1
|
Ito T, Nathani A. Electrochemical sensing at nanoporous film‐coated electrodes. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Takashi Ito
- Department of Chemistry Kansas State University Manhattan Kansas USA
| | - Akash Nathani
- Department of Chemistry Kansas State University Manhattan Kansas USA
| |
Collapse
|
2
|
Nanoporous anodic alumina (NAA) prepared in different electrolytes with different pore sizes for humidity sensing. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04683-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Rajeev G, Prieto Simon B, Marsal LF, Voelcker NH. Advances in Nanoporous Anodic Alumina-Based Biosensors to Detect Biomarkers of Clinical Significance: A Review. Adv Healthc Mater 2018; 7. [PMID: 29205934 DOI: 10.1002/adhm.201700904] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/06/2017] [Indexed: 02/06/2023]
Abstract
There is a strong and growing demand for compact, portable, rapid, and low-cost devices to detect biomarkers of interest in clinical and point-of-care diagnostics. Such devices aid in early diagnosis of diseases without the need to rely on expensive and time-consuming large instruments in dedicated laboratories. Over the last decade, numerous biosensors have been developed for detection of a wide range of clinical biomarkers including proteins, nucleic acids, growth factors, and bacterial enzymes. Various transduction techniques have been reported based on biosensor technology that deliver substantial advances in analytical performance, including sensitivity, reproducibility, selectivity, and speed for monitoring a wide range of human health conditions. Nanoporous anodic alumina (NAA) has been used extensively for biosensing applications due to its inherent optical and electrochemical properties, ease of fabrication, large surface area, tunable properties, and high stability in aqueous environment. This review focuses on NAA-based biosensing systems for detection of clinically significant biomarkers using various detection techniques with the main focus being on electrochemical and optical transduction methods. The review covers an overview of the importance of biosensors for biomarkers detection, general (surface and structural) properties and fabrication of NAA, and NAA-based biomarker sensing systems.
Collapse
Affiliation(s)
| | - Beatriz Prieto Simon
- Future Industries Institute; Mawson Lakes SA 5095 Australia
- Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| | - Lluis F. Marsal
- Departamento de Ingeniería Electrónica; Eléctrica y Automática; Universitat Rovira i Virgili; Avda. Països Catalans 26 43007 Tarragona Spain
| | - Nicolas H. Voelcker
- Future Industries Institute; Mawson Lakes SA 5095 Australia
- Monash Institute of Pharmaceutical Sciences; Monash University; Parkville VIC 3052 Australia
| |
Collapse
|
4
|
Sensing and Biosensing Applications of Nanoporous Anodic Alumina. ELECTROCHEMICALLY ENGINEERED NANOPOROUS MATERIALS 2015. [DOI: 10.1007/978-3-319-20346-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Bragazzi NL, Pechkova E, Nicolini C. Proteomics and Proteogenomics Approaches for Oral Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:125-62. [DOI: 10.1016/b978-0-12-800453-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Spera R, Festa F, Bragazzi NL, Pechkova E, LaBaer J, Nicolini C. Conductometric Monitoring of Protein–Protein Interactions. J Proteome Res 2013; 12:5535-47. [DOI: 10.1021/pr400445v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rosanna Spera
- Laboratories
of Biophysics and Nanobiotechnology, Department of Experimental Medicine, University of Genova, Via Pastore 3, 16132, Genova, Italy
| | - Fernanda Festa
- Virginia
G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicola L. Bragazzi
- Laboratories
of Biophysics and Nanobiotechnology, Department of Experimental Medicine, University of Genova, Via Pastore 3, 16132, Genova, Italy
| | - Eugenia Pechkova
- Nanoworld Institute, Fondazione EL.B.A. Nicolini, Largo Redaelli 7, 24020, Pradalunga, Bergamo, Italy
- Laboratories
of Biophysics and Nanobiotechnology, Department of Experimental Medicine, University of Genova, Via Pastore 3, 16132, Genova, Italy
| | - Joshua LaBaer
- Virginia
G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Claudio Nicolini
- Nanoworld Institute, Fondazione EL.B.A. Nicolini, Largo Redaelli 7, 24020, Pradalunga, Bergamo, Italy
- Laboratories
of Biophysics and Nanobiotechnology, Department of Experimental Medicine, University of Genova, Via Pastore 3, 16132, Genova, Italy
- Virginia
G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Nicolini C, Singh M, Spera R, Felli L. Analysis of gene expression on anodic porous alumina microarrays. Bioengineered 2013; 4:332-7. [PMID: 23783000 PMCID: PMC3813533 DOI: 10.4161/bioe.25278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
This paper investigates the application of anodic porous alumina as an advancement on chip laboratory for gene expressions. The surface was prepared by a suitable electrolytic process to obtain a regular distribution of deep micrometric holes and printed bypen robot tips under standard conditions. The gene expression within the Nucleic Acid Programmable Protein Array (NAPPA) is realized in a confined environment of 16 spots, containing circular DNA plasmids expressed using rabbit reticulocyte lysate. Authors demonstrated the usefulness of APA in withholding the protein expression by detecting with a CCD microscope the photoluminescence signal emitted from the complex secondary antibody anchored to Cy3 and confined in the pores. Friction experiments proved the mechanical resistance under external stresses by the robot tip pens printing. So far, no attempts have been made to directly compare APA with any other surface/substrate; the rationale for pursuing APA as a potential surface coating is that it provides advantages over the simple functionalization of a glass slide, overcoming concerns about printing and its ability to generate viable arrays.
Collapse
Affiliation(s)
- Claudio Nicolini
- Nanoworld Institute; Fondazione EL.B.A. Nicolini; Pradalunga, Italy; Laboratories of Biophysics and Nanobiotechnology; Department of Experimental Medicine; University of Genova; Genova, Italy; Department of Surgical Sciences and Integrated Diagnostic; University of Genova; Genova, Italy
| | | | | | | |
Collapse
|
8
|
Santos A, Kumeria T, Losic D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.11.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Prototypes of newly conceived inorganic and biological sensors for health and environmental applications. SENSORS 2012; 12:17112-27. [PMID: 23235450 PMCID: PMC3571829 DOI: 10.3390/s121217112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 11/17/2022]
Abstract
This paper describes the optimal implementation of three newly conceived sensors for both health and environmental applications, utilizing a wide range of detection methods and complex nanocomposites. The first one is inorganic and based on matrices of calcium oxide, the second is based on protein arrays and a third one is based on Langmuir-Blodgett laccase multi-layers. Special attention was paid to detecting substances significant to the environment (such as carbon dioxide) and medicine (drug administration, cancer diagnosis and prognosis) by means of amperometric, quartz crystal microbalance with frequency (QCM_F) and quartz crystal microbalance with dissipation monitoring (QCM_D) technologies. The resulting three implemented nanosensors are described here along with proofs of principle and their corresponding applications.
Collapse
|
10
|
Nicolini C, Bragazzi N, Pechkova E. Nanoproteomics enabling personalized nanomedicine. Adv Drug Deliv Rev 2012; 64:1522-31. [PMID: 22820526 DOI: 10.1016/j.addr.2012.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 02/01/2023]
Abstract
Nucleic Acid Programmable Protein Arrays utilize a complex mammalian cell free expression system to produce proteins in situ. In alternative to fluorescent-labeled approaches a new label free method, emerging from the combined utilization of three independent and complementary nanotechnological approaches, appears capable to analyze protein function and protein-protein interaction in studies promising for personalized medicine. Quartz Micro Circuit nanogravimetry, based on frequency and dissipation factor, mass spectrometry and anodic porous alumina overcomes indeed the limits of correlated fluorescence detection plagued by the background still present after extensive washes. This could be further optimized by a homogeneous and well defined bacterial cell free expression system capable to realize the ambitious objective to quantify the regulatory protein networks in humans. Implications for personalized medicine of the above label free protein array using different test genes proteins are reported.
Collapse
|
11
|
Nicolini C, Bezerra T, Pechkova E. Protein nanotechnology for the new design and development of biocrystals and biosensors. Nanomedicine (Lond) 2012; 7:1117-20. [DOI: 10.2217/nnm.12.84] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Claudio Nicolini
- Biophysics & Nanobiotechnology Laboratories, Experimental Medicine Department, University of Genoa, Italy and Nanoworld Institute Fondazione ELBA Nicolini, Pradalunga, Bergamo, Italy
| | - Tercio Bezerra
- Biophysics & Nanobiotechnology Laboratories, Experimental Medicine Department, University of Genoa, Italy
| | - Eugenia Pechkova
- Biophysics & Nanobiotechnology Laboratories, Experimental Medicine Department, University of Genoa, Italy and Nanoworld Institute Fondazione ELBA Nicolini, Pradalunga, Bergamo, Italy
| |
Collapse
|
12
|
Dasilva N, Díez P, Matarraz S, González-González M, Paradinas S, Orfao A, Fuentes M. Biomarker discovery by novel sensors based on nanoproteomics approaches. SENSORS 2012; 12:2284-308. [PMID: 22438764 PMCID: PMC3304166 DOI: 10.3390/s120202284] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/20/2012] [Accepted: 02/14/2012] [Indexed: 12/23/2022]
Abstract
During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors.
Collapse
Affiliation(s)
- Noelia Dasilva
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Paula Díez
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Sergio Matarraz
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - María González-González
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Sara Paradinas
- Departamento de Química Analítica, Facultad de Ciencias Químicas, University of Salamanca, Salamanca 37008, Spain; E-Mail:
| | - Alberto Orfao
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
| | - Manuel Fuentes
- Centro de Investigación del Cáncer/IBMCC (USAL/CSIC), Departamento de Medicina and Servicio General de Citometría, University of Salamanca, Salamanca 37007, Spain; E-Mails: (N.D.); (P.D.); (S.M.); (M.G.-G.); (A.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-923-294-811; Fax: +34-923-294-743
| |
Collapse
|
13
|
Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites. MATERIALS 2011; 4:1483-1518. [PMID: 28824154 PMCID: PMC5448674 DOI: 10.3390/ma4081483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 12/12/2022]
Abstract
Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.
Collapse
|
14
|
Salimi A, Hallaj R, Soltanian S. Fabrication of a Sensitive Cholesterol Biosensor Based on Cobalt-oxide Nanostructures Electrodeposited onto Glassy Carbon Electrode. ELECTROANAL 2009. [DOI: 10.1002/elan.200900229] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Nicolini C. Nanogenomics in medicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 2:59-76. [DOI: 10.1002/wnan.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Salerno M, Patra N, Cingolani R. Use of ionic liquid in fabrication, characterization, and processing of anodic porous alumina. NANOSCALE RESEARCH LETTERS 2009; 4:865-72. [PMID: 20596395 PMCID: PMC2894150 DOI: 10.1007/s11671-009-9337-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/24/2009] [Indexed: 05/16/2023]
Abstract
Two different ionic liquids have been tested in the electrochemical fabrication of anodic porous alumina in an aqueous solution of oxalic acid. It was found that during galvanostatic anodization of the aluminum at a current density of 200 mA/cm2, addition of 0.5% relative volume concentration of 1-butyl-3-methylimidazolium tetrafluoborate resulted in a three-fold increase of the growth rate, as compared to the bare acidic solution with the same acid concentration. This ionic liquid was also used successfully for an assessment of the wettability of the outer surface of the alumina, by means of liquid contact angle measurements. The results have been discussed and interpreted with the aid of atomic force microscopy. The observed wetting property allowed to use the ionic liquid for protection of the pores during a test removal of the oxide barrier layer.
Collapse
Affiliation(s)
- Marco Salerno
- Nanobiotechnology Department, The Italian Institute of Technology, via Morego 30, Genova, 16163, Italy.
| | | | | |
Collapse
|