1
|
Li L, Wang T, Zhong Y, Li R, Deng W, Xiao X, Xu Y, Zhang J, Hu X, Wang Y. A review of nanomaterials for biosensing applications. J Mater Chem B 2024; 12:1168-1193. [PMID: 38193143 DOI: 10.1039/d3tb02648e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.
Collapse
Affiliation(s)
- Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Tianshu Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ruyi Li
- Rotex Co., Ltd, Chengdu, Sichuan, 610043, China
| | - Wei Deng
- Department of Orthopedics, Pidu District People's Hospital, the Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 611730, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
2
|
Wang J, Liu S, Meng Z, Han XX, Cai L, Xu B, Liu R, Song L, He C, Cheng Z, Zhao B. Flexible SERS Biosensor Based on Core-Shell Nanotags for Sensitive and Multiple Detection of T1DM Biomarkers. Anal Chem 2023; 95:14203-14208. [PMID: 37656042 DOI: 10.1021/acs.analchem.3c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Sensitive and multiple detection of the biomarkers of type 1 diabetes mellitus (T1DM) is vital to the early diagnosis and clinical treatment of T1DM. Herein, we developed a SERS-based biosensor using polyvinylidene fluoride (PVDF) membranes as a flexible support for the detection of glutamic acid decarboxylase antibodies (GADA) and insulin autoantibodies (IAA). Two kinds of silver-gold core-shell nanotags embedded with Raman probes and attached with GADA or IAA antibodies were synthesized to capture the targets, enabling highly sensitive and highly selective detection of GADA and IAA. The embedded Raman probes sandwiched between silver and gold layers guaranteed spectral stability and reliability. Moreover, the utilization of two Raman probes enables simultaneous and multiplexing detection of both GADA and IAA, improving the detection accuracy for T1DM. The proposed SERS-based method has been proven feasible for clinical sample detection, demonstrating its great potential in sensitive, reliable, and rapid diagnosis of T1DM.
Collapse
Affiliation(s)
- Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songlin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhen Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Baofeng Xu
- Department of Stroke Center, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Lina Song
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
3
|
Wang Y, Li MH, Wen XH, Liu MY, Lu YW, Gu Y, Zeng G, Zhao XF, Liu BH, Ji XM, Lu HL. Study of an Ultrasensitive Label-Free Electrochemiluminescent Immunosensor Fabricated with a Composite Electrode for Detecting the Glutamate Decarboxylase Antibody. ACS Sens 2023. [PMID: 37364058 DOI: 10.1021/acssensors.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Antibody testing for the glutamic acid decarboxylase 65 antibody (GADA) is widely used as a golden standard for autoimmune diabetes diagnosis, while current methods for antibody testing are not sensitive enough for clinical usage. Here, a label-free electrochemiluminescent (ECL) immunosensor for detecting GADA in autoimmune diabetes is fabricated and investigated. In the designed immunosensor, a composite film including the multiwalled carbon nanotubes (MWCNTs), zinc oxide (ZnO), and Au nanoparticles (AuNPs) was prepared through nanofabrication processes to improve the performance of sensor. The MWCNTs, which can provide a larger specific surface area, ZnO as a good photocatalytic material, and AuNPs that can enhance the ECL signal of luminol and immobilize the GAD65 antigen were applied to prefunctionalize indium tin oxide (ITO) glass based on a nanofabrication process. The GADA concentration was detected using the ECL immunosensor after incubating with GAD65 antigen-coated prefunctionalized ITO glass. After a direct immunoreaction, it is found that the degree of decreased ECL intensity has a good linear regression toward the logarithm of the GADA concentration in the range of 0.01 to 50 ng mL-1 with a detection limit down to 10 pg mL-1. Human serum samples positive or negative for GADA all nicely fell in the expected area. The fabricated immunosensor with excellent sensitivity, specificity, and stability has potential capability for clinical usage in GADA detection.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Mei-Hang Li
- Department of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yan-Wei Lu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yang Gu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Bao-Hong Liu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xin-Ming Ji
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Exploring Sensitive Label-Free Multiplex Analysis with Raman-Coded Microbeads and SERS-Coded Reporters. BIOSENSORS 2022; 12:bios12020121. [PMID: 35200381 PMCID: PMC8870176 DOI: 10.3390/bios12020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Suspension microsphere immunoassays are rapidly gaining attention in multiplex bioassays. Accurate detection of multiple analytes from a single measurement is critical in modern bioanalysis, which always requires complex encoding systems. In this study, a novel bioassay with Raman-coded antibody supports (polymer microbeads with different Raman signatures) and surface-enhanced Raman scattering (SERS)-coded nanotags (organic thiols on a gold nanoparticle surface with different SERS signatures) was developed as a model fluorescent, label-free, bead-based multiplex immunoassay system. The developed homogeneous immunoassays included two surface-functionalized monodisperse Raman-coded microbeads of polystyrene and poly(4-tert-butylstyrene) as the immune solid supports, and two epitope modified nanotags (self-assembled 4-mercaptobenzoic acid or 3-mercaptopropionic acid on gold nanoparticles) as the SERS-coded reporters. Such multiplex Raman/SERS-based microsphere immunoassays could selectively identify specific paratope–epitope interactions from one mixture sample solution under a single laser illumination, and thus hold great promise in future suspension multiplex analysis for diverse biomedical applications.
Collapse
|
5
|
Wei M, Darcie T, Xu W, Gao Y, Mundel H, Aitchison JS, Zhang X, Serpe MJ. Enhancing the Sensitivity of Surface Plasmon Resonance Measurements Utilizing Polymer Film/Au Assemblies. Anal Chem 2021; 93:16718-16726. [PMID: 34851626 DOI: 10.1021/acs.analchem.1c04546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface plasmon resonance (SPR) is used to infer information about a sample that is in contact with an Au-coated glass slide coupled to the SPR prism. Shifts in the angle of the "SPR minimum reflection" can be related to changes in the refractive index (and/or thickness) of the sample that is in contact with the Au film, which can then be used to determine the concentration of an analyte in that sample. Here, we show that by depositing a layer of poly(N-isopropylacrylamide-co-acrylic acid) [p(NIPAm-co-AAc)] microgel on the SPR's Au film, with a subsequent layer of Au deposited on top of the microgels, the sensitivity of SPR to changes in solution properties can be enhanced. We investigated the sensitivity of the SPR to changes in the temperature of water in contact with the SPR's Au film as a function of the microgel immobilization density and the thickness of the Au layer deposited on the microgel layer. The data revealed that the SPR's Au film densely coated with microgels, with 5 nm of Au deposited, exhibited the maximal enhancement. The plasmon coupling effect between the additional Au film on the microgels and the SPR's Au film was further confirmed by 3D finite difference time domain simulations.
Collapse
Affiliation(s)
- Menglian Wei
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Todd Darcie
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S3G4, Ontario, Canada
| | - Wenwen Xu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Yongfeng Gao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| | - Hannah Mundel
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S3G4, Ontario, Canada
| | - J Stewart Aitchison
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S3G4, Ontario, Canada
| | - Xueji Zhang
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Michael J Serpe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Canada
| |
Collapse
|
6
|
Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021; 12:70. [PMID: 34940549 PMCID: PMC8708476 DOI: 10.3390/jfb12040070] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Gold nanoparticles (AuNPs) are extremely promising objects for solving a wide range of biomedical problems. The gold nanoparticles production by biological method ("green synthesis") is eco-friendly and allows minimization of the amount of harmful chemical and toxic byproducts. This review is devoted to the AuNPs biosynthesis peculiarities using various living organisms (bacteria, fungi, algae, and plants). The participation of various biomolecules in the AuNPs synthesis and the influence of size, shapes, and capping agents on the functionalities are described. The proposed action mechanisms on target cells are highlighted. The biological activities of "green" AuNPs (antimicrobial, anticancer, antiviral, etc.) and the possibilities of their further biomedical application are also discussed.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
7
|
Zhu Z, Li H, Xiang Y, Koh K, Hu X, Chen H. Pyridinium porphyrins and AuNPs mediated bionetworks as SPR signal amplification tags for the ultrasensitive assay of brain natriuretic peptide. Mikrochim Acta 2020; 187:327. [PMID: 32405667 DOI: 10.1007/s00604-020-04289-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/19/2020] [Indexed: 12/23/2022]
Abstract
Extension of the self-assembled bionanonetworks into surface plasmon resonance (SPR) assay investigation provides an effective signal amplification approach. We fabricated a bionetwork by nucleic acids, organic compounds, and supramolecular gold nanoparticles for ultrasensitive SPR detection of B-type natriuretic peptide (BNP). The SPR method was developed by a sandwich-type format of aptamer-target-antibody, and the aptamer-modified bionanonetworks induced localized SPR and large refractive index for different concentrations of the target BNP. The linear concentration range and limit of detection were 1-10,000 pg/mL (R2 = 0.9852) and 0.3 pg/mL respectively. The detection recovery was in the range 92.13 to 108.69%. The approach embraces the following main advantages: (1) Cooperative double recognition was realized by calix[4]arenes for amino aptamers and pyridinium porphyrins. (2) The approach provided the specificity for supramolecular-based nanomaterials and a simple synthesis process via the ordered self-assembly under mild conditions. (3) The bionanonetworks endowed the SPR assay with signal amplification and stable determination for trace proteins. Therefore, it is expected that this study may offer a new SPR signal-amplified platform of organic-inorganic bionanonetworks to achieve sensitive, stable, and real-time determination. Graphical abstract Schematic of bionanonetwork based on porphyrin-mediated functionalized gold nanoparticles for SPR signal amplification to quantitatively detect BNP.
Collapse
Affiliation(s)
- Zhikang Zhu
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hongjie Li
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.,Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yangquan Xiang
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Xiaojun Hu
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Hongxia Chen
- Center for Molecular Recognition Selectivity and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
8
|
Murai S, Cabello-Olmo E, Kamakura R, Calvo ME, Lozano G, Atsumi T, Míguez H, Tanaka K. Optical Responses of Localized and Extended Modes in a Mesoporous Layer on Plasmonic Array to Isopropanol Vapor. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:5772-5779. [PMID: 32194885 PMCID: PMC7073950 DOI: 10.1021/acs.jpcc.9b10999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Mesoporous silica features open and accessible pores that can intake substances from the outside. The combination of mesoporous silica with plasmonic nanostructures represents an interesting platform for an optical sensor based on the dependence of plasmonic modes on the refractive index of the medium in which metallic nanoparticles are embedded. However, so far only a limited number of plasmonic nanostructures are combined with mesoporous silica, including random dispersion of metallic nanoparticles and flat metallic thin films. In this study, we make a mesoporous silica layer on an aluminum nanocylinder array. Such plasmonic arrangements support both localized surface plasmon resonances (LSPRs) and extended modes which are the result of the hybridization of LSPRs and photonic modes extending into the mesoporous layer. We investigate in situ optical reflectance of this system under controlled pressure of isopropanol vapor. Upon exposure, the capillary condensation in the mesopores results in a gradual spectral shift of the reflectance. Our analysis demonstrates that such shifts depend largely on the nature of the modes; that is, the extended modes show larger shifts compared to localized ones. Our materials represent a useful platform for the field of environmental sensing.
Collapse
Affiliation(s)
- Shunsuke Murai
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Elena Cabello-Olmo
- Consejo
Superior de Investigaciones Científicas-Universidad de Sevilla, Instituto de Ciencia de Materiales de Sevilla, Calle Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ryosuke Kamakura
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Mauricio E. Calvo
- Consejo
Superior de Investigaciones Científicas-Universidad de Sevilla, Instituto de Ciencia de Materiales de Sevilla, Calle Américo Vespucio 49, 41092 Sevilla, Spain
| | - Gabriel Lozano
- Consejo
Superior de Investigaciones Científicas-Universidad de Sevilla, Instituto de Ciencia de Materiales de Sevilla, Calle Américo Vespucio 49, 41092 Sevilla, Spain
| | - Taisuke Atsumi
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hernán Míguez
- Consejo
Superior de Investigaciones Científicas-Universidad de Sevilla, Instituto de Ciencia de Materiales de Sevilla, Calle Américo Vespucio 49, 41092 Sevilla, Spain
| | - Katsuhisa Tanaka
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR, Yousefi M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochim Acta 2019; 186:838. [DOI: 10.1007/s00604-019-3844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
10
|
Bai H, Yuan M, Wang X, Wang X, Che J. Development of a Gold Nanoparticle-Functionalized Surface Plasmon Resonance Assay for the Sensitive Detection of Monoclonal Antibodies and Its Application in Pharmacokinetics. Drug Metab Dispos 2019; 47:1361-1367. [PMID: 31324700 DOI: 10.1124/dmd.119.086249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/15/2019] [Indexed: 11/22/2022] Open
Abstract
As a prominent human therapeutic, therapeutic monoclonal antibodies (mAbs) have attracted increasing attention in the past decade due to their high-targeting specificity, low toxicity, and prolonged efficacy. Systematic pharmacokinetic analysis of mAbs not only largely facilitates the understanding of their biologic functions but also promotes the development of therapeutic drug discovery, early clinical trial implementation, and therapeutic monitoring. However, the extremely complex nature of biomatrices and the especially low dosages of mAbs make their detection in biomatrices and further pharmacokinetic analysis highly challenging. Therefore, a method capable of reliably, quickly, and sensitively quantifying mAbs in biomatrices is urgently needed. In this work, we developed and evaluated an gold nanoparticle-functionalized surface plasmon resonance assay for cetuximab (C225) detection and pharmacokinetic analysis in rhesus monkeys. Combining its advantages of label-free pretreatment and amplified signal response, the lower limit of quantitation of C225 in monkey serum was reduced to 0.0125 μg/ml, and the linear range had an order of magnitude comparable to that of an ELISA-based method. Furthermore, the pharmacokinetics of C225 in rhesus monkeys was studied after intravenous infusions of single doses at 7.5, 24, and 75 mg/kg. The concentration of C225 in monkey serum was detectable after dosing for 720 hours. We believe that this new strategy will be applicable as a general protocol for mAb quantification, pharmacokinetic characteristic determination, and toxicokinetic analysis during drug development.
Collapse
Affiliation(s)
- Haihong Bai
- Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, PR China (H.B., Xin.W.); State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China (M.Y., J.C.); and Chinese Pharmaceutical Association, Beijing, PR China (Xia.W.)
| | - Mei Yuan
- Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, PR China (H.B., Xin.W.); State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China (M.Y., J.C.); and Chinese Pharmaceutical Association, Beijing, PR China (Xia.W.)
| | - Xiaojing Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, PR China (H.B., Xin.W.); State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China (M.Y., J.C.); and Chinese Pharmaceutical Association, Beijing, PR China (Xia.W.)
| | - Xinghe Wang
- Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, PR China (H.B., Xin.W.); State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China (M.Y., J.C.); and Chinese Pharmaceutical Association, Beijing, PR China (Xia.W.)
| | - Jinjing Che
- Phase I Clinical Trial Center, Beijing Shijitan Hospital of Capital Medical University, Beijing, PR China (H.B., Xin.W.); State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, PR China (M.Y., J.C.); and Chinese Pharmaceutical Association, Beijing, PR China (Xia.W.)
| |
Collapse
|
11
|
Devi R, Gogoi S, Barua S, Sankar Dutta H, Bordoloi M, Khan R. Electrochemical detection of monosodium glutamate in foodstuffs based on Au@MoS2/chitosan modified glassy carbon electrode. Food Chem 2019; 276:350-357. [DOI: 10.1016/j.foodchem.2018.10.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
|
12
|
Affiliation(s)
- Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
13
|
Ma X, Fang C, Yan J, Zhao Q, Tu Y. A label-free electrochemiluminescent immunosensor for glutamate decarboxylase antibody detection on AuNPs supporting interface. Talanta 2018; 186:206-214. [DOI: 10.1016/j.talanta.2018.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
|
14
|
Lee D, Hwang J, Seo Y, Gilad AA, Choi J. Optical Immunosensors for the Efficient Detection of Target Biomolecules. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Wang Z, Zong S, Wu L, Zhu D, Cui Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem Rev 2017; 117:7910-7963. [DOI: 10.1021/acs.chemrev.7b00027] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Lei Wu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Dan Zhu
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing 210096, Jiangsu, China
| |
Collapse
|
16
|
Sotnikov DV, Zherdev AV, Dzantiev BB. Detection of Intermolecular Interactions Based on Surface Plasmon Resonance Registration. BIOCHEMISTRY (MOSCOW) 2016; 80:1820-32. [PMID: 26878582 DOI: 10.1134/s0006297915130131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methods for registration of intermolecular interactions based on the phenomenon of surface plasmon resonance (SPR) have become one of the most efficient tools to solve fundamental and applied problems of analytical biochemistry. Nevertheless, capabilities of these methods are often insufficient to detect low concentrations of analytes or to screen large numbers of objects. That is why considerable efforts are directed at enhancing the sensitivity and efficiency of SPR-based measurements. This review describes the basic principles of the detection of intermolecular interactions using this method, provides a comparison of various types of SPR detectors, and classifies modern approaches to enhance sensitivity and efficiency of measurements.
Collapse
Affiliation(s)
- D V Sotnikov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
17
|
Antiochia R, Bollella P, Favero G, Mazzei F. Nanotechnology-Based Surface Plasmon Resonance Affinity Biosensors for In Vitro Diagnostics. Int J Anal Chem 2016; 2016:2981931. [PMID: 27594884 PMCID: PMC4995327 DOI: 10.1155/2016/2981931] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 01/17/2023] Open
Abstract
In the last decades, in vitro diagnostic devices (IVDDs) became a very important tool in medicine for an early and correct diagnosis, a proper screening of targeted population, and also assessing the efficiency of a specific therapy. In this review, the most recent developments regarding different configurations of surface plasmon resonance affinity biosensors modified by using several nanostructured materials for in vitro diagnostics are critically discussed. Both assembly and performances of the IVDDs tested in biological samples are reported and compared.
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Bollella
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gabriele Favero
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Franco Mazzei
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
18
|
Optimisation of immuno-gold nanoparticle complexes for antigen detection. J Colloid Interface Sci 2016; 471:127-135. [DOI: 10.1016/j.jcis.2016.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/19/2022]
|
19
|
|
20
|
Lin TE, Bondarenko A, Lesch A, Pick H, Cortés-Salazar F, Girault HH. Untersuchung der Tyrosinase-Expression in nicht-metastatischen und metastatischen Melanomgeweben durch elektrochemische Rastersondenmikroskopie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tzu-En Lin
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Schweiz
| | - Alexandra Bondarenko
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Schweiz
| | - Andreas Lesch
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Schweiz
| | - Horst Pick
- Laboratory of Physical Chemistry of Polymers and Membranes; École Polytechnique Fédérale de Lausanne; CH-1015 Lausanne Schweiz
| | - Fernando Cortés-Salazar
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Schweiz
| | - Hubert H. Girault
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Schweiz
| |
Collapse
|
21
|
Lin TE, Bondarenko A, Lesch A, Pick H, Cortés-Salazar F, Girault HH. Monitoring Tyrosinase Expression in Non-metastatic and Metastatic Melanoma Tissues by Scanning Electrochemical Microscopy. Angew Chem Int Ed Engl 2016; 55:3813-6. [DOI: 10.1002/anie.201509397] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Tzu-En Lin
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Switzerland
| | - Alexandra Bondarenko
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Switzerland
| | - Andreas Lesch
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Switzerland
| | - Horst Pick
- Laboratory of Physical Chemistry of Polymers and Membranes; École Polytechnique Fédérale de Lausanne; CH-1015 Lausanne Switzerland
| | - Fernando Cortés-Salazar
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Switzerland
| | - Hubert H. Girault
- Laboratoire d'Electrochimie Physique et Analytique; École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis; CH-1951 Sion Switzerland
| |
Collapse
|
22
|
Lee JU, Nguyen AH, Sim S. A nanoplasmonic biosensor for label-free multiplex detection of cancer biomarkers. Biosens Bioelectron 2015; 74:341-6. [DOI: 10.1016/j.bios.2015.06.059] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 12/11/2022]
|
23
|
Salazar-González JA, González-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines 2015; 14:1197-211. [DOI: 10.1586/14760584.2015.1064772] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jorge Alberto Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | - Omar González-Ortega
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | | |
Collapse
|
24
|
Ma X, Truong PL, Anh NH, Sim SJ. Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein. Biosens Bioelectron 2015; 67:59-65. [DOI: 10.1016/j.bios.2014.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
|
25
|
Wu H, Han Y, Yang X, Chase GG, Tang Q, Lee CJ, Cao B, Zhe J, Cheng G. A versatile microparticle-based immunoaggregation assay for macromolecular biomarker detection and quantification. PLoS One 2015; 10:e0115046. [PMID: 25658837 PMCID: PMC4319848 DOI: 10.1371/journal.pone.0115046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
The rapid, sensitive and low-cost detection of macromolecular biomarkers is critical in clinical diagnostics, environmental monitoring, research, etc. Conventional assay methods usually require bulky, expensive and designated instruments and relative long assay time. For hospitals and laboratories that lack immediate access to analytical instruments, fast and low-cost assay methods for the detection of macromolecular biomarkers are urgently needed. In this work, we developed a versatile microparticle (MP)-based immunoaggregation method for the detection and quantification of macromolecular biomarkers. Antibodies (Abs) were firstly conjugated to MP through streptavidin-biotin interaction; the addition of macromolecular biomarkers caused the aggregation of Ab-MPs, which were subsequently detected by an optical microscope or optical particle sizer. The invisible nanometer-scale macromolecular biomarkers caused detectable change of micrometer-scale particle size distributions. Goat anti-rabbit immunoglobulin and human ferritin were used as model biomarkers to demonstrate MP-based immunoaggregation assay in PBS and 10% FBS to mimic real biomarker assay in the complex medium. It was found that both the number ratio and the volume ratio of Ab-MP aggregates caused by biomarker to all particles were directly correlated to the biomarker concentration. In addition, we found that the detection range could be tuned by adjusting the Ab-MP concentration. We envision that this novel MP-based immunoaggregation assay can be combined with multiple detection methods to detect and quantify macromolecular biomarkers at the nanogram per milliliter level.
Collapse
Affiliation(s)
- Haiyan Wu
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States of America
| | - Yu Han
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States of America
| | - Xi Yang
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States of America
| | - George G. Chase
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States of America
| | - Qiong Tang
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States of America
| | - Chen-Jung Lee
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States of America
| | - Bin Cao
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States of America
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States of America
- * E-mail: (GC); (JZ)
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio 44325, United States of America
- * E-mail: (GC); (JZ)
| |
Collapse
|
26
|
Chen L, Luo Y, Liu T, Yuan Y, Gu H, Yang Y, Li L, Tan L. Label-free electrochemical immunoassay of Bcl-2 protein expression on tumor cells. Talanta 2015; 132:479-85. [DOI: 10.1016/j.talanta.2014.09.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/14/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
|
27
|
Signal enhancement strategy for a micro-arrayed polydiacetylene (PDA) immunosensor using enzyme-catalyzed precipitation. Biosens Bioelectron 2014; 61:314-20. [DOI: 10.1016/j.bios.2014.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/10/2014] [Indexed: 11/24/2022]
|
28
|
Han Y, Wu H, Liu F, Cheng G, Zhe J. Label-free biomarker assay in a microresistive pulse sensor via immunoaggregation. Anal Chem 2014; 86:9717-22. [PMID: 25226582 DOI: 10.1021/ac502270n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a label-free biomarker detection method based on immunoaggregation and resistive pulse sensing technology. In this approach, target biomarkers and antibody (Ab)-functionalized microparticles are mixed to form biomarker-microparticle aggregates. A resistive pulse sensor is then used to measure the sizes and count the number of aggregates. The measured volume fraction of the aggregates represents the concentration of the targeted biomarker. In our tests, human ferritin, used as a biomarker, triggered the aggregation of antiferritin Ab-functionalized microparticles in phosphate-buffered saline (PBS). The volume fraction of aggregates increased with the increased ferritin concentration. We also demonstrated the detection of human ferritin in 10% fetal bovine serum (FBS) to mimic a real detection environment in complex media. The detection range from 0.1 to 208 ng/mL was achieved. In addition, we demonstrated that the detection range can be shifted to lower and higher concentrations by decreasing and increasing microparticle concentrations. This biomarker detection method is label-free, rapid, and able to quantitatively measure the concentration of any macromolecular biomarker as long as an antibody can be found, with simple measurement setup and sample preparations.
Collapse
Affiliation(s)
- Yu Han
- Department of Mechanical Engineering, and ‡Department of Chemical and Biomolecular Engineering, University of Akron , Akron, Ohio 44325, United States
| | | | | | | | | |
Collapse
|
29
|
Truong PL, Ma X, Sim SJ. Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes. NANOSCALE 2014; 6:2307-2315. [PMID: 24413584 DOI: 10.1039/c3nr05211g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Scientific interest in nanotechnology is driven by the unique and novel properties of nanometer-sized metallic materials such as the strong interaction between the conductive electrons of the nanoparticles and the incident light, caused by localized surface plasmon resonances (LSPRs). In this article, we analysed the relationship of the Rayleigh scattering properties of a single Au nanoparticle with its size, shape, and local dielectric environment. We also provided a detailed study on the refractive index sensitivity of three types of differently shaped Au nanoparticles, which were nanospheres, oval-shaped nanoparticles and nanorods. This study helps one to differentiate the Rayleigh light scattering from individual nanoparticles of different sizes and/or shapes and precisely obtain quantitative data as well as the correlated optical spectra of single gold nanoparticles from the inherently inhomogeneous solution of nanoparticles. These results suggest that the shape, size and aspect ratio of Au nanoparticles are important structural factors in determining the resonant Rayleigh light scattering properties of a single Au nanoparticle such as its spectral peak position, scattering-cross-section and refractive index sensitivity, which gives a handle for the choice of gold nanoparticles for the design and fabrication of single nanosensors.
Collapse
Affiliation(s)
- Phuoc Long Truong
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
| | | | | |
Collapse
|
30
|
Zeng S, Baillargeat D, Ho HP, Yong KT. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 2014; 43:3426-52. [PMID: 24549396 DOI: 10.1039/c3cs60479a] [Citation(s) in RCA: 531] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main challenge for all electrical, mechanical and optical sensors is to detect low molecular weight (less than 400 Da) chemical and biological analytes under extremely dilute conditions. Surface plasmon resonance sensors are the most commonly used optical sensors due to their unique ability for real-time monitoring the molecular binding events. However, their sensitivities are insufficient to detect trace amounts of small molecular weight molecules such as cancer biomarkers, hormones, antibiotics, insecticides, and explosive materials which are respectively important for early-stage disease diagnosis, food quality control, environmental monitoring, and homeland security protection. With the rapid development of nanotechnology in the past few years, nanomaterials-enhanced surface plasmon resonance sensors have been developed and used as effective tools to sense hard-to-detect molecules within the concentration range between pmol and amol. In this review article, we reviewed and discussed the latest trend and challenges in engineering and applications of nanomaterials-enhanced surface plasmon resonance sensors (e.g., metallic nanoparticles, magnetic nanoparticles, carbon-based nanomaterials, latex nanoparticles and liposome nanoparticles) for detecting "hard-to-identify" biological and chemical analytes. Such information will be viable in terms of providing a useful platform for designing future ultrasensitive plasmonic nanosensors.
Collapse
Affiliation(s)
- Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | | | |
Collapse
|
31
|
Martinez-Perdiguero J, Retolaza A, Bujanda L, Merino S. Surface plasmon resonance immunoassay for the detection of the TNFα biomarker in human serum. Talanta 2013; 119:492-7. [PMID: 24401446 DOI: 10.1016/j.talanta.2013.11.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 11/15/2022]
Abstract
A simple method for the detection of TNF-alpha protein biomarker in human serum with great sensitivity has been developed using a surface plasmon resonance biosensor. Signal amplification based on a sandwich immunoassay including gold nanoparticles was used. Detection in serum proved to be challenging due to high undesirable non-specific binding to the sensor surface stemming from the matrix nature of the sample. After optimization of the assay parameters and, in the case of serum, of a sample dilution buffer to minimize the non-specific binding, very low limits of detection were achieved: 11.6 pg/mL (211 fM) and 54.4 pg/mL (989 fM) for spiked buffer and human serum respectively. The amplification steps with high affinity biotinylated antibodies and streptavidin-fuctionalized nanoparticles greatly enhanced the signal with the advantage of additional specificity. Due to its simplicity and sensitivity, the immunoassay has proved feasible to be used for detection of low concentration biomarkers in real samples.
Collapse
Affiliation(s)
| | - Aritz Retolaza
- CIC microGUNE, Arrasate-Mondragón, Spain; Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Santos Merino
- CIC microGUNE, Arrasate-Mondragón, Spain; Micro-NanoFabrication Unit, IK4-Tekniker, Eibar, Spain
| |
Collapse
|
32
|
Kindt JT, Luchansky MS, Qavi AJ, Lee SH, Bailey RC. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Anal Chem 2013; 85:10653-7. [PMID: 24171505 DOI: 10.1021/ac402972d] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detection of biomolecules at ultralow (low to subpicogram per milliliter) concentrations and within complex, clinically relevant matrices is a formidable challenge that is complicated by limitations imposed by the Langmuir binding isotherm and mass transport, for surface-based affinity biosensors. Here we report the integration of an enzymatic signal enhancement scheme onto a multiplexable silicon photonic microring resonator detection platform. To demonstrate the analytical value of this combination, we simultaneously quantitated levels of the interleukins IL-2, IL-6, and IL-8 in undiluted cerebrospinal fluid in an assay format that is multiplexable, relatively rapid (90 min), and features a 3 order of magnitude dynamic range and a limit of detection ≤1 pg/mL. The modular nature of this assay and technology should lend itself broadly amenable to different analyte classes, making it a versatile tool for biomarker analysis in clinically relevant settings.
Collapse
Affiliation(s)
- Jared T Kindt
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 S. Matthews Ave., Urbana, IL 61801, United States
| | | | | | | | | |
Collapse
|
33
|
Truong PL, Choi SP, Sim SJ. Amplification of resonant Rayleigh light scattering response using immunogold colloids for detection of lysozyme. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3485-3492. [PMID: 23606501 DOI: 10.1002/smll.201202638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/31/2012] [Indexed: 06/02/2023]
Abstract
A strategy for attomolar-level detection of small molecule-size proteins is reported based on Rayleigh light scattering spectroscopy of individual nanoplasmonic aptasensors by exploiting the outstanding characteristics of gold colloids to amplify the nontransparent resonant signal at ultralow analyte concentrations. The fabrication method utilizes thiol-mediated adsorption of a DNA aptamer on the immobilized Au nanoparticle surface, the interfacial binding characteristics of the aptamer with its target molecules, and the antibody-antigen interaction through plasmonic resonance coupling of the Au nanoparticles. Using lysozyme as a model analyte for disease detection, the detection limit of the aptasensor is ∼7 × 10(3) aM, corresponding to the LSPR λmax shift of ∼2.25 nm. Up to a 380% increase in the localized resonant λmax shift is demonstrated upon antibody binding to the analyte compared to the primary response during signal amplification using immunogold colloids. This enhancement leads to a limit of detection of ∼7 aM, which is an improvement of three orders of magnitude. The results demonstrate substantial promise for developing coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.
Collapse
Affiliation(s)
- Phuoc Long Truong
- School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | |
Collapse
|
34
|
Park JW, Jin Lee S, Choi EJ, Kim J, Song JY, Bock Gu M. An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosens Bioelectron 2013; 51:324-9. [PMID: 23994614 DOI: 10.1016/j.bios.2013.07.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/27/2022]
Abstract
In this study, we successfully developed a ssDNA aptamer pairs by using an advanced immobilization-free SELEX method with affinity-based selection and counter-screening process at every round. By implementing this method, two different aptamers specifically binding to bovine viral diarrhea virus type 1(BVDV type 1) with high affinity were successfully screened. This aptamer pair was applied to ultrasensitive detection platform for BVDV type 1 in a sandwich manner. The ultrasensitive detection of BVDV type 1 using one of aptamers conjugated with gold nanoparticles was obtained in aptamer-aptamer sandwich type sensing format, with the limit of detection of 800 copies/ml, which is comparable to a real-time PCR method.
Collapse
Affiliation(s)
- Jee-Woong Park
- College of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
35
|
Aouani H, Šípová H, Rahmani M, Navarro-Cia M, Hegnerová K, Homola J, Hong M, Maier SA. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS NANO 2013. [PMID: 23199257 DOI: 10.1021/nn304860t] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Optical antennas represent an enabling technology for enhancing the detection of molecular vibrational signatures at low concentrations and probing the chemical composition of a sample in order to identify target molecules. However, efficiently detecting different vibrational modes to determine the presence (or the absence) of a molecular species requires a multispectral interrogation in a window of several micrometers, as many molecules present informative fingerprint spectra in the mid-infrared between 2.5 and 10 μm. As most nanoantennas exhibit a narrow-band response because of their dipolar nature, they are not suitable for such applications. Here, we propose the use of multifrequency optical antennas designed for operating with a bandwidth of several octaves. We demonstrate that surface-enhanced infrared absorption gains in the order of 10(5) can be easily obtained in a spectral window of 3 μm with attomolar concentrations of molecules, providing new opportunities for ultrasensitive broadband detection of molecular species via vibrational spectroscopy techniques.
Collapse
Affiliation(s)
- Heykel Aouani
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ma X, Sim SJ. Femtomolar detection of single mismatches by discriminant analysis of DNA hybridization events using gold nanoparticles. Analyst 2013; 138:1794-802. [DOI: 10.1039/c2an36332a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Gnedenko OV, Mezentsev YV, Molnar AA, Lisitsa AV, Ivanov AS, Archakov AI. Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal Chim Acta 2012; 759:105-9. [PMID: 23260683 DOI: 10.1016/j.aca.2012.10.053] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/03/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
A highly sensitive reverse sandwich immunoassay for the detection of human cardiac myoglobin (cMb) in serum was designed utilizing a gold nanoparticle (AuNP)-enhanced surface plasmon resonance (SPR) biosensor. First, a monoclonal anti-cMb antibody (Mab1) was covalently immobilized on the sensor surface. AuNPs were covalently conjugated to the second monoclonal anti-cMb antibody (Mab2) to form an immuno-gold reagent (Mab2-AuNP). The reverse sandwich immunoassay consists of two steps: (1) mixing the serum sample with Mab2-AuNP and incubation for the formation of cMb/Mab2-AuNP complexes and (2) sample injection over the sensor surface and evaluation of the Mab1/cMb/Mab2-AuNP complex formation, with the subsequent calculation of the cMb concentration in the serum. The biosensor signal was amplified approximately 30-fold compared with the direct reaction of cMb with Mab1 on the sensor surface. The limit of detection of cMb in a human blood serum sample was found to be as low as 10 pM (approx. 0.18 ng mL(-1)), and the inter-assay coefficient of variation was less than 3%. Thus, the developed SPR-based reverse sandwich immunoassay has a sensitivity that is sufficient to measure cMb across a wide range of normal and pathological concentrations, allowing an adequate estimation of the disease severity and the monitoring of treatment.
Collapse
Affiliation(s)
- Oksana V Gnedenko
- IBMC RAMS, Pogodinskaya Street, 10, 119121 Moscow, Russian Federation.
| | | | | | | | | | | |
Collapse
|
38
|
Briand VA, Thilakarathne V, Kasi RM, Kumar CV. Novel surface plasmon resonance sensor for the detection of heme at biological levels via highly selective recognition by apo-hemoglobin. Talanta 2012; 99:113-8. [DOI: 10.1016/j.talanta.2012.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 01/18/2023]
|
39
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2777] [Impact Index Per Article: 231.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
40
|
Fernández F, Sánchez-Baeza F, Marco MP. Nanogold probe enhanced Surface Plasmon Resonance immunosensor for improved detection of antibiotic residues. Biosens Bioelectron 2012; 34:151-8. [DOI: 10.1016/j.bios.2012.01.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/02/2012] [Accepted: 01/27/2012] [Indexed: 11/27/2022]
|
41
|
Zhan Z, Ma X, Cao C, Sim SJ. Gold-based optical biosensor for single-mismatched DNA detection using salt-induced hybridization. Biosens Bioelectron 2012; 32:127-32. [DOI: 10.1016/j.bios.2011.11.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 11/28/2022]
|
42
|
Hwang WS, Truong PL, Sim SJ. Size-dependent plasmonic responses of single gold nanoparticles for analysis of biorecognition. Anal Biochem 2011; 421:213-8. [PMID: 22146558 DOI: 10.1016/j.ab.2011.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/08/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022]
Abstract
We report the use of plasmonic responses of single gold nanoparticles (AuNPs) with various sizes for the analysis of biomolecular recognition. We also describe the relationship between particle size and plasmonic response induced by the binding of receptors and target analytes. To investigate the plasmonic response of AuNPs, Rayleigh light scattering spectra were collected from individual AuNPs using a dark-field microspectroscopy system. Using prostate-specific antigen (PSA) as a model, the linear dynamic range was obtained in the concentration range of 10(-4) to 10 ng/ml, with the smallest detectable concentration at 0.1 pg/ml corresponding to localized surface plasmon resonance (LSPR) λ(max) shifts of approximately 2.95 nm. This result indicates that individual AuNPs can be used for development of a very sensitive, robust, simple, and label-free biosensor to detect protein biomarkers. Furthermore, the method possesses great potential for monitoring other biological interactions.
Collapse
Affiliation(s)
- Woo Sung Hwang
- Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | |
Collapse
|
43
|
Truong PL, Cao C, Park S, Kim M, Sim SJ. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. LAB ON A CHIP 2011; 11:2591-7. [PMID: 21670836 DOI: 10.1039/c1lc20085b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody-antigen interaction and the localized surface plasmon resonance (LSPR) λ(max) shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH(2))(11)(OCH(2)CH(2))(6)OCH(2)COOH(OEG(6)) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR λ(max) shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Phuoc Long Truong
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
| | | | | | | | | |
Collapse
|
44
|
Cao C, Gontard LC, Thuy Tram LL, Wolff A, Bang DD. Dual enlargement of gold nanoparticles: from mechanism to scanometric detection of pathogenic bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1701-8. [PMID: 21557470 DOI: 10.1002/smll.201100294] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/01/2011] [Indexed: 05/18/2023]
Abstract
A mechanism of dual enlargement of gold nanoparticles (AuNPs) comprising two steps is described. In the first step, the AuNPs are enlarged by depositing Au atoms on their crystalline faces. In this process, the particles are not only enlarged but they are also observed to multiply: new Au nuclei are formed by the budding and division of the enlarged particles. In the second step, a silver enhancement is subsequently performed by the deposition of silver atoms on the enlarged and newly formed AuNPs to generate bimetallic Au@Ag core-shell structures. The dual nanocatalysis greatly enhances the electron density of the nanostructures, leading to a stronger intensity for colorimetric discrimination as well as better sensitivity for quantitative measurement. Based on this, a simple scanometric assay for the on-slide detection of the food-born pathogen Campylobacter jejuni is developed. After capturing the target bacteria, gold-tagged immunoprobes are added to create a signal on a solid substrate. The signal is then amplified by the dual enlargement process, resulting in a strong color intensity that can easily be recognized by the unaided eye, or measured by an inexpensive flatbed scanner. In this paper, dual nanocatalysis is reported for the first time. It provides a valuable mechanistic insight into the development of a simple and cost-effective detection format.
Collapse
Affiliation(s)
- Cuong Cao
- DTU-Vet, Laboratory of Applied Micro-Nanotechnology, Department of Poultry, Fish, and Fur Animals, National Veterinary Institute, Technical University of Denmark, Hangovej 2, DK-8200 Aarhus N, Denmark
| | | | | | | | | |
Collapse
|
45
|
Pollet J, Janssen KPF, Knez K, Lammertyn J. Real-time monitoring of solid-phase PCR using fiber-optic SPR. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1003-1006. [PMID: 21394905 DOI: 10.1002/smll.201001984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Jeroen Pollet
- BIOSYST - MeBioS, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
46
|
Spindler X, Hofstetter O, McDonagh AM, Roux C, Lennard C. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem Commun (Camb) 2011; 47:5602-4. [PMID: 21455541 DOI: 10.1039/c0cc05748g] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enantioselective anti-L-amino acid antibodies conjugated to gold nanoparticles are shown to facilitate the detection of latent fingermarks by interacting with amino acids present in friction ridge secretions. This antibody-based system is particularly effective for the enhancement of aged and dried fingermarks on non-porous surfaces, an area unexploited by current techniques.
Collapse
Affiliation(s)
- Xanthe Spindler
- Centre for Forensic Science, University of Technology Sydney, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
47
|
Pollet J, Delport F, Janssen K, Tran D, Wouters J, Verbiest T, Lammertyn J. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 2011; 83:1436-41. [DOI: 10.1016/j.talanta.2010.11.032] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/31/2010] [Accepted: 11/14/2010] [Indexed: 11/16/2022]
|
48
|
Kim SA, Das S, Lee H, Kim J, Song YM, Kim IS, Byun KM, Hwang SJ, Kim SJ. Preliminary approach of real-time monitoring in vitro matrix mineralization based on surface plasmon resonance detection. Biotechnol Bioeng 2011; 108:1473-8. [PMID: 21192003 DOI: 10.1002/bit.23049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/12/2010] [Accepted: 12/13/2010] [Indexed: 01/16/2023]
Abstract
Matrix mineralization is a terminal process in osteoblast differentiation, and several approaches have been introduced to characterize the process in tissues or cultured cells. However, an analytical technique that quantitates in vitro matrix mineralization of live cells without any labeling or complex treatments is still lacking. In this study, we investigate a simple and enhanced optical method based on surface plasmon resonance (SPR) detection that can monitor the surface-limited refractive index change in real-time. During monitoring MC3T3-E1 cells in vitro culture every 2 days for over 4 weeks, the SPR angle is shifted with a greater resonance change in cells cultured with osteogenic reagents than those without the reagents. In addition, the SPR results obtained have a close relevance with the tendency of conventional mineralization staining and an inductively coupled plasma-based calcium content measure. These results suggest a new approach of a real-time SPR monitoring in vitro matrix mineralization of cultured cells.
Collapse
Affiliation(s)
- Shin Ae Kim
- School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alessio P, Aoki PHB, De Saja Saez JA, Rodríguez-Méndez ML, Constantino CJL. Combining SERRS and electrochemistry to characterize sensors based on biomembrane mimetic models formed by phospholipids. RSC Adv 2011. [DOI: 10.1039/c1ra00141h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Lee EG, Park KM, Jeong JY, Lee SH, Baek JE, Lee HW, Jung JK, Chung BH. Carbon nanotube-assisted enhancement of surface plasmon resonance signal. Anal Biochem 2011; 408:206-11. [DOI: 10.1016/j.ab.2010.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/01/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
|