1
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Ju HX, Zhuang QK, Long YT. The Preface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Kong J, Yu X, Hu W, Hu Q, Shui S, Li L, Han X, Xie H, Zhang X, Wang T. A biomimetic enzyme modified electrode for H2O2 highly sensitive detection. Analyst 2016; 140:7792-8. [PMID: 26462299 DOI: 10.1039/c5an01335f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient catalyst based on artificial bionic peroxidase was synthesized for electrocatalysis. A poly(ethyleneimine)/Au nanoparticle composite (PEI-AuNP) was prepared and it was then linked to hemin via a coupling reaction between carboxyl groups in hemin and amino groups in PEI without the activation of a carboxyl group by carbodiimide. Fourier transform infrared (FTIR) spectroscopy verified the formation of amido bonds within the structure. The presence of AuNPs contributed greatly in establishing the amido bonds within the composite. Transmission electron microscopy (TEM) and UV-visible spectroscopy were also used to characterize the PEI-AuNP-hemin catalyst. PEI-AuNP-hemin exhibited intrinsic peroxidase-like catalytic activities. The PEI-AuNP-hemin deposited on a glass carbon electrode had strong sensing for H2O2 with a well-defined linear relationship between the amperometric response and H2O2 concentration in the range from 1 μM to 0.25 mM. The detection limit was 0.247 nM with a high sensitivity of 0.347 mA mM(-1) cm(-2). The peroxidase-like catalytic activity of PEI-AuNP-hemin is discussed in relation to its microstructure. The study suggests that PEI-AuNP-hemin may have promising application prospects in biocatalysis and bioelectronics.
Collapse
Affiliation(s)
- Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Xuehua Yu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Weiwen Hu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Qiong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Sailan Shui
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Lianzhi Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Huifang Xie
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.
| | - Xueji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China. and Chemistry Department, College of Arts and Sciences, University of South Florida, East Fowler Ave, Tampa, Florida 33620-4202, USA
| | - Tianhe Wang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China
| |
Collapse
|
4
|
Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1703-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Demiyanova AS, Sakharov IY. High chemiluminescence activity of an FeIII–TAML activator in aqueous–organic media and its use in the determination of organic peroxides. Analyst 2015; 140:2964-8. [DOI: 10.1039/c4an01943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using FeIII–TAML, highly active peroxidase mimic, the sensitive chemiluminescence assays for the determination of benzoyl peroxide and tert-butyl hydroperoxide in the presence of organic solvents were developed.
Collapse
Affiliation(s)
| | - Ivan Yu. Sakharov
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| |
Collapse
|
6
|
Garg T, Rath G, Goyal AK. Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target 2014; 23:202-21. [PMID: 25539071 DOI: 10.3109/1061186x.2014.992899] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanofiber scaffold formulations (diameter less than 1000 nm) were successfully used to deliver the drug/cell/gene into the body organs through different routes for an effective treatment of various diseases. Various fabrication methods like drawing, template synthesis, fiber-mesh, phase separation, fiber-bonding, self-assembly, melt-blown, and electrospinning are successfully used for fabrication of nanofibers. These formulations are widely used in various fields such as tissue engineering, drug delivery, cosmetics, as filter media, protective clothing, wound dressing, homeostatic, sensor devices, etc. The present review gives a detailed account on the need of the nanofiber scaffold formulation development along with the biomaterials and techniques implemented for fabrication of the same against innumerable diseases. At present, there is a huge extent of research being performed worldwide on all aspects of biomolecules delivery. The unique characteristics of nanofibers such as higher loading efficiency, superior mechanical performance (stiffness and tensile strength), controlled release behavior, and excellent stability helps in the delivery of plasmid DNA, large protein drugs, genetic materials, and autologous stem-cell to the target site in the future.
Collapse
Affiliation(s)
- Tarun Garg
- Department of Pharmaceutics, ISF College of Pharmacy , Moga, Punjab , India
| | | | | |
Collapse
|
7
|
Zhang J, Chai Y, Yuan R, Yuan Y, Bai L, Xie S. A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification. Analyst 2014; 138:6938-45. [PMID: 24081001 DOI: 10.1039/c3an01587d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we demonstrated a novel sensitive sandwich-type pseudobienzyme aptasensor for thrombin detection. Greatly amplified sensitivity was based on mesoporous silica-multiwalled carbon nanotube (mSiO2@MWCNT) nanocomposites as enhanced materials and a pseudobienzyme electrocatalytic system. Firstly, the mSiO2@MWCNT nanocomposites not only have good biocompatibility and a suitable microenvironment for stabilizing the aptamer assembly, but also can load large amounts of electron mediator thionine (Thi), platinum nanoparticles (PtNPs) and hemin/G-quadruplex bioelectrocatalytic complex. Moreover, in the presence of H2O2 in an electrolytic cell, the synergistic reaction of PtNPs and hemin/G-quadruplex bioelectrocatalyzed the reduction of H2O2, dramatically amplifying the response signals of electron mediator Thi and improving the sensitivity. Secondly, dendrimer functionalized reduced graphene oxide (PAMAM-rGO) as the biosensor platform enhanced the surface area for the immobilization of abundant primary aptamers as well as facilitated electron transfer from Thi to the electrode, thus amplifying the detection response. Using the above multiple effects, the approach showed a high sensitivity and a wider linearity for the detection of thrombin in the range between 0.0001 nM and 80 nM with a detection limit of 50 fM. This new design avoided the fussy labeling process and the spatial distribution of each sequentially acting enzyme, which provided an ideal candidate for the development of a sensitive and simple bioanalytical platform.
Collapse
Affiliation(s)
- Juan Zhang
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
8
|
Hu P, Han L, Dong S. A facile one-pot method to synthesize a polypyrrole/hemin nanocomposite and its application in biosensor, dye removal, and photothermal therapy. ACS APPLIED MATERIALS & INTERFACES 2014; 6:500-506. [PMID: 24308420 DOI: 10.1021/am404539j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, we introduced a facile method for the construction of a polypyrrole/hemin (PPy/hemin) nanocomposite via one-pot chemical oxidative polymerization. In this process, a hemin molecule serving as a dopant was entrapped in the PPy nanocomposite during chemical oxidative polymerization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy results demonstrated that the PPy/hemin nanocomposite was successfully synthesized. The as-prepared nanocomposite exhibited intrinsic peroxidase-like catalytic activities, strong adsorption properties, and an excellent near-infrared (NIR) light-induced thermal effect. We utilized the nanomaterials to catalyze the oxidation of a peroxidase substrate 3,3,5,5-tetramethylbenzidine by H2O2 to the oxidized colored product which provided a colorimetric detection of glucose. As low as 50 μM glucose could be detected with a linear range from 0.05 to 8 mM. Moreover, the obtained nanocomposite also showed excellent removal efficiency for methyl orange and rhodamine B and a photothermal effect, which implied a promising application as the pollutant adsorbent and photothermal agent. The unique nature of the PPy/hemin nanocomposite makes it very promising for the fabrication of inexpensive, high-performance bioelectronic devices in the future.
Collapse
Affiliation(s)
- Peng Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin, 130022, China
| | | | | |
Collapse
|
9
|
Xu L, Ji C, Bai Y, He J, Liu K. DNA duplex-supported artificial esterase mimicking by cooperative grafting functional groups. Biochem Biophys Res Commun 2013; 434:516-20. [PMID: 23583410 DOI: 10.1016/j.bbrc.2013.03.106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
The molecular structures of enzyme mimics may be modified to optimize their catalytic properties. In this study, to generate artificial enzyme mimics, Watson-Crick base paired DNA duplexes were designed as scaffolds which were assembled by nucleotides modified with specific functional groups. This process allowed various functional groups to be precisely assembled at different sites on the duplexes. By using this strategy, the 5-[2-(1H-imidazolyl-4)-(E)-ethylene]-2'-deoxythymidine (1) analog with the 5-substituted imidazolyl group was incorporated into single strands of DNA. Upon DNA duplex formation, several combinations of the imidazolyl group were formed. Using p-nitrophenyl acetate as the substrate of the catalytic reaction, we evaluated the hydrolysis capabilities of the imidazolyl assemblies. The catalytic ability was closely related to the distribution of imidazolyl groups in the DNA duplex. The most effective catalytic center was that of the duplex O5-O6 construct with three imidazolyl groups. This construct displayed bell-shaped pH-dependent and Mg(2+)-independent kinetic curves, which are typical characteristics of imidazolyl-mediated catalytic reactions.
Collapse
Affiliation(s)
- Liang Xu
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | |
Collapse
|
10
|
Jin Y, Qian J, Wang K, Yang X, Dong X, Qiu B. Fabrication of multifunctional magnetic FePc@Fe3O4/reduced graphene oxide nanocomposites as biomimetic catalysts for organic peroxide sensing. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.01.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Yuan Y, Yuan R, Chai Y, Zhuo Y, Ye X, Gan X, Bai L. Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem Commun (Camb) 2012; 48:4621-3. [PMID: 22466956 DOI: 10.1039/c2cc31423a] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, hemin/G-quadruplex was employed to simultaneously serve as NADH oxidase and an HRP-mimicking DNAzyme for constructing a simple and sensitive pseudobienzyme-amplifying electrochemical aptasensor for thrombin detection.
Collapse
Affiliation(s)
- Yali Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Nonenzymatic amperometric organic peroxide sensor based on nano-cobalt phthalocyanine loaded functionalized graphene film. Anal Chim Acta 2012; 712:64-71. [DOI: 10.1016/j.aca.2011.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/04/2011] [Accepted: 11/10/2011] [Indexed: 11/21/2022]
|
13
|
Bi-enzyme functionlized hollow PtCo nanochains as labels for an electrochemical aptasensor. Biosens Bioelectron 2011; 26:4331-6. [PMID: 21592763 DOI: 10.1016/j.bios.2011.04.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 11/21/2022]
Abstract
In this work, a new signal amplification strategy based on hollow PtCo nanochains (HPtCoNCs) functionalized by bi-enzyme-horseradish peroxidase mimicking DNAzyme (HRP-DNAzyme) and glucose oxidase (GOD), as well as ferrocene-labeled secondary thrombin aptamer (Fc-TBA 2), is developed to construct a highly sensitive electrochemical aptasensor. The HRP-DNAzyme contains a special G-quadruplex structure with an intercalated hemin. With the surface area enlarged by HPtCoNCs, the amount of immobilized Fc-TBA 2, hemin and GOD can be enhanced. Under the enzyme catalysis of GOD, d-glucose is rapidly oxidized into gluconic acid accompanying with the generation of H₂O₂, which is further electrocatalyzed by Pt nanoparticles and HPR-DNAzyme to improve the electrochemical signal of Fc. With several amplification factors mentioned above, a wide linear ranged from 0.001 to 30 nM is acquired with a relatively low detection limit of 0.39 pM for thrombin. The present work demonstrates that using HPtCoNCs as labels is a promising way to amplify the analysis signal and improve the sensitivity of aptasensors.
Collapse
|
14
|
Silva TM, Santiago PO, Purcena LL, Fernandes KF. Study of the cashew gum polysaccharide for the horseradish peroxidase immobilization — Structural characteristics, stability and recovery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010. [DOI: 10.1016/j.msec.2010.01.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|