detection limit of between 0.1 and 0.01% relative abundance, depending on the type of pathogen and the VMG. Thermodynamic analysis of the hybridization patterns obtained with DNA from the different water samples demonstrated that probes with a hybridization Gibbs free energy of approximately -19.3 kcal/mol provided the best trade-off between sensitivity and specificity. The developed biochip may be used to detect the described bacterial pathogens in water samples when parallel and specific detection is required.
Collapse
|
12
|
Martens M, Weidner S, Linke B, de Vos P, Gillis M, Willems A. A prototype taxonomic microarray targeting the rpsA housekeeping gene permits species identification within the rhizobial genus Ensifer. Syst Appl Microbiol 2007; 30:390-400. [PMID: 17291704 DOI: 10.1016/j.syapm.2007.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Indexed: 10/23/2022]
Abstract
To develop a reliable tool for the identification and classification of the different Ensifer species, without the need for sequencing, a prototype DNA microarray that targets the rpsA housekeeping gene was designed and tested. Internal segments of the rpsA gene from 34 reference strains, representing the different Ensifer species, were sequenced and the sequences were used to select 44 diagnostic oligonucleotides that served as probes for the identification microarray. Both, genomic DNA and specific rpsA PCR-products were tested as a target in hybridisation experiments. Experimental conditions were optimised and the diagnostic oligonucleotides were validated. Hybridisation results with the rpsA PCR-products showed reliable identification of the reference strains to species and genomovar level. Our data indicate that a microarray targeting housekeeping genes is a promising, accurate and relatively simple genotyping technique that would also be applicable for the identification and characterization of other bacterial groups of interest.
Collapse
Affiliation(s)
- Miet Martens
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
13
|
Wagner M, Smidt H, Loy A, Zhou J. Unravelling microbial communities with DNA-microarrays: challenges and future directions. MICROBIAL ECOLOGY 2007; 53:498-506. [PMID: 17345135 DOI: 10.1007/s00248-006-9197-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 11/24/2006] [Accepted: 11/26/2006] [Indexed: 05/14/2023]
Abstract
High-throughput technologies are urgently needed for monitoring the formidable biodiversity and functional capabilities of microorganisms in the environment. Ten years ago, DNA microarrays, miniaturized platforms for highly parallel hybridization reactions, found their way into environmental microbiology and raised great expectations among researchers in the field. In this article, we briefly summarize the state-of-the-art of microarray approaches in microbial ecology research and discuss in more detail crucial problems and promising solutions. Finally, we outline scenarios for an innovative combination of microarrays with other molecular tools for structure-function analysis of complex microbial communities.
Collapse
Affiliation(s)
- Michael Wagner
- Department of Microbial Ecology, Faculty of Life Sciences, University of Vienna, A-1090, Wien, Austria.
| | | | | | | |
Collapse
|
14
|
Branen JR, Hass MJ, Douthit ER, Maki WC, Branen AL. Detection of Escherichia coli O157, Salmonella enterica serovar Typhimurium, and staphylococcal enterotoxin B in a single sample using enzymatic bio-nanotransduction. J Food Prot 2007; 70:841-50. [PMID: 17477251 DOI: 10.4315/0362-028x-70.4.841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enzymatic bio-nanotransduction is a biological detection scheme based on the production of nucleic acid nano-signals (RNA) in response to specific biological recognition events. In this study, we applied an enzymatic bio-nanotransduction system to the detection of important food-related pathogens and a toxin. Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and staphylococcal enterotoxin B (SEB) were chosen because of the implications of these targets to food safety. Primary antibodies to each of the targets were used to functionalize magnetic beads and produce biological recognition elements (antibodies) conjugated to nano-signal-producing DNA templates. Immunomagnetic capture that was followed by in vitro transcription of DNA templates bound to target molecules produced RNA nano-signals specific for every target in the sample. Discrimination of RNA nano-signals with a standard enzyme-linked oligonucleotide fluorescence assay provided a correlation between nano-signal profiles and target concentrations. The estimated limit of detection was 2.4 x 10(3) CFU/ml for E. coli O157:H7, 1.9 X 10(4) CFU/ml for S. enterica serovar Typhimurium, and 0.11 ng/ml for SEB with multianalyte detection in buffer. Low levels of one target were also detected in the presence of interference from high levels of the other targets. Finally, targets were detected in milk, and detection was improved for E. coli 0157 by heat treatment of the milk.
Collapse
|
15
|
Stedtfeld RD, Baushke S, Tourlousse D, Chai B, Cole JR, Hashsham SA. Multiplex approach for screening genetic markers of microbial indicators. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2007; 79:260-9. [PMID: 17469657 DOI: 10.2175/106143007x181378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genetic markers are expected to provide better specificity in epidemiological studies and potentially serve as better indicators of waterborne pathogens. Methods used to assess genetic markers of emerging microbial indicators include pulsed field gel electrophoresis, polymerase chain reaction (PCR), and microarrays. This paper outlines a high-throughput approach to screen for such genetic markers using a set of theoretical and experimental screening tools. The theoretical screening involves evaluating genes related to the ribosomal RNA and specific functions from emerging indicator groups, followed by experimental validation with appropriate sampling schemes and high-throughput and economical screening methods, such as microarrays, real time PCR, and on-chip PCR. Analysis of a wide range of samples covering temporal variability in location, host, and waterborne disease outbreaks is essential. The proposed approach is expected to shorten the time and cost associated with searching for new genetic markers of emerging indicators by at least 10-fold.
Collapse
Affiliation(s)
- Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | |
Collapse
|
16
|
Stedtfeld RD, Wick LM, Baushke SW, Tourlousse DM, Herzog AB, Xia Y, Rouillard JM, Klappenbach JA, Cole JR, Gulari E, Tiedje JM, Hashsham SA. Influence of dangling ends and surface-proximal tails of targets on probe-target duplex formation in 16S rRNA gene-based diagnostic arrays. Appl Environ Microbiol 2006; 73:380-9. [PMID: 17114322 PMCID: PMC1796975 DOI: 10.1128/aem.01785-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dangling ends and surface-proximal tails of gene targets influence probe-target duplex formation and affect the signal intensity of probes on diagnostic microarrays. This phenomenon was evaluated using an oligonucleotide microarray containing 18-mer probes corresponding to the 16S rRNA genes of 10 waterborne pathogens and a number of synthetic and PCR-amplified gene targets. Signal intensities for Klenow/random primer-labeled 16S rRNA gene targets were dissimilar from those for 45-mer synthetic targets for nearly 73% of the probes tested. Klenow/random primer-labeled targets resulted in an interaction with a complex mixture of 16S rRNA genes (used as the background) 3.7 times higher than the interaction of 45-mer targets with the same mixture. A 7-base-long dangling end sequence with perfect homology to another single-stranded background DNA sequence was sufficient to produce a cross-hybridization signal that was as strong as the signal obtained by the probe-target duplex itself. Gibbs free energy between the target and a well-defined background was found to be a better indicator of hybridization signal intensity than the sequence or length of the dangling end alone. The dangling end (Gibbs free energy of -7.6 kcal/mol) was found to be significantly more prone to target-background interaction than the surface-proximal tail (Gibbs free energy of -64.5 kcal/mol). This study underlines the need for careful target preparation and evaluation of signal intensities for diagnostic arrays using 16S rRNA and other gene targets due to the potential for target interaction with a complex background.
Collapse
Affiliation(s)
- Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kostić T, Weilharter A, Rubino S, Delogu G, Uzzau S, Rudi K, Sessitsch A, Bodrossy L. A microbial diagnostic microarray technique for the sensitive detection and identification of pathogenic bacteria in a background of nonpathogens. Anal Biochem 2006; 360:244-54. [PMID: 17123456 DOI: 10.1016/j.ab.2006.09.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/05/2006] [Accepted: 09/25/2006] [Indexed: 11/28/2022]
Abstract
A major challenge in microbial diagnostics is the parallel detection and identification of low-bundance pathogens within a complex microbial community. In addition, a high specificity providing robust, reliable identification at least at the species level is required. A microbial diagnostic microarray approach, using single nucleotide extension labeling with gyrB as the marker gene, was developed. We present a novel concept applying competitive oligonucleotide probes to improve the specificity of the assay. Our approach enabled the sensitive and specific detection of a broad range of pathogenic bacteria. The approach was tested with a set of 35 oligonucleotide probes targeting Escherichia coli, Shigella spp., Salmonella spp., Aeromonas hydrophila, Vibrio cholerae, Mycobacterium avium, Mycobacterium tuberculosis, Helicobacter pylori, Proteus mirabilis, Yersinia enterocolitica, and Campylobacter jejuni. The introduction of competitive oligonucleotides in the labeling reaction successfully suppressed cross-reaction by closely related sequences, significantly improving the performance of the assay. Environmental applicability was tested with environmental and veterinary samples harboring complex microbial communities. Detection sensitivity in the range of 0.1% has been demonstrated, far below the 5% detection limit of traditional microbial diagnostic microarrays.
Collapse
Affiliation(s)
- Tanja Kostić
- Department of Bioresources, ARC Seibersdorf Research GmbH, A-2444 Seibersdorf, Austria
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rogers KR. Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta 2006; 568:222-31. [PMID: 17761264 DOI: 10.1016/j.aca.2005.12.067] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/15/2005] [Accepted: 12/29/2005] [Indexed: 11/27/2022]
Abstract
Biosensors for environmental applications continue to show advances and improvements in areas such as sensitivity, selectivity and simplicity. In addition to detecting and measuring specific compounds or compound classes such as pesticides, hazardous industrial chemicals, toxic metals, and pathogenic bacteria, biosensors and bioanalytical assays have been designed to measure biological effects such as cytotoxicity, genotoxicity, biological oxygen demand, pathogenic bacteria, and endocrine disruption effects. This article is intended to discuss recent advances in the area of biosensors for environmental applications.
Collapse
Affiliation(s)
- K R Rogers
- U.S. EPA, National Research Exposure Laboratory-LV, 944 E. Harmon Ave, Las Vegas, NV 89119, United States.
| |
Collapse
|
19
|
Liu Y, Fratamico P. Escherichia coli O antigen typing using DNA microarrays. Mol Cell Probes 2006; 20:239-44. [PMID: 16537102 DOI: 10.1016/j.mcp.2006.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 01/04/2006] [Indexed: 11/18/2022]
Abstract
DNA microarrays were developed for rapid identification of different serogroups of Escherichia coli in a single platform. Oligonucleotides, as well as PCR products from genes in the O antigen gene clusters of E. coli serogroups O7, O104, O111, and O157 were spotted onto glass slides. This was followed by hybridization with labeled long PCR products of the entire O antigen gene clusters of these serogroups. Results demonstrated that microarrays consisting of either oligonucleotides or PCR products generated specific signals for each serogroup. This is the first report describing the development of model DNA microarrays for determining the serogroup of E. coli strains.
Collapse
Affiliation(s)
- Yanhong Liu
- Microbial Biophysics and Residue Chemistry and Core Technologies, US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | |
Collapse
|
20
|
Wick LM, Rouillard JM, Whittam TS, Gulari E, Tiedje JM, Hashsham SA. On-chip non-equilibrium dissociation curves and dissociation rate constants as methods to assess specificity of oligonucleotide probes. Nucleic Acids Res 2006; 34:e26. [PMID: 16478712 PMCID: PMC1369288 DOI: 10.1093/nar/gnj024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nucleic acid hybridization serves as backbone for many high-throughput systems for detection, expression analysis, comparative genomics and re-sequencing. Specificity of hybridization between probes and intended targets is always critical. Approaches to ensure and evaluate specificity include use of mismatch probes, obtaining dissociation curves rather than single temperature hybridizations, and comparative hybridizations. In this study, we quantify effects of mismatch type and position on intensity of hybridization signals and provide a new approach based on dissociation rate constants to evaluate specificity of hybridized signals in complex target mixtures. Using an extensive set of 18mer oligonucleotide probes on an in situ synthesized biochip platform, we demonstrate that mismatches in the center of the probe are more discriminating than mismatches toward the extremities of the probe and mismatches toward the attached end are less discriminating than those toward the loose end. The observed destabilizing effect of a mismatch type agreed in general with predictions using the nearest neighbor model. Use of a new parameter, specific dissociation temperature (Td-w, temperature of maximum specific dissociation rate constant), obtained from probe–target duplex dissociation profiles considerably improved the evaluation of specificity. These results have broad implications for hybridization data obtained from complex mixtures of nucleic acids.
Collapse
Affiliation(s)
| | | | | | - Erdogan Gulari
- Department of Chemical Engineering, University of MichiganAnn Arbor, MI, USA
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - Syed A. Hashsham
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
- Department of Civil and Environmental Engineering, Michigan State UniversityEast Lansing, MI, USA
- To whom correspondence should be addressed. Tel: +1 517 355 8241; Fax: +1 517 355 0250;
| |
Collapse
|
21
|
Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L. Diagnostic microbial microarrays in soil ecology. THE NEW PHYTOLOGIST 2006; 171:719-35. [PMID: 16918544 DOI: 10.1111/j.1469-8137.2006.01824.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.
Collapse
Affiliation(s)
- A Sessitsch
- ARC Seibersdorf research GmbH, Department. of Bioresources, A-2444 Seibersdorf, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Loy A, Bodrossy L. Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 2006; 363:106-19. [PMID: 16126187 DOI: 10.1016/j.cccn.2005.05.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Oligonucleotide microarrays are highly parallel hybridization platforms, allowing rapid and simultaneous identification of many different microorganisms and viruses in a single assay. In the past few years, researchers have been confronted with a dramatic increase in the number of studies reporting development and/or improvement of oligonucleotide microarrays for microbial diagnostics, but use of the technology in routine diagnostics is still constrained by a variety of factors. Careful development of microarray essentials (such as oligonucleotide probes, protocols for target preparation and hybridization, etc.) combined with extensive performance testing are thus mandatory requirements for the maturation of diagnostic microarrays from fancy technological gimmicks to robust and routinely applicable tools.
Collapse
Affiliation(s)
- Alexander Loy
- Department of Microbial Ecology, University of Vienna, Austria.
| | | |
Collapse
|
23
|
Scarlatos A, Welt BA, Cooper BY, Archer D, DeMarse T, Chau KV. Methods for Detecting Botulinum Toxin with Applicability to Screening Foods Against Biological Terrorist Attacks. J Food Sci 2005. [DOI: 10.1111/j.1365-2621.2005.tb11525.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Pokorski JK, Nam JM, Vega RA, Mirkin CA, Appella DH. Cyclopentane-modified PNA improves the sensitivity of nanoparticle-based scanometric DNA detection. Chem Commun (Camb) 2005:2101-3. [PMID: 15846413 DOI: 10.1039/b418383e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
trans-Cyclopentane-modified PNA has been successfully utilized as a target capture strand to improve the detection limit of a known DNA detection assay, and provide high levels of mismatch discrimination.
Collapse
Affiliation(s)
- Jonathan K Pokorski
- Northwestern University and NIH, NIDDK, Laboratory of Bioorganic Chemistry, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|