1
|
Terrell JL, Wu HC, Tsao CY, Barber NB, Servinsky MD, Payne GF, Bentley WE. Nano-guided cell networks as conveyors of molecular communication. Nat Commun 2015; 6:8500. [PMID: 26455828 PMCID: PMC4633717 DOI: 10.1038/ncomms9500] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/28/2015] [Indexed: 01/06/2023] Open
Abstract
Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and 'binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a 'bio-litmus' in a manner read by simple optical means.
Collapse
Affiliation(s)
- Jessica L Terrell
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Hsuan-Chen Wu
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Nathan B Barber
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA
| | - Matthew D Servinsky
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
2
|
Quek SB, Cheng L, Cord-Ruwisch R. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions. WATER RESEARCH 2015; 77:64-71. [PMID: 25846984 DOI: 10.1016/j.watres.2015.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 03/09/2015] [Accepted: 03/14/2015] [Indexed: 05/23/2023]
Abstract
The development of an assimilable organic carbon (AOC) detecting marine microbial fuel cell (MFC) biosensor inoculated with microorganisms from marine sediment was successful within 36 days. This established marine MFC was tested as an AOC biosensor and reproducible microbiologically produced electrical signals in response to defined acetate concentration were achieved. The dependency of the biosensor sensitivity on the potential of the electron-accepting electrode (anode) was investigated. A linear correlation (R(2) > 0.98) between electrochemical signals (change in anodic potential and peak current) and acetate concentration ranging from 0 to 150 μM (0-3600 μg/L of AOC) was achieved. However, the present biosensor indicated a different-linear relation at somewhat elevated acetate concentration ranging from 150 to 450 μM (3600-10,800 μg/L of AOC). This high concentration of acetate addition could be measured by coulombic measurement (cumulative charges) with a linear correlation. For the acetate concentration detected in this study, the sensor recovery time could be controlled within 100 min.
Collapse
Affiliation(s)
- Soon Bee Quek
- School of Engineering and Information Technology, Murdoch University, 90, South Street, Perth, WA 6150, Australia.
| | - Liang Cheng
- School of Engineering and Information Technology, Murdoch University, 90, South Street, Perth, WA 6150, Australia.
| | - Ralf Cord-Ruwisch
- School of Engineering and Information Technology, Murdoch University, 90, South Street, Perth, WA 6150, Australia.
| |
Collapse
|
3
|
Su L, Jia W, Hou C, Lei Y. Microbial biosensors: A review. Biosens Bioelectron 2011; 26:1788-99. [DOI: 10.1016/j.bios.2010.09.005] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 02/01/2023]
|
5
|
Scott D, Dikici E, Ensor M, Daunert S. Bioluminescence and its impact on bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:297-319. [PMID: 21456969 DOI: 10.1146/annurev-anchem-061010-113855] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There is an increasing need for versatile yet sensitive labels, posed by the demands for low detection in bioanalysis. Bioluminescent proteins have many desirable characteristics, including the ability to be detected at extremely low concentrations; no background interference from autofluorescent compounds present in samples; and compatibility with many miniaturized platforms, such as lab-on-a-chip and lab-on-a-CD systems. Bioluminescent proteins have found a plethora of analytical applications in intracellular monitoring, genetic regulation and detection, immuno- and binding assays, and whole-cell biosensors, among others. As new bioluminescent organisms are discovered and new bioluminescence proteins are characterized, use of these proteins will continue to dramatically improve our understanding of molecular and cellular events, as well as their applications for detection of environmental and biomedical samples.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
6
|
HUO DQ, LIU Z, Hou CJ, YANG J, LUO XG, FA HB, DONG JL, ZHANG YC, ZHANG GP, LI JJ. Recent Advances on Optical Detection Methods and Techniques for Cell-based Microfluidic Systems. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60067-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Close DM, Ripp S, Sayler GS. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. SENSORS (BASEL, SWITZERLAND) 2009; 9:9147-74. [PMID: 22291559 PMCID: PMC3260636 DOI: 10.3390/s91109147] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/14/2009] [Accepted: 10/23/2009] [Indexed: 11/19/2022]
Abstract
Whole-cell, genetically modified bioreporters are designed to emit detectable signals in response to a target analyte or related group of analytes. When integrated with a transducer capable of measuring those signals, a biosensor results that acts as a self-contained analytical system useful in basic and applied environmental, medical, pharmacological, and agricultural sciences. Historically, these devices have focused on signaling proteins such as green fluorescent protein, aequorin, firefly luciferase, and/or bacterial luciferase. The biochemistry and genetic development of these sensor systems as well as the advantages, challenges, and common applications of each one will be discussed.
Collapse
Affiliation(s)
- Dan M. Close
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| | - Steven Ripp
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| | - Gary S. Sayler
- The University of Tennessee, The Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, Tennessee, 37996, USA; E-Mails: (D.C.); (S.R.)
| |
Collapse
|
8
|
Roda A, Guardigli M, Michelini E, Mirasoli M. Bioluminescence in analytical chemistry and in vivo imaging. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2008.11.015] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|