Jacob JJ, Suthindhiran K. Magnetotactic bacteria and magnetosomes - Scope and challenges.
MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016;
68:919-928. [PMID:
27524094 DOI:
10.1016/j.msec.2016.07.049]
[Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Geomagnetism aided navigation has been demonstrated by certain organisms which allows them to identify a particular location using magnetic field. This attractive technique to recognize the course was earlier exhibited in numerous animals, for example, birds, insects, reptiles, fishes and mammals. Magnetotactic bacteria (MTB) are one of the best examples for magnetoreception among microorganisms as the magnetic mineral functions as an internal magnet and aid the microbe to move towards the water columns in an oxic-anoxic interface (OAI). The ability of MTB to biomineralize the magnetic particles (magnetosomes) into uniform nano-sized, highly crystalline structure with uniform magnetic properties has made the bacteria an important topic of research. The superior properties of magnetosomes over chemically synthesized magnetic nanoparticles made it an attractive candidate for potential applications in microbiology, biophysics, biochemistry, nanotechnology and biomedicine. In this review article, the scope of MTB, magnetosomes and its challenges in research and industrial application have been discussed in brief. This article mainly focuses on the application based on the magnetotactic behaviour of MTB and magnetosomes in different areas of modern science.
Collapse