1
|
Dong J, Qiu X, Huang M, Chen X, Li Y. G-quadruplex-hemin DNAzyme functionalized nanopipettes: Fabrication and sensing application. Talanta 2023; 257:124384. [PMID: 36812658 DOI: 10.1016/j.talanta.2023.124384] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Solid-nanopores/nanopipettes have the exquisite ability to reveal the changes in molecular volume due to the advantages of adjustable size, good rigidity and low noise. Herein, a new platform for sensing application was established based on G-quadruplex-hemin DNAzyme (GQH) functionalized gold-coated nanopipettes. In this method, GQH was immobilized on gold-coated nanopipette, which could be used as a catalyst for the reaction of H2O2 with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) to promote the conversion of ABTS to ABTS+ ions inside gold-coated nanopipette, and the change of transmembrane ion current could be monitored in real time. At the optimal conditions, there was a correlation between the ion current and the concentration of H2O2 in a certain range, which could be used for the hydrogen peroxide sensing. The GQH immobilized nanopipette provides a useful platform to investigate enzymatic catalysis in confined environment, which can be used in electrocatalysis, sensing and fundamental electrochemistry.
Collapse
Affiliation(s)
- Jingyi Dong
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xia Qiu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Mimi Huang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Xiaohu Chen
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China
| | - Yongxin Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, PR China.
| |
Collapse
|
2
|
Detection of Alpha-Fetoprotein Using Aptamer-Based Sensors. BIOSENSORS 2022; 12:bios12100780. [PMID: 36290918 PMCID: PMC9599106 DOI: 10.3390/bios12100780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022]
Abstract
Alpha-fetoprotein (AFP) is widely-known as the most commonly used protein biomarker for liver cancer diagnosis at the early stage. Therefore, developing the highly sensitive and reliable method of AFP detection is of essential demand for practical applications. Herein, two types of aptamer-based AFP detection methods, i.e., optical and electrochemical biosensors, are reviewed in detail. The optical biosensors include Raman spectroscopy, dual-polarization interferometry, resonance light-scattering, fluorescence, and chemiluminescence. The electrochemical biosensors include cyclic voltammetry, electrochemical impedance spectroscopy, and giant magnetic impedance. Looking into the future, methods for AFP detection that are high sensitivity, long-term stability, low cost, and operation convenience will continue to be developed.
Collapse
|
3
|
Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS NANO 2021; 15:13943-13969. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin-streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brenda Burciu
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
4
|
Wang Y, Seidel M. Integration of 3D Hydrodynamic Focused Microreactor with Microfluidic Chemiluminescence Sensing for Online Synthesis and Catalytical Characterization of Gold Nanoparticles. SENSORS 2021; 21:s21072290. [PMID: 33805892 PMCID: PMC8036713 DOI: 10.3390/s21072290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Chemiluminescence assays have shown great advantages compared with other optical techniques. Gold nanoparticles have drawn much attention in chemiluminescence analysis systems as an enzyme-free catalyst. The catalytic activity of gold nanoparticles for chemiluminescence sensing depends on size, shape and the surface charge property, which is hard to characterize in batches. As there is no positive or negative correlation between chemiluminescence signals and sizes of gold nanoparticles, the best way to get optimal gold nanoparticles is to control the reaction conditions via online chemiluminescence sensing systems. Therefore, a new method was developed for online synthesis of gold nanoparticles with a three-dimension hydrodynamic focusing microreactor, directly coupled with a microfluidic chemiluminescence sensing chip, which was coupled to a charge-coupled device camera for direct catalytical characterization of gold nanoparticles. All operations were performed in an automatic way with a program controlled by Matlab. Gold nanoparticles were synthesized through a single-phase reaction using glucose as a reducing agent and stabilizer at room temperature. The property of gold nanoparticles was easily controlled with the three-dimension microreactor during synthesis. The catalyst property of synthesized gold nanoparticles was characterized in a luminol-NaOCl chemiluminescence system. After optimizing parameters of synthesis, the chemiluminescence signal was enhanced to a factor of 171. The gold nanoparticles synthesized under optimal conditions for the luminol-NaOCl system were stable for at least one month. To further investigate the catalytic activity of synthesized gold nanoparticles in various situations, two methods were used to change the property of gold nanoparticles. After adding a certain amount of salt (NaCl), gold nanoparticles aggregated with a changed surface charge property and the catalytic activity was greatly enhanced. Glutathione was used as an example of molecules with thiol groups which interact with gold nanoparticles and reduce the catalytic activity. The chemiluminescence intensity was reduced by 98.9%. Therefore, we could show that using a microreactor for gold nanoparticles synthesis and direct coupling with microfluidic chemiluminescence sensing offers a promising monitoring method to find the best synthesis condition of gold nanoparticles for catalytic activity.
Collapse
Affiliation(s)
| | - Michael Seidel
- Correspondence: ; Tel.: +49-89-2180-78252; Fax: +49-89-2180-78255
| |
Collapse
|
5
|
Trujillo RM, Barraza DE, Zamora ML, Cattani-Scholz A, Madrid RE. Nanostructures in Hydrogen Peroxide Sensing. SENSORS 2021; 21:s21062204. [PMID: 33801140 PMCID: PMC8004286 DOI: 10.3390/s21062204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/31/2023]
Abstract
In recent years, several devices have been developed for the direct measurement of hydrogen peroxide (H2O2), a key compound in biological processes and an important chemical reagent in industrial applications. Classical enzymatic biosensors for H2O2 have been recently outclassed by electrochemical sensors that take advantage of material properties in the nano range. Electrodes with metal nanoparticles (NPs) such as Pt, Au, Pd and Ag have been widely used, often in combination with organic and inorganic molecules to improve the sensing capabilities. In this review, we present an overview of nanomaterials, molecules, polymers, and transduction methods used in the optimization of electrochemical sensors for H2O2 sensing. The different devices are compared on the basis of the sensitivity values, the limit of detection (LOD) and the linear range of application reported in the literature. The review aims to provide an overview of the advantages associated with different nanostructures to assess which one best suits a target application.
Collapse
Affiliation(s)
- Ricardo Matias Trujillo
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
| | - Daniela Estefanía Barraza
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
| | - Martin Lucas Zamora
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
| | - Anna Cattani-Scholz
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
- Correspondence: (A.C.-S.); (R.E.M.)
| | - Rossana Elena Madrid
- Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, Argentina; (R.M.T.); (D.E.B.); (M.L.Z.)
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, 4000 Tucumán, Argentina
- Correspondence: (A.C.-S.); (R.E.M.)
| |
Collapse
|
6
|
Elewi AS, Al-Shammaree SAW, AL Sammarraie AKM. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles–screen printed carbon electrode. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Borràs-Brull M, Blondeau P, Riu J. The Use of Conducting Polymers for Enhanced Electrochemical Determination of Hydrogen Peroxide. Crit Rev Anal Chem 2020; 51:204-217. [PMID: 31992056 DOI: 10.1080/10408347.2020.1718482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The role of hydrogen peroxide in a wide range of biological processes has led to a steady increase in research into hydrogen peroxide determination in recent years, and conducting polymers have attracted much interest in electrochemistry as promising materials in this area. We present an overview of electrochemical devices for hydrogen peroxide determination using conducting polymers, either as a target or as a byproduct of redox reactions. We describe different combinations of electrode modifications through the incorporation of conducting polymers as the main component along with other materials or nanomaterials. We critically compare the analytical performances cited and highlight some of the future challenges for the feasible application of such devices.
Collapse
Affiliation(s)
- Marta Borràs-Brull
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Riu
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
8
|
Sunlight-Driven Photothermal Effect of Composite Eggshell Membrane Coated with Graphene Oxide and Gold Nanoparticles. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Eggshell membrane (ESM), which consists of unique interwoven shell membrane fibers, provides a unique supporting platform for functional nanoparticles in catalysis and sensing. This work reports a novel strategy for fabricating sunlight-driven photothermal conversion composite membranes by loading graphene oxide (GO) and gold nanoparticles (AuNPs) on the three-dimension (3D) network structured eggshell membrane. Surface morphologies and chemical elements were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. High photothermal conversion under simulated sunlight irradiation, which may be caused by the synergistic effect of GO and AuNPs, was achieved by coating both GO and AuNPs onto ESM. The temperature of ESM modified with AuNPs, and then GO increased from 26.0 °C to 49.0 °C after 10 min of light irradiation. Furthermore, the nanoscaled GO and AuNPs could add benefit to the heating localization of the obtained composite membrane. It is expected this biocompatible ESM modified with GO and AuNPs would have great potential in drug release and photothermal therapy applications.
Collapse
|
9
|
Impedimetric mechanism study of horseradish peroxidase at low and high concentrations of hydrogen peroxide based on graphene/sol-gel/horseradish peroxidase. Int J Biol Macromol 2019; 123:677-681. [DOI: 10.1016/j.ijbiomac.2018.11.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 11/24/2022]
|
10
|
Deepa S, kumar KR. A symmetrical luminol based azo derivative for trimodal ratiometric Hg2+ sensing and its application to bioimaging in living cells. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Fabrication of an electrochemical H 2 O 2 biosensor based on immobilization of hemoglobin nanoparticles onto pencil graphite electrode. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
Zhou X, Yang L, Tan X, Zhao G, Xie X, Du G. A robust electrochemical immunosensor based on hydroxyl pillar[5]arene@AuNPs@g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 2018; 112:31-39. [DOI: 10.1016/j.bios.2018.04.036] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
|
13
|
Wang J, Mao S, Li HF, Lin JM. Multi-DNAzymes-functionalized gold nanoparticles for ultrasensitive chemiluminescence detection of thrombin on microchip. Anal Chim Acta 2018; 1027:76-82. [PMID: 29866272 DOI: 10.1016/j.aca.2018.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Herein, a chemiluminescence assay with dual signal amplification has been developed based on multi-DNAzymes-functionalized gold nanoparticles (AuNPs) using in situ rolling circle amplification (RCA) for ultrasensitive detection of thrombin on microchip. In this assay, AuNPs was functionalized by aptamer and multi-RCA primer for amplification, and thrombin was sandwiched between the aptamer modified on the microchannel and the aptamer linked AuNP. The further amplification was realized by in situ RCA to expand specific oligonucleotides chains on the AuNPs and produce particular multi-DNAzymes. Enhanced chemiluminescence signal was achieved by the catalytic effect of DNAzymes in the luminol-H2O2 system. The sensitivity of detection was greatly improved by the dual amplification of multi-RCA primer modified AuNPs, and RCA. The whole strategy was applied for ultrasensitive and specific detection of thrombin. The chemiluminesce assay of thrombin performed a good linear range of 1-25 pM and the limit of detection was as low as 0.55 pM. The successful determination of thrombin in real human serum sample indicated a great potential in clinical study.
Collapse
Affiliation(s)
- Junming Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hai-Fang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Meng R, Liu Q, Jin Y, Li B. Dual-Hemin-Labelled Catalytic Molecular Beacon: A Monomer-Dimer Switching Probe for Sensitive Chemiluminescence Detection of Biomolecules. ChemistrySelect 2018. [DOI: 10.1002/slct.201702963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rong Meng
- School of Chemistry & Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; Shaanxi Normal University; Xi'an 710062 China
| | - Qiang Liu
- School of Chemistry & Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; Shaanxi Normal University; Xi'an 710062 China
| | - Yan Jin
- School of Chemistry & Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; Shaanxi Normal University; Xi'an 710062 China
| | - Baoxin Li
- School of Chemistry & Chemical Engineering, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province; Shaanxi Normal University; Xi'an 710062 China
| |
Collapse
|
15
|
Zhu L, Gu D, Liu Q. Hydrogen Peroxide Sensing Based on Inner Surfaces Modification of Solid-State Nanopore. NANOSCALE RESEARCH LETTERS 2017; 12:422. [PMID: 28637348 PMCID: PMC5478554 DOI: 10.1186/s11671-017-2190-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/08/2017] [Indexed: 05/20/2023]
Abstract
There are many techniques for the detection of molecules. But detection of molecules through solid-state nanopore in a solution is one of the promising, high-throughput, and low-cost technology used these days. In the present investigation, a solid-state nanopore platform was fabricated for the detection of hydrogen peroxide (H2O2), which is not only a label free product but also a significant participant in the redox reaction. We have successfully fabricated silicon nitride (Si3N4) nanopores with diameters of ~50 nm by using a focused Ga ion beam, the inner surface of the nanopore has been modified with horseradish peroxidase (HRP) by employing carbodiimide coupling chemistry. The immobilized HRP enzymes have ability to induce redox reactions in a single nanopore channel. Moreover, a real-time single aggregated ABTS•+ molecular translocation events were monitored and investigated. The designed solid-state nanopore biosensor is reversible and can be applied to detect H2O2 multiple times.
Collapse
Affiliation(s)
- Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, People's Republic of China
| | - Dejian Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, People's Republic of China
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
16
|
An amperometric H 2O 2 biosensor based on hemoglobin nanoparticles immobilized on to a gold electrode. Biosci Rep 2017; 37:BSR20170194. [PMID: 28550154 PMCID: PMC5518533 DOI: 10.1042/bsr20170194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/20/2017] [Accepted: 05/26/2017] [Indexed: 01/10/2023] Open
Abstract
The nanoparticles (NPs) of hemoglobin (Hb) were prepared by desolvation method and characterized by transmission electron microscopy (TEM), UV spectroscopy and Fourier-transform IR (FTIR) spectroscopy. An amperometric H2O2 biosensor was constructed by immobilizing HbNPs covalently on to a polycrystalline Au electrode (AuE). HbNPs/AuE were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) before and after immobilization of HbNPs. The HbNPs/AuE showed optimum response within 2.5 s at pH 6.5 in 0.1 M sodium phosphate buffer (PB) containing 100 μM H2O2 at 30°C, when operated at –0.2 V against Ag/AgCl. The HbNPs/AuE exhibited Vmax of 5.161 ± 0.1 μA cm−2 with apparent Michaelis-Menten constant (Km) of 0.1 ± 0.01 mM. The biosensor showed lower detection limit (1.0 μM), high sensitivity (129 ± 0.25 μA cm−2 mM−1) and wider linear range (1.0–1200 μM) for H2O2 as compared with earlier biosensors. The analytical recoveries of added H2O2 in serum (0.5 and 1.0 μM) were 97.77 and 98.01% respectively, within and between batch coefficients of variation (CV) were 3.16 and 3.36% respectively. There was a good correlation between sera H2O2 values obtained by standard enzymic colorimetric method and the present biosensor (correlation coefficient, R2 =0.99). The biosensor measured H2O2 level in sera of apparently healthy subjects and persons suffering from diabetes type II. The HbNPs/AuE lost 10% of its initial activity after 90 days of regular use, when stored dry at 4°C.
Collapse
|
17
|
Yuan R, Gu Y, Ren H, Liu J, Zhu G. Porous Aromatic Framework as an Efficient Metal‐Free Electro‐catalyst for Non‐enzymatic H
2
O
2
Sensing. Chemistry 2017; 23:9467-9471. [DOI: 10.1002/chem.201701833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Rongrong Yuan
- College of ChemistryJilin University Changchun 130012 China
- Department of Materials Science and EngineeringJilin Jianzhu University Changchun 130118 China
| | - Yue Gu
- College of ChemistryJilin University Changchun 130012 China
| | - Hao Ren
- College of ChemistryJilin University Changchun 130012 China
| | - Jia Liu
- College of ChemistryJilin University Changchun 130012 China
| | - Guangshan Zhu
- College of ChemistryJilin University Changchun 130012 China
- Key Laboratory for Micro-Nano Energy Storage and Conversion Materials of Henan Province, Institute of Surface Micro and Nano-MaterialsXuchang University Henan 461000 China
| |
Collapse
|
18
|
van der Horst C, Silwana B, Iwuoha E, Somerset V. Electrocatalytic Evaluation of a Horseradish Peroxidase Biosensor Based on a Novel Bi-Ag Bimetallic Nanocomposite. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.protcy.2017.04.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Magerusan L, Pogacean F, Socaci C, Coros M, Rosu MC, Pruneanu S. Charge transfer-resistance in nitrogen-doped/undoped graphene: Its influence on the electro-catalytic reduction of H 2 O 2. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Pershina ED, Kazdobin KA, Poliichuk AA, Kokhanenko VV. Electrochemical methods of hydrogen peroxide control in aqueous media under dynamic conditions. J WATER CHEM TECHNO+ 2016. [DOI: 10.3103/s1063455x16020028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Ponhong K, Supharoek SA, Siriangkhawut W, Grudpan K. Employing peroxidase from Thai indigenous plants for the application of hydrogen peroxide assay. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0845-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Zhang Y, Liu J, Liu T, Li H, Xue Q, Li R, Wang L, Yue Q, Wang S. Label-free, sensitivity detection of fibrillar fibrin using gold nanoparticle-based chemiluminescence system. Biosens Bioelectron 2016; 77:111-5. [DOI: 10.1016/j.bios.2015.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022]
|
23
|
Chen H, Lu Q, Liao J, Yuan R, Chen S. Anodic electrogenerated chemiluminescence behavior and the choline biosensing application of blue emitting conjugated polymer dots. Chem Commun (Camb) 2016; 52:7276-9. [DOI: 10.1039/c6cc02182d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The anodic electrochemiluminescence (ECL) behavior of poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) dots was studied and applied in oxidoreductase-based ECL biosensing using Chox as the model enzyme.
Collapse
Affiliation(s)
- Hongmei Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Qiyi Lu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jiayao Liao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shihong Chen
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
24
|
Begum H, Ahmed MS, Jeon S. A novel δ-MnO2 with carbon nanotubes nanocomposite as an enzyme-free sensor for hydrogen peroxide electrosensing. RSC Adv 2016. [DOI: 10.1039/c6ra08738h] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have reported the synthesis and application of carbon nanotubes supported δ-MnO2 (δ-MnO2/CNTs) nanocomposite as enzyme-free sensor for the detection of H2O2, where δ-MnO2 serves as the catalytic center and CNTs as the highly conductive base.
Collapse
Affiliation(s)
- Halima Begum
- Department of Chemistry and Institute of Basic Science
- Chonnam National University
- Gwangju 500-757
- Republic of Korea
| | - Mohammad Shamsuddin Ahmed
- Department of Chemistry and Institute of Basic Science
- Chonnam National University
- Gwangju 500-757
- Republic of Korea
| | - Seungwon Jeon
- Department of Chemistry and Institute of Basic Science
- Chonnam National University
- Gwangju 500-757
- Republic of Korea
| |
Collapse
|
25
|
Jabbari M, Razmi H. New solid phase microextraction fiber based on an eggshell membrane coating for determination of polycyclic aromatic hydrocarbons. RSC Adv 2016. [DOI: 10.1039/c6ra10815f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we introduced a novel soluble eggshell membrane protein (SEP) coating for the fabrication of a solid phase microextraction (SPME) fiber for the first time.
Collapse
Affiliation(s)
- Mohammad Jabbari
- Analytical Research Lab
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Habib Razmi
- Analytical Research Lab
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
26
|
Wu Q, Shen H, Shen H, Sun Y, Song L. Study on sensing strategy and performance of a microfluidic chemiluminescence aptazyme sensor. Talanta 2015; 150:531-8. [PMID: 26838440 DOI: 10.1016/j.talanta.2015.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Aptamers are analogous to antibodies in their range of target recognition. G-quadruplex DNAzymes exhibit peroxidase-like activity toward certain specific reactions. Despite aptazyme sensors, based on aptamer and DNAzyme conjugates, have the potential to replace many conventional immune-biosensors; the mechanism concerning high background interference has scarcely been discussed. In this work, by taking a couple of aptazyme sensors with oligonucleotide sequences of adenosine aptamer and CatG4 DNAzyme, the sensing strategy dealing with the thermodynamic equilibrium of the functional oligonucleotide distribution had been studied. Oligonucleotide arrangement and cation condition were found important in modulating the shifting between Watson-Crick duplex and Hoogsteen G-quadruplex, which ultimately influenced sample and background signals. Notably, benefit from the microfluidic chemiluminescence detection, the developed aptazyme sensor achieved an absolute detection limit of 12 pmol adenosine with just 2 μL of pretreated sample solution consumption and satisfactory selectivity. The results have implication for better design of aptazyme sensor in the future.
Collapse
Affiliation(s)
- Qiwang Wu
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haihui Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Shen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lifang Song
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Razmi H, Musevi SJ, Mohammad-Rezaei R. Solid phase extraction of mercury(II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1665-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Prasad A, Kumar A, Suzuki M, Kikuchi H, Sugai T, Kobayashi M, Pospíšil P, Tada M, Kasai S. Detection of hydrogen peroxide in Photosystem II (PSII) using catalytic amperometric biosensor. FRONTIERS IN PLANT SCIENCE 2015; 6:862. [PMID: 26528319 PMCID: PMC4606053 DOI: 10.3389/fpls.2015.00862] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/29/2015] [Indexed: 05/29/2023]
Abstract
Hydrogen peroxide (H2O2) is known to be generated in Photosystem II (PSII) via enzymatic and non-enzymatic pathways. Detection of H2O2 by different spectroscopic techniques has been explored, however its sensitive detection has always been a challenge in photosynthetic research. During the recent past, fluorescence probes such as Amplex Red (AR) has been used but is known to either lack specificity or limitation with respect to the minimum detection limit of H2O2. We have employed an electrochemical biosensor for real time monitoring of H2O2 generation at the level of sub-cellular organelles. The electrochemical biosensor comprises of counter electrode and working electrodes. The counter electrode is a platinum plate, while the working electrode is a mediator based catalytic amperometric biosensor device developed by the coating of a carbon electrode with osmium-horseradish peroxidase which acts as H2O2 detection sensor. In the current study, generation and kinetic behavior of H2O2 in PSII membranes have been studied under light illumination. Electrochemical detection of H2O2 using the catalytic amperometric biosensor device is claimed to serve as a promising technique for detection of H2O2 in photosynthetic cells and subcellular structures including PSII or thylakoid membranes. It can also provide a precise information on qualitative determination of H2O2 and thus can be widely used in photosynthetic research.
Collapse
Affiliation(s)
- Ankush Prasad
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Makoto Suzuki
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Tomoya Sugai
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| | - Masaki Kobayashi
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Electronics, Tohoku Institute of TechnologySendai, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký UniversityOlomouc, Czech Republic
| | - Mika Tada
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Center for General Education, Tohoku Institute of TechnologySendai, Japan
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan
- Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| |
Collapse
|
29
|
Ali M, Ahmed I, Nasir S, Ramirez P, Niemeyer CM, Mafe S, Ensinger W. Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores. ACS APPLIED MATERIALS & INTERFACES 2015; 7:19541-19545. [PMID: 26310320 DOI: 10.1021/acsami.5b06015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe the fabrication of a chemical-sensitive nanofluidic device based on asymmetric nanopores whose transport characteristics can be modulated upon exposure to hydrogen peroxide (H2O2). We show experimentally and theoretically that the current-voltage curves provide a suitable method to monitor the H2O2-mediated change in pore surface characteristics from the electronic readouts. We demonstrate also that the single pore characteristics can be scaled to the case of a multipore membrane whose electric outputs can be readily controlled. Because H2O2 is an agent significant for medical diagnostics, the results should be useful for sensing nanofluidic devices.
Collapse
Affiliation(s)
- Mubarak Ali
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung , D-64291 Darmstadt, Germany
| | - Ishtiaq Ahmed
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Saima Nasir
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
- Materialforschung, GSI Helmholtzzentrum für Schwerionenforschung , D-64291 Darmstadt, Germany
| | - Patricio Ramirez
- Departament de Física Aplicada, Universitat Politécnica de València , E-46022 València, Spain
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Salvador Mafe
- Departament de Física de la Terra i Termodinàmica, Universitat de València , E-46100 Burjassot, Spain
| | - Wolfgang Ensinger
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt , D-64287 Darmstadt, Germany
| |
Collapse
|
30
|
Chang Y, Chai Y, Xie S, Yuan Y, Zhang J, Yuan R. Cleavage-based hybridization chain reaction for electrochemical detection of thrombin. Analyst 2015; 139:4264-9. [PMID: 24971937 DOI: 10.1039/c4an00712c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the present work, we constructed a new label-free "inter-sandwich" electrochemical aptasensor for thrombin (TB) detection by employing a cleavage-based hybridization chain reaction (HCR). The designed single-stranded DNA (defined as binding DNA), which contained the thrombin aptamer binding sequence, a DNAzyme cleavage site and a signal reporter sequence, was first immobilized on the electrode. In the absence of a target TB, the designed DNAzymes could combine with the thrombin aptamer binding sequence via complementary base pairing, and then Cu(2+) could cleave the binding DNA. In the presence of a target TB, TB could combine with the thrombin aptamer binding sequence to predominantly form an aptamer-protein complex, which blocked the DNAzyme cleavage site and prevented the binding DNA from being cleaved by Cu(2+)-dependent DNAzyme. As a result, the signal reporter sequence could leave the electrode surface to trigger HCR with the help of two auxiliary DNA single-strands, A1 and A2. Then, the electron mediator hexaammineruthenium (III) chloride ([Ru(NH3)6](3+)) was embedded into the double-stranded DNA (dsDNA) to produce a strong electrochemical signal for the quantitative measurement of TB. For further amplification of the electrochemical signal, graphene reduced by dopamine (PDA-rGO) was introduced as a platform in this work. With this strategy, the aptasensor displayed a wide linearity in the range of 0.0001 nM to 50 nM with a low detection limit of 0.05 pM. Moreover, the resulting aptasensor exhibited good specificity and acceptable reproducibility and stability. Because of these factors, the fabrication protocol proposed in this work may be extended to clinical application.
Collapse
Affiliation(s)
- Yuanyuan Chang
- Education Ministry Key Laboratory of Luminescent and Real-Time Analytical Chemistry, College of Chemistry and Chemical Engineering, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
31
|
Comparison of ferrite nanoparticles obtained electrochemically for catalytical reduction of hydrogen peroxide. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2938-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Xi X, Li J, Wang H, Zhao Q, Li H. Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1448-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Lei Z, Liu X, Ma L, Liu D, Zhang H, Wang Z. Spheres-on-sphere silica microspheres as matrix for horseradish peroxidase immobilization and detection of hydrogen peroxide. RSC Adv 2015. [DOI: 10.1039/c5ra03755g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spheres-on-sphere (SOS) silica microspheres are employed as a matrix for horseradish peroxidase (HRP) immobilization. The SOS-COOH-HRP shows excellent catalytic performance and stability.
Collapse
Affiliation(s)
- Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xia Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Haifei Zhang
- Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
34
|
Liu W, Li C, Zhang P, Tang L, Gu Y, Zhang Y, Zhang J, Liu Z, Sun G, Zhang Z. Hierarchical polystyrene@reduced graphene oxide–Pt core–shell microspheres for non-enzymatic detection of hydrogen peroxide. RSC Adv 2015. [DOI: 10.1039/c5ra11532a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A non-enzymatic electrochemical sensor based on polystyrene@reduced graphene oxide (RGO)–Pt core–shell microspheres was developed for sensitive detection of hydrogen peroxide (H2O2).
Collapse
Affiliation(s)
- Weilu Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Cong Li
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Peng Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Liu Tang
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Yue Gu
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| | - Yujing Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Jianqing Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Zhongbo Liu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Guoxiang Sun
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- PR China
| | - Zhiquan Zhang
- College of Chemistry
- Jilin University
- Changchun 130012
- PR China
| |
Collapse
|
35
|
Zheng Y, Yuan Y, Chai Y, Yuan R. A label-free electrochemical aptasensor based on the catalysis of manganese porphyrins for detection of thrombin. Biosens Bioelectron 2014; 66:585-9. [PMID: 25530538 DOI: 10.1016/j.bios.2014.12.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/22/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022]
Abstract
A novel manganese porphyrin (MnPP)-catalyzed aerobic oxidation of l-cysteine to disulfides (RSSR) was firstly found and applied into electrochemical aptasensor with a label-free technique for signal amplification. The possible catalytic mechanism of the catalytic reaction where MnPP catalyzed l-cysteine with thiol (RSH) structure to RSSR was discussed in detail. For fabrication of the aptasensor, thionine (Thi), which served as an electron mediator, was mixed with MnPP and immobilized on the nafion coated carbon electrode through ion exchange adsorption. Gold nanoparticle (nano-Au) was assembled on the Thi for immobilizing thrombin binding aptamer (TBA). In the presence of thrombin (TB), TBA will capture TB and form TBA-TB composite thus perturbed electron transfer, leading to decrease of the current for quantitatively detecting TB. Under optimal condition, the electrochemical aptasensor exhibited a linear range of 0.1-25nM with a detection limit of 0.02nM. This work opens a novel way for signal amplification study about porphyrins that served as mimetic enzyme to thiol in electrochemical aptasensor.
Collapse
Affiliation(s)
- Yingning Zheng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yali Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
36
|
Jing P, Xu W, Yi H, Wu Y, Bai L, Yuan R. An amplified electrochemical aptasensor for thrombin detection based on pseudobienzymic Fe3O4-Au nanocomposites and electroactive hemin/G-quadruplex as signal enhancers. Analyst 2014; 139:1756-61. [PMID: 24519466 DOI: 10.1039/c3an02237d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive and selective electrochemical aptasensor for thrombin detection was constructed based on hemin/G-quadruplex as the signal label and Fe3O4-Au nanocomposites with glucose oxidase (GOx-) and peroxide-mimicking enzyme activity as the signal enhancers. Due to their large surface area and good biocompatibility, Fe3O4-Au nanocomposites were employed to immobilize electroactive hemin/G-quadruplex, which was formed by the conjugation between a single-stranded guanine-rich nucleic acid and hemin. Based on the GOx-mimicking enzyme activity, Au nanoparticles on the surface of the Fe3O4-Au nanocomposites effectively catalyzed the oxidization of glucose in the presence of dissolved O2, accompanied by the production of H2O2. Both the Fe3O4 cores of Fe3O4-Au nanocomposites and hemin/G-quadruplex with H2O2-mimicking enzyme activity could catalyze the reduction of the generated H2O2, which promoted the electron transfer of hemin and amplified the electrochemical signal. The proposed electrochemical aptasensor had a wide dynamic linear range of 0.1 pM to 20 nM with a lower detection limit of 0.013 pM, which provided a promising method for a sensitive assay for the detection of proteins in electrochemical aptasensors.
Collapse
Affiliation(s)
- Pei Jing
- Education Ministry Key Laboratory on Luminescence and Real-TimeAnalysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
37
|
Baláž M. Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater 2014; 10:3827-43. [PMID: 24681370 DOI: 10.1016/j.actbio.2014.03.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 01/13/2023]
Abstract
Eggshell membrane (ESM) is a unique biomaterial, which is generally considered as waste. However, it has extraordinary properties which can be utilized in various fields and its potential applications are therefore now being widely studied. The first part of this review focuses on the chemical composition and morphology of ESM. The main areas of ESM application are discussed in the second part. These applications include its utilization as a biotemplate for the synthesis of nanoparticles; as a sorbent of heavy metals, organics, dyes, sulfonates and fluorides; as the main component of biosensors; in medicine; and various other applications. For each area of interest, a detailed literature survey is given.
Collapse
|
38
|
Ghaderi S, Mehrgardi MA. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide. Bioelectrochemistry 2014; 98:64-9. [DOI: 10.1016/j.bioelechem.2014.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
39
|
Mohammad-Rezaei R, Razmi H, Dehgan-Reyhan S. Preparation of graphene oxide doped eggshell membrane bioplatform modified Prussian blue nanoparticles as a sensitive hydrogen peroxide sensor. Colloids Surf B Biointerfaces 2014; 118:188-93. [DOI: 10.1016/j.colsurfb.2014.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/13/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
40
|
Zhang J, Li B. Enhanced chemiluminescence of CdTe quantum dots-H₂O₂ by horseradish peroxidase-mimicking DNAzyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 125:228-233. [PMID: 24556131 DOI: 10.1016/j.saa.2014.01.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
In this study, it was found that horseradish peroxidase (HRP)-mimicking DNAzyme could effectively enhance the CL emission of CdTe quantum dots (QDs)-H2O2 system, whereas HRP could not enhance the CL intensity. The CL enhancement mechanism was investigated, and the CL enhancement was supposed to originate from the catalysis of HRP-mimicking DNAzyme on the CL reaction between CdTe QDs and H2O2. Meantime, compared with CdTe QDs-H2O2 CL system, H2O2 concentration was markedly decreased in QDs-H2O2-HRP-mimicking DNAzyme CL system, improving the stability of QDs-H2O2 CL system. The QDs-based CL system was used to detect sensitively CdTe QDs and HRP-mimicking DNAzyme (as biologic labels). This work gives a path for enhancing CL efficiency of QDs system, and will be helpful to promote the step of QDs application in various fields such as bioassay and trace detection of analyte.
Collapse
Affiliation(s)
- Junli Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
41
|
Khajvand T, Akhoondi R, Chaichi MJ, Rezaee E, Golchoubian H. Two new dinuclear copper(II) complexes as efficient catalysts of luminol chemiluminescence. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels. Biosens Bioelectron 2014; 54:351-7. [DOI: 10.1016/j.bios.2013.10.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 01/17/2023]
|
43
|
Li S, Wang L, Hao Y, Zhang L, Zhou B, Deng L, Liu YN. An ultrasensitive colorimetric aptasensor for ATP based on peptide/Au nanocomposites and hemin–G-quadruplex DNAzyme. RSC Adv 2014. [DOI: 10.1039/c4ra02823f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A self-assembled peptide nanosphere was firstly applied to construct biosensors. A new signal amplification strategy was proposed for colorimetric aptasensor based on PNS/AuNPs composite. The colorimetric aptasensor displayed an ultra-high sensitivity for ATP detection with a LOD of 1.35 pM.
Collapse
Affiliation(s)
- Shipeng Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Liqiang Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Lili Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
- Hunan Institute of Food Quality Supervision Inspection and Research
- Changsha, PR China
| | - Liu Deng
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha, PR China
| |
Collapse
|
44
|
Peng K, Zhao H, Yuan Y, Yuan R, Wu X. Mediator-free triple-enzyme cascade electrocatalytic aptasensor with exonuclease-assisted target recycling and hybridization chain reaction amplification. Biosens Bioelectron 2013; 55:366-71. [PMID: 24419079 DOI: 10.1016/j.bios.2013.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 02/04/2023]
Abstract
The amplified sensitive detection of protein is essential to biomedical research as well as clinical diagnosis. Here, we developed an ultrasensitive mediator-free triple-enzyme cascade electrocatalytic aptasensor for thrombin detection on the basis of exonuclease-assisted target recycling and hybridization chain reaction (HCR) amplification strategy. The double strands constructed by the hybridization of thrombin binding aptamer (S1) with its complementary strand (S2) were firstly assembled on the electrode. Upon addition of target to the system, the S1 recognized thrombin and left off electrode to make space for assembly of hybrid-primer probe (H0). Then, the H0 triggered the HCR to form the multi-functional hemin/G-quadruplex DNAzyme nanowires. In the mediator-free triple-enzyme cascade electrocatalytic amplification system, the hemin/G-quadruplex DNAzyme nanowires here simultaneously played three roles: the redox probe, NADH oxidase and HRP-mimicking DNAzyme, respectively, which effectively avoided the fussy redox probe and enzyme labeling process, serving a useful alternative or supplement to conventional assays that typically suffer from complexity and poor sensitivity. Additionally, in order to improve the assembly amount of hemin/G-quadruplex DNAzyme nanowire, the exonuclease-assisted target recycling amplification was used for the continuous removal of S1. As a result, the proposed method can detect thrombin specifically with a detection limit as low as 20 fM.
Collapse
Affiliation(s)
- Kanfu Peng
- Department of Kidney, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yali Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiongfei Wu
- Department of Kidney, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
45
|
Hsieh S, Chou HH, Hsieh CW, Wu DC, Kuo CH, Lin FH. Hydrogen peroxide treatment of eggshell membrane to control porosity. Food Chem 2013; 141:2117-21. [DOI: 10.1016/j.foodchem.2013.04.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/08/2013] [Accepted: 04/25/2013] [Indexed: 12/28/2022]
|
46
|
Akter R, Kyun Rhee C, Rahman MA. A stable and sensitive voltammetric immunosensor based on a new non-enzymatic label. Biosens Bioelectron 2013; 50:118-24. [DOI: 10.1016/j.bios.2013.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 01/20/2023]
|
47
|
Gao Y, Li B. G-Quadruplex DNAzyme-Based Chemiluminescence Biosensing Strategy for Ultrasensitive DNA Detection: Combination of Exonuclease III-Assisted Signal Amplification and Carbon Nanotubes-Assisted Background Reducing. Anal Chem 2013; 85:11494-500. [DOI: 10.1021/ac402728d] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yuan Gao
- Key laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Baoxin Li
- Key laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
48
|
Yi H, Xu W, Yuan Y, Bai L, Wu Y, Chai Y, Yuan R. A pseudo triple-enzyme cascade amplified aptasensor for thrombin detection based on hemin/G-quadruplex as signal label. Biosens Bioelectron 2013; 54:415-20. [PMID: 24296062 DOI: 10.1016/j.bios.2013.11.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/13/2022]
Abstract
In this work, a pseudo triple-enzyme cascade amplified electrochemical aptasensor based on hemin/G-quadruplex as signal label for thrombin (TB) was constructed and the amplified electrochemical signal was achieved by the corporate catalysis of alcohol dehydrogenase-graphene sheets (ADH-GSs) bionanocomposite and hemin/G-quadruplex, which simultaneously acted as NADH oxidase and HRP-mimicking DNAzyme. Through "sandwich" reaction, hemin/G-quadruplex labeled gold nanoparticles-ADH-GSs bionanocomposite (AuNPs-ADH-GSs) was captured on electrode surface and thus obtained the electrochemical signal. After the addition of ethanol into the electrolytic cell, ADH availably catalyzed the oxidation of ethanol with the reduction of NAD(+) to NADH. Then, hemin/G-quadruplex as NADH oxidase catalyzed the oxidization of NADH, accompanying with the production of H2O2. Simultaneously, hemin/G-quadruplex as HRP-mimicking DNAzyme catalyzed the reduction of the generated H2O2. Such a catalysis strategy greatly promoted the electron transfer of hemin and resulted in the specific enhancement of electrochemical signal. The proposed TB aptasensor achieved a linear range of 1 pM-50 nM with a detection limit of 0.3 pM (defined as S/N=3). In addition, it showed satisfying stability and reproducibility, good specificity and sensitivity, indicating promising application for the detection of various proteins in clinical analysis.
Collapse
Affiliation(s)
- Huayu Yi
- Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, PR China
| | - Wenju Xu
- Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, PR China.
| | - Yali Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, PR China
| | - Lijuan Bai
- Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, PR China
| | - Yongmei Wu
- Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, PR China
| | - Yaqin Chai
- Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing 400715, PR China
| |
Collapse
|
49
|
New synthesis of gold nanocorals using a diazonium compound, and their application to an electrochemiluminescent assay of hydrogen peroxide. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1111-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
An ultrasensitive chemiluminescent immunosensor for the detection of human leptin using hemin/G-quadruplex DNAzymes-assembled signal amplifier. Talanta 2013; 116:816-21. [DOI: 10.1016/j.talanta.2013.07.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 11/24/2022]
|