1
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
He J, Zhang X, Qian Y, Wang Q, Bai Y. An engineered quorum-sensing-based whole-cell biosensor for active degradation of organophosphates. Biosens Bioelectron 2022; 206:114085. [DOI: 10.1016/j.bios.2022.114085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
|
3
|
Ye Y, Guo H, Sun X. Recent progress on cell-based biosensors for analysis of food safety and quality control. Biosens Bioelectron 2018; 126:389-404. [PMID: 30469077 DOI: 10.1016/j.bios.2018.10.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
Abstract
Food quality and safety has become a subject of major concern for authorities and professionals in the food supply chain. Rapid methods, particularly biosensors, have exceptional specificity and sensitivity, rapid response times, low cost, relatively compact size, and are user friendly to operate. Cell-based biosensors are portable, and provide the biological activity of the analyte suitable for an initial screening of food. In this overview, the utilization of cell-based biosensors for food safety and quality analyses, such as detecting toxins, foodborne pathogens, allergens, and evaluating toxicity and function are summarized. Our results will promote the future development of cell-based biosensors in the food field.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Campana O, Wlodkowic D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:932-946. [PMID: 29284083 DOI: 10.1021/acs.est.7b03370] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biological and environmental sciences are, more than ever, becoming highly dependent on technological and multidisciplinary approaches that warrant advanced analytical capabilities. Microfluidic lab-on-a-chip technologies are perhaps one the most groundbreaking offshoots of bioengineering, enabling design of an entirely new generation of bioanalytical instrumentation. They represent a unique approach to combine microscale engineering and physics with specific biological questions, providing technological advances that allow for fundamentally new capabilities in the spatiotemporal analysis of molecules, cells, tissues, and even small metazoan organisms. While these miniaturized analytical technologies experience an explosive growth worldwide, with a substantial promise of a direct impact on biosciences, it seems that lab-on-a-chip systems have so far escaped the attention of aquatic ecotoxicologists. In this Critical Review, potential applications of the currently existing and emerging chip-based technologies for aquatic ecotoxicology and water quality monitoring are highlighted. We also offer suggestions on how aquatic ecotoxicology can benefit from adoption of microfluidic lab-on-a-chip devices for accelerated bioanalysis.
Collapse
Affiliation(s)
- Olivia Campana
- Instituto de Ciencias Marinas de Andalucía, CSIC , Puerto Real, 11519, Spain
| | - Donald Wlodkowic
- School of Science, RMIT University , Melbourne, Victoria 3083, Australia
| |
Collapse
|
5
|
New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta 2017; 175:435-442. [PMID: 28842013 DOI: 10.1016/j.talanta.2017.07.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 01/05/2023]
Abstract
Antibiotics are leading medicine asset for fighting against microbial infection, but also one of the important causes of death worldwide. Many antibiotics used as therapeutics and growth promotion agents in animals can lead to antibiotic residues in animal-derived food which harm the health of people. Hence, it is vital to screen antibiotic residues in animal derived foods. Typical methods for screening antibiotic residues are based on microbiological growth inhibition and immunological analyses. However these two methods have some disadvantages, such as poor sensitive, lack of specificity and etc. Therefore, it is necessary to develop simple, more efficient and high sensitive screening methods of antibiotic residues. These assays have been introduced for the screening of numerous food samples. Biosensors are emerging methods, applied in screening antibiotic residues in animal-derived foods. Two types of biosensors, whole-cell based biosensors and surface plasmon resonance-based sensors have been extensively used. Their advantages include portability, small sample requirement, high sensitivity and good specificity over the traditional screening methods.
Collapse
|
6
|
Advances in biosensor development for the screening of antibiotic residues in food products of animal origin – A comprehensive review. Biosens Bioelectron 2017; 90:363-377. [DOI: 10.1016/j.bios.2016.12.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
|
7
|
Terrell JL, Wu HC, Tsao CY, Barber NB, Servinsky MD, Payne GF, Bentley WE. Nano-guided cell networks as conveyors of molecular communication. Nat Commun 2015; 6:8500. [PMID: 26455828 PMCID: PMC4633717 DOI: 10.1038/ncomms9500] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 08/28/2015] [Indexed: 01/06/2023] Open
Abstract
Advances in nanotechnology have provided unprecedented physical means to sample molecular space. Living cells provide additional capability in that they identify molecules within complex environments and actuate function. We have merged cells with nanotechnology for an integrated molecular processing network. Here we show that an engineered cell consortium autonomously generates feedback to chemical cues. Moreover, abiotic components are readily assembled onto cells, enabling amplified and 'binned' responses. Specifically, engineered cell populations are triggered by a quorum sensing (QS) signal molecule, autoinducer-2, to express surface-displayed fusions consisting of a fluorescent marker and an affinity peptide. The latter provides means for attaching magnetic nanoparticles to fluorescently activated subpopulations for coalescence into colour-indexed output. The resultant nano-guided cell network assesses QS activity and conveys molecular information as a 'bio-litmus' in a manner read by simple optical means.
Collapse
Affiliation(s)
- Jessica L Terrell
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Hsuan-Chen Wu
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - Nathan B Barber
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA
| | - Matthew D Servinsky
- U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, USA
| | - Gregory F Payne
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland 20742, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
8
|
High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J Chromatogr A 2014; 1356:249-57. [DOI: 10.1016/j.chroma.2014.06.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 11/22/2022]
|
9
|
Mirasoli M, Guardigli M, Michelini E, Roda A. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis. J Pharm Biomed Anal 2014; 87:36-52. [DOI: 10.1016/j.jpba.2013.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 01/27/2023]
|
10
|
Sochor J, Zitka O, Hynek D, Jilkova E, Krejcova L, Trnkova L, Adam V, Hubalek J, Kynicky J, Vrba R, Kizek R. Bio-sensing of cadmium(II) ions using Staphylococcus aureus. SENSORS 2011; 11:10638-63. [PMID: 22346664 PMCID: PMC3274306 DOI: 10.3390/s111110638] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/31/2011] [Accepted: 11/07/2011] [Indexed: 12/17/2022]
Abstract
Cadmium, as a hazardous pollutant commonly present in the living environment, represents an important risk to human health due to its undesirable effects (oxidative stress, changes in activities of many enzymes, interactions with biomolecules including DNA and RNA) and consequent potential risk, making its detection very important. New and unique technological and biotechnological approaches for solving this problems are intensely sought. In this study, we used the commonly occurring potential pathogenic microorganism Staphylococcus aureus for the determination of markers which could be used for sensing of cadmium(II) ions. We were focused on monitoring the effects of different cadmium(II) ion concentrations (0, 1.25, 2.5, 5, 10, 15, 25 and 50 μg mL(-1)) on the growth and energetic metabolism of Staphylococcus aureus. Highly significant changes have been detected in the metabolism of thiol compounds-specifically the protein metallothionein (0.79-26.82 mmol/mg of protein), the enzyme glutathione S-transferase (190-5,827 μmol/min/mg of protein), and sulfhydryl groups (9.6-274.3 μmol cysteine/mg of protein). The ratio of reduced and oxidized glutathione indicated marked oxidative stress. In addition, dramatic changes in urease activity, which is connected with resistance of bacteria, were determined. Further, the effects of cadmium(II) ions on the metabolic pathways of arginine, β-glucosidase, phosphatase, N-acetyl β-d-glucosamine, sucrose, trehalose, mannitol, maltose, lactose, fructose and total proteins were demonstrated. A metabolomic profile of Staphylococcus aureus under cadmium(II) ion treatment conditions was completed seeking data about the possibility of cadmium(II) ion accumulation in cells. The results demonstrate potential in the application of microorganisms as modern biosensor systems based on biological components.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - David Hynek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Eva Jilkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Libuse Trnkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jaromir Hubalek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, CZ-616 00 Brno, Czech Republic
| | - Jindrich Kynicky
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mail: (J.K.)
| | - Radimir Vrba
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (J.S.); (O.Z.); (D.H.); (E.J.); (L.K.); (L.T.); (V.A.); (J.H.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail: (R.V.)
- Lead and Cadmium Initiatives, United Nations Environment Program, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Research Centre for Environmental Chemistry and Ecotoxicology, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +420-545-133-350; Fax: +420-545-212-044
| |
Collapse
|
11
|
Roda A, Guardigli M. Analytical chemiluminescence and bioluminescence: latest achievements and new horizons. Anal Bioanal Chem 2011; 402:69-76. [PMID: 22002591 DOI: 10.1007/s00216-011-5455-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 01/13/2023]
Abstract
Chemiluminescence (CL) and bioluminescence (BL) are the detection techniques of choice for the development of highly sensitive analytical methods, from immunoassays and nucleic acid hybridization assays to whole-cell biosensors. Nevertheless, basic and applied research on CL and BL aimed at further improving their analytical performance is still very active. This research covers diverse and complementary fields, including (among others) enhancing the light emission efficiency of CL systems, the use of nanomaterials to catalyze or enhance CL/BL reactions, the study of BL proteins to elucidate the color modulation mechanism, the discovery of new BL systems, the production of thermostable BL protein mutants with altered emission spectra, the development of BL imaging techniques to expand our understanding of living systems, and the implementation of CL/BL detection in miniaturized analytical devices. In the near future, we expect even greater diffusion of CL/BL-based analytical methods, especially in portable analytical devices intended for applications ranging from environmental analysis to companion diagnostics for personalized medicine.
Collapse
Affiliation(s)
- Aldo Roda
- Department of Pharmaceutical Sciences, University of Bologna, Alma Mater Studiorum, Bologna, Italy.
| | | |
Collapse
|
12
|
Xu X, Ying Y. Microbial Biosensors for Environmental Monitoring and Food Analysis. FOOD REVIEWS INTERNATIONAL 2011. [DOI: 10.1080/87559129.2011.563393] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Su L, Jia W, Hou C, Lei Y. Microbial biosensors: A review. Biosens Bioelectron 2011; 26:1788-99. [DOI: 10.1016/j.bios.2010.09.005] [Citation(s) in RCA: 325] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 02/01/2023]
|
14
|
Shin HJ. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl Microbiol Biotechnol 2010; 89:867-77. [DOI: 10.1007/s00253-010-2990-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|