1
|
Schachinger F, Ma S, Ludwig R. Redox potential of FAD-dependent glucose dehydrogenase. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
2
|
Cellobiose dehydrogenase in biofuel cells. Curr Opin Biotechnol 2022; 73:205-212. [PMID: 34482156 PMCID: PMC7613715 DOI: 10.1016/j.copbio.2021.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Enzymatic biofuel cells utilize oxidoreductases as highly specific and highly active electrocatalysts to convert a fuel and an oxidant even in complex biological matrices like hydrolysates or physiological fluids into electric energy. The hemoflavoenzyme cellobiose dehydrogenase is investigated as a versatile bioelectrocatalyst for the anode reaction of biofuel cells, because it is robust, converts a range of different carbohydrates, and can transfer electrons to the anode by direct electron transfer or via redox mediators. The versatility of cellobiose dehydrogenase has led to the development of various electrode modifications to create biofuel cells and biosupercapacitors that are capable to power small electronic devices like biosensors and connect them wireless to a receiver.
Collapse
|
3
|
Sarma H, Bhattacharyya P, Jadhav DA, Pawar P, Thakare M, Pandit S, Mathuriya AS, Prasad R. Fungal-mediated electrochemical system: Prospects, applications and challenges. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100041. [PMID: 34841332 PMCID: PMC8610361 DOI: 10.1016/j.crmicr.2021.100041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022] Open
Abstract
Microbial fuel cells (MFCs) that generate bioelectricity from biodegradable waste have received considerable attention from biologists. Fungi play a significant role as both anodic and cathodic catalysts in MFCs. Saccharomyces cerevisiae is a fungus with an ability to transfer electrons through mediators such as methylene blue (MB), neutral red (NR) or even without a mediator. This unique role of fungal cells in exocellular electron transfer (EET) and their interactions with electrodes hold a lot of promise in areas such as wastewater treatment where yeast cell-based MFCs can be used. The present article highlights the physico-chemical factors affecting the performance of fungal-mediated MFCs in terms of power output and degradation of organic pollutants, along with the challenges associated with fungal MFCs. In addition, to this comparative assessment of fungal-mediated bio-electrochemical systems, their development, possible applications and potential challenges are also discussed.
Collapse
Affiliation(s)
- Hemen Sarma
- Department of Botany, Nanda Nath Saikia College, Titabar 785630, Assam, India
| | - P.N. Bhattacharyya
- Mycology and Microbiology Department, Tocklai Tea Research Institute, Tea Research Association, Jorhat 785008, Assam, India
| | - Dipak A. Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, 431010, India
| | - Prajakta Pawar
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Mayur Thakare
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Abhilasha Singh Mathuriya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| |
Collapse
|
4
|
Schachinger F, Chang H, Scheiblbrandner S, Ludwig R. Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules 2021; 26:molecules26154525. [PMID: 34361678 PMCID: PMC8348568 DOI: 10.3390/molecules26154525] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. The combination of both biosensor elements-enzymes and electrodes-is evaluated by comparison of substrate specificity, current density, sensitivity, and the range of detection.
Collapse
|
5
|
Lee YS, Lim K, Minteer SD. Cascaded Biocatalysis and Bioelectrocatalysis: Overview and Recent Advances. Annu Rev Phys Chem 2021; 72:467-488. [DOI: 10.1146/annurev-physchem-090519-050109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme cascades are plentiful in nature, but they also have potential in artificial applications due to the possibility of using the target substrate in biofuel cells, electrosynthesis, and biosensors. Cascade reactions from enzymes or hybrid bioorganic catalyst systems exhibit extended substrate range, reaction depth, and increased overall performance. This review addresses the strategies of cascade biocatalysis and bioelectrocatalysis for ( a) CO2 fixation, ( b) high value-added product formation, ( c) sustainable energy sources via deep oxidation, and ( d) cascaded electrochemical enzymatic biosensors. These recent updates in the field provide fundamental concepts, designs of artificial electrocatalytic oxidation-reduction pathways (using a flexible setup involving organic catalysts and engineered enzymes), and advances in hybrid cascaded sensors for sensitive analyte detection.
Collapse
Affiliation(s)
- Yoo Seok Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Koun Lim
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Wu R, Song H, Wang Y, Wang L, Zhu Z. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Peterbauer CK. Pyranose dehydrogenases: Rare enzymes for electrochemistry and biocatalysis. Bioelectrochemistry 2020; 132:107399. [DOI: 10.1016/j.bioelechem.2019.107399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
8
|
Tasca F, Fierro A, Nöll G. Spectroelectrochemical study revealing the redox potential of human monoamine oxidase A. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry 2019; 131:107345. [PMID: 31494387 DOI: 10.1016/j.bioelechem.2019.107345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome with a history of bioelectrochemical research dating back to 1992. During the years, it has been shown to be capable of mediated electron transfer (MET) and direct electron transfer (DET) to a variety of electrodes. This versatility of CDH originates from the separation of the catalytic flavodehydrogenase domain and the electron transferring cytochrome domain. This uncoupling of the catalytic reaction from the electron transfer process allows the application of CDH on many different electrode materials and surfaces, where it shows robust DET. Recent X-ray diffraction and small angle scattering studies provided insights into the structure of CDH and its domain mobility, which can change between a closed-state and an open-state conformation. This structural information verifies the electron transfer mechanism of CDH that was initially established by bioelectrochemical methods. A combination of DET and MET experiments has been used to investigate the catalytic mechanism and the electron transfer process of CDH and to deduce a protein structure comprising of mobile domains. Even more, electrochemical methods have been used to study the redox potentials of the FAD and the haem b cofactors of CDH or the electron transfer rates. These electrochemical experiments, their results and the application of the characterised CDHs in biosensors, biofuel cells and biosupercapacitors are combined with biochemical and structural data to provide a thorough overview on CDH as versatile bioelectrocatalyst.
Collapse
Affiliation(s)
- Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
10
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
11
|
An efficient and versatile membraneless bioanode for biofuel cells based on Corynascus thermophilus cellobiose dehydrogenase. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Rafighi P, Bollella P, Pankratova G, Peterbauer CK, Conghaile PÓ, Leech D, Haghighi B, Gorton L. Substrate Preference Pattern ofAgaricus meleagrisPyranose Dehydrogenase Evaluated through Bioelectrochemical Flow Injection Amperometry. ChemElectroChem 2018. [DOI: 10.1002/celc.201801194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parvin Rafighi
- College of ChemistryInstitute for Advanced Studies in Basic Sciences P.O. Box 45195-1159 Gava Zang, Zanjan Iran
| | - Paolo Bollella
- Department of Chemistry and Drug TechnologiesSapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Galina Pankratova
- Department of Biochemistry and Structural BiologyLund University PO Box 124 221 00 Lund Sweden
| | - Clemens K. Peterbauer
- BOKU-University of Natural Resources and Applied Life Sciences Vienna Muthgasse 18 A-1190 Wien Austria
| | - Peter Ó Conghaile
- School of Chemistry & Ryan InstituteNational University of Ireland Galway Galway Ireland
| | - Dónal Leech
- School of Chemistry & Ryan InstituteNational University of Ireland Galway Galway Ireland
| | - Behzad Haghighi
- College of ChemistryInstitute for Advanced Studies in Basic Sciences P.O. Box 45195-1159 Gava Zang, Zanjan Iran
- Department of Chemistry College of SciencesShiraz University Shiraz 71454 Iran
| | - Lo Gorton
- Department of Biochemistry and Structural BiologyLund University PO Box 124 221 00 Lund Sweden
| |
Collapse
|
13
|
Abstract
Fungi are among the microorganisms able to generate electricity as a result of their metabolic processes. Throughout the last several years, a large number of papers on various microorganisms for current production in microbial fuel cells (MFCs) have been published; however, fungi still lack sufficient evaluation in this regard. In this review, we focus on fungi, paying special attention to their potential applicability to MFCs. Fungi used as anodic or cathodic catalysts, in different reactor configurations, with or without the addition of an exogenous mediator, are described. Contrary to bacteria, in which the mechanism of electron transfer is pretty well known, the mechanism of electron transfer in fungi-based MFCs has not been studied intensively. Thus, here we describe the main findings, which can be used as the starting point for future investigations. We show that fungi have the potential to act as electrogens or cathode catalysts, but MFCs based on bacteria–fungus interactions are especially interesting. The review presents the current state-of-the-art in the field of MFC systems exploiting fungi.
Collapse
|
14
|
Ing NL, El-Naggar MY, Hochbaum AI. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. J Phys Chem B 2018; 122:10403-10423. [DOI: 10.1021/acs.jpcb.8b07431] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Kurbanoglu S, Zafar MN, Tasca F, Aslam I, Spadiut O, Leech D, Haltrich D, Gorton L. Amperometric Flow Injection Analysis of Glucose and Galactose Based on Engineered Pyranose 2-Oxidases and Osmium Polymers for Biosensor Applications. ELECTROANAL 2018. [DOI: 10.1002/elan.201800096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sevinc Kurbanoglu
- Department of Analytical Chemistry; Ankara University, Tandogan; Ankara Turkey
- Department of Biochemistry and Structural Biology; Lund University; Lund Sweden
| | | | - Federico Tasca
- Department of Materials Chemistry; University of Santiago of Chile; Santiago Chile
| | - Iqra Aslam
- Department of Biochemistry; Govt. College University Faisalabad; Pakistan
| | - Oliver Spadiut
- Department of Food Sciences and Technology; University of Natural Resources and Life Sciences; Vienna A-1190 Austria
| | - Dónal Leech
- School of Chemistry & Ryan Institute; National University of Ireland Galway; University Road Galway Ireland
| | - Dietmar Haltrich
- Department of Food Sciences and Technology; University of Natural Resources and Life Sciences; Vienna A-1190 Austria
| | - Lo Gorton
- Department of Biochemistry and Structural Biology; Lund University; Lund Sweden
| |
Collapse
|
16
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
17
|
Szczupak A, Aizik D, Moraïs S, Vazana Y, Barak Y, Bayer EA, Alfonta L. The Electrosome: A Surface-Displayed Enzymatic Cascade in a Biofuel Cell's Anode and a High-Density Surface-Displayed Biocathodic Enzyme. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E153. [PMID: 28644390 PMCID: PMC5535219 DOI: 10.3390/nano7070153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 11/29/2022]
Abstract
The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin. Each of the two compartments was designed, displayed, and tested separately. The new hybrid cell compartments displayed enhanced performance over traditional biofuel cells; in the anode, the cascade of ethanol oxidation demonstrated higher performance than a cell with just a single enzyme. In the cathode, a higher copy number per yeast cell of the oxygen-reducing enzyme copper oxidase has reduced the effect of competitive inhibition resulting from yeast oxygen consumption. This work paves the way for the assembly of more complex cascades using different enzymes and larger scaffoldins to further improve the performance of hybrid cells.
Collapse
Affiliation(s)
- Alon Szczupak
- Department of Life Sciences and the Ilse Katz Institute for Nanoscale Science and Technology, P.O. Box 653, 8410501 Beer-Sheva, Israel.
| | - Dror Aizik
- Department of Life Sciences and the Ilse Katz Institute for Nanoscale Science and Technology, P.O. Box 653, 8410501 Beer-Sheva, Israel.
| | - Sarah Moraïs
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl St., P.O. Box 26, 7610001 Rehovot, Israel.
| | - Yael Vazana
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl St., P.O. Box 26, 7610001 Rehovot, Israel.
| | - Yoav Barak
- Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl St., P.O. Box 26, 7610001 Rehovot, Israel.
| | - Edward A Bayer
- Department of Biomolecular Sciences, Weizmann Institute of Science, 234 Herzl St., P.O. Box 26, 7610001 Rehovot, Israel.
| | - Lital Alfonta
- Department of Life Sciences and the Ilse Katz Institute for Nanoscale Science and Technology, P.O. Box 653, 8410501 Beer-Sheva, Israel.
| |
Collapse
|
18
|
Quartinello F, Vajnhandl S, Volmajer Valh J, Farmer TJ, Vončina B, Lobnik A, Herrero Acero E, Pellis A, Guebitz GM. Synergistic chemo-enzymatic hydrolysis of poly(ethylene terephthalate) from textile waste. Microb Biotechnol 2017; 10:1376-1383. [PMID: 28574165 PMCID: PMC5658601 DOI: 10.1111/1751-7915.12734] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 11/27/2022] Open
Abstract
Due to the rising global environment protection awareness, recycling strategies that comply with the circular economy principles are needed. Polyesters are among the most used materials in the textile industry; therefore, achieving a complete poly(ethylene terephthalate) (PET) hydrolysis in an environmentally friendly way is a current challenge. In this work, a chemo‐enzymatic treatment was developed to recover the PET building blocks, namely terephthalic acid (TA) and ethylene glycol. To monitor the monomer and oligomer content in solid samples, a Fourier‐transformed Raman method was successfully developed. A shift of the free carboxylic groups (1632 cm−1) of TA into the deprotonated state (1604 and 1398 cm−1) was observed and bands at 1728 and 1398 cm−1 were used to assess purity of TA after the chemo‐enzymatic PET hydrolysis. The chemical treatment, performed under neutral conditions (T = 250 °C, P = 40 bar), led to conversion of PET into 85% TA and small oligomers. The latter were hydrolysed in a second step using the Humicola insolens cutinase (HiC) yielding 97% pure TA, therefore comparable with the commercial synthesis‐grade TA (98%).
Collapse
Affiliation(s)
- Felice Quartinello
- Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Inst. of Environ. Biotech., Konrad Lorenz Strasse 20, 3430, Tulln a. d. Donau, Austria
| | - Simona Vajnhandl
- Laboratory for Chemistry and Environmental Protection, Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Julija Volmajer Valh
- Laboratory for Chemistry and Environmental Protection, Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Thomas J Farmer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Bojana Vončina
- Laboratory for Chemistry and Environmental Protection, Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Alexandra Lobnik
- Laboratory for Chemistry and Environmental Protection, Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000, Maribor, Slovenia
| | - Enrique Herrero Acero
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Alessandro Pellis
- Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Inst. of Environ. Biotech., Konrad Lorenz Strasse 20, 3430, Tulln a. d. Donau, Austria
| | - Georg M Guebitz
- Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Inst. of Environ. Biotech., Konrad Lorenz Strasse 20, 3430, Tulln a. d. Donau, Austria.,Austrian Centre of Industrial Biotechnology, Division Polymers & Enzymes, Konrad Lorenz Strasse 20, 3430, Tulln a. d. Donau, Austria
| |
Collapse
|
19
|
Analysis of Agaricus meleagris pyranose dehydrogenase N-glycosylation sites and performance of partially non-glycosylated enzymes. Enzyme Microb Technol 2017; 99:57-66. [PMID: 28193332 DOI: 10.1016/j.enzmictec.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Pyranose Dehydrogenase 1 from the basidiomycete Agaricus meleagris (AmPDH1) is an oxidoreductase capable of oxidizing a broad variety of sugars. Due to this and its ability of dioxidation of substrates and no side production of hydrogen peroxide, it is studied for use in enzymatic bio-fuel cells. In-vitro deglycosylated AmPDH1 as well as knock-out mutants of the N-glycosylation sites N75 and N175, near the active site entrance, were previously shown to improve achievable current densities of graphite electrodes modified with AmPDH1 and an osmium redox polymer acting as a redox mediator, up to 10-fold. For a better understanding of the role of N-glycosylation of AmPDH1, a systematic set of N-glycosylation site mutants was investigated in this work, regarding expression efficiency, enzyme activity and stability. Furthermore, the site specific extend of N-glycosylation was compared between native and recombinant wild type AmPDH1. Knocking out the site N252 prevented the attachment of significantly extended N-glycan structures as detected on polyacrylamide gel electrophoresis, but did not significantly alter enzyme performance on modified electrodes. This suggests that not the molecule size but other factors like accessibility of the active site improved performance of deglycosylated AmPDH1/osmium redox polymer modified electrodes. A fourth N-glycosylation site of AmPDH1 could be confirmed by mass spectrometry at N319, which appeared to be conserved in related fungal pyranose dehydrogenases but not in other members of the glucose-methanol-choline oxidoreductase structural family. This site was shown to be the only one that is essential for functional recombinant expression of the enzyme.
Collapse
|
20
|
Gal I, Schlesinger O, Amir L, Alfonta L. Yeast surface display of dehydrogenases in microbial fuel-cells. Bioelectrochemistry 2016; 112:53-60. [DOI: 10.1016/j.bioelechem.2016.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/17/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
|
21
|
Liang X, Liu J, Zeng D, Li C, Chen S, Li H. Hydrogen generation promoted by photocatalytic oxidation of ascorbate and glucose at a cadmium sulfide electrode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Pinyou P, Ruff A, Pöller S, Ma S, Ludwig R, Schuhmann W. Design of an Os Complex-Modified Hydrogel with Optimized Redox Potential for Biosensors and Biofuel Cells. Chemistry 2016; 22:5319-26. [PMID: 26929043 DOI: 10.1002/chem.201504591] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Indexed: 01/08/2023]
Abstract
Multistep synthesis and electrochemical characterization of an Os complex-modified redox hydrogel exhibiting a redox potential ≈+30 mV (vs. Ag/AgCl 3 M KCl) is demonstrated. The careful selection of bipyridine-based ligands bearing N,N-dimethylamino moieties and an amino-linker for the covalent attachment to the polymer backbone ensures the formation of a stable redox polymer with an envisaged redox potential close to 0 V. Most importantly, the formation of an octahedral N6-coordination sphere around the Os central atoms provides improved stability concomitantly with the low formal potential, a low reorganization energy during the Os(3+/2+) redox conversion and a negligible impact on oxygen reduction. By wiring a variety of enzymes such as pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase, flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase and the FAD-dependent dehydrogenase domain of cellobiose dehydrogenase, low-potential glucose biosensors could be obtained with negligible co-oxidation of common interfering compounds such as uric acid or ascorbic acid. In combination with a bilirubin oxidase-based biocathode, enzymatic biofuel cells with open-circuit voltages of up to 0.54 V were obtained.
Collapse
Affiliation(s)
- Piyanut Pinyou
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität-Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Adrian Ruff
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität-Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sascha Pöller
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität-Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Su Ma
- Department of Food Sciences and Technology, Vienna Institute of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11/1/56, 1190, Vienna, Austria
| | - Roland Ludwig
- Department of Food Sciences and Technology, Vienna Institute of Biotechnology, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11/1/56, 1190, Vienna, Austria
| | - Wolfgang Schuhmann
- Analytical Chemistry, Center for Electrochemical Sciences (CES), Ruhr-Universität-Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| |
Collapse
|
23
|
Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 2016; 76:91-102. [DOI: 10.1016/j.bios.2015.06.029] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
|
24
|
Ó Conghaile P, Falk M, MacAodha D, Yakovleva ME, Gonaus C, Peterbauer CK, Gorton L, Shleev S, Leech D. Fully Enzymatic Membraneless Glucose|Oxygen Fuel Cell That Provides 0.275 mA cm(-2) in 5 mM Glucose, Operates in Human Physiological Solutions, and Powers Transmission of Sensing Data. Anal Chem 2016; 88:2156-63. [PMID: 26750758 DOI: 10.1021/acs.analchem.5b03745] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coimmobilization of pyranose dehydrogenase as an enzyme catalyst, osmium redox polymers [Os(4,4'-dimethoxy-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) or [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) as mediators, and carbon nanotube conductive scaffolds in films on graphite electrodes provides enzyme electrodes for glucose oxidation. The recombinant enzyme and a deglycosylated form, both expressed in Pichia pastoris, are investigated and compared as biocatalysts for glucose oxidation using flow injection amperometry and voltammetry. In the presence of 5 mM glucose in phosphate-buffered saline (PBS) (50 mM phosphate buffer solution, pH 7.4, with 150 mM NaCl), higher glucose oxidation current densities, 0.41 mA cm(-2), are obtained from enzyme electrodes containing the deglycosylated form of the enzyme. The optimized glucose-oxidizing anode, prepared using deglycosylated enzyme coimmobilized with [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) and carbon nanotubes, was coupled with an oxygen-reducing bilirubin oxidase on gold nanoparticle dispersed on gold electrode as a biocathode to provide a membraneless fully enzymatic fuel cell. A maximum power density of 275 μW cm(-2) is obtained in 5 mM glucose in PBS, the highest to date under these conditions, providing sufficient power to enable wireless transmission of a signal to a data logger. When tested in whole human blood and unstimulated human saliva maximum power densities of 73 and 6 μW cm(-2) are obtained for the same fuel cell configuration, respectively.
Collapse
Affiliation(s)
- Peter Ó Conghaile
- School of Chemistry, and Ryan Institute, National University of Ireland , Galway, Ireland
| | - Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, Malmö University , 20560 Malmö, Sweden
| | - Domhnall MacAodha
- School of Chemistry, and Ryan Institute, National University of Ireland , Galway, Ireland
| | - Maria E Yakovleva
- Department of Biochemistry and Structural Biology, Lund University , PO Box 124, 221 00 Lund, Sweden
| | - Christoph Gonaus
- Food Biotechnology Lab, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences , 1180 Wien, Austria
| | - Clemens K Peterbauer
- Food Biotechnology Lab, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences , 1180 Wien, Austria
| | - Lo Gorton
- Department of Biochemistry and Structural Biology, Lund University , PO Box 124, 221 00 Lund, Sweden
| | - Sergey Shleev
- Department of Biomedical Science, Faculty of Health and Society, Malmö University , 20560 Malmö, Sweden
| | - Dónal Leech
- School of Chemistry, and Ryan Institute, National University of Ireland , Galway, Ireland
| |
Collapse
|
25
|
Yakovleva ME, Gonaus C, Schropp K, ÓConghaile P, Leech D, Peterbauer CK, Gorton L. Engineering of pyranose dehydrogenase for application to enzymatic anodes in biofuel cells. Phys Chem Chem Phys 2015; 17:9074-81. [DOI: 10.1039/c5cp00430f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this article we describe production and characterisation of mutant pyranose dehydrogenase – an excellent enzyme for fabrication of enzyme-based biosensors and bioanodes.
Collapse
Affiliation(s)
- Maria E. Yakovleva
- Department of Analytical Chemistry/Biochemistry and Structural Biology
- Lund University
- SE-221 00 Lund
- Sweden
| | - Christoph Gonaus
- Department of Food Sciences and Technology
- BOKU-University of Natural Resources and Applied Life Sciences
- A-1190 Wien
- Austria
| | - Katharina Schropp
- Department of Analytical Chemistry/Biochemistry and Structural Biology
- Lund University
- SE-221 00 Lund
- Sweden
- Department of Food Sciences and Technology
| | - Peter ÓConghaile
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| | - Dónal Leech
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| | - Clemens K. Peterbauer
- Department of Food Sciences and Technology
- BOKU-University of Natural Resources and Applied Life Sciences
- A-1190 Wien
- Austria
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology
- Lund University
- SE-221 00 Lund
- Sweden
| |
Collapse
|
26
|
Badalyan A, Dierich M, Stiba K, Schwuchow V, Leimkühler S, Wollenberger U. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA. BIOSENSORS-BASEL 2014; 4:403-21. [PMID: 25587431 PMCID: PMC4287710 DOI: 10.3390/bios4040403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 11/16/2022]
Abstract
Biosensors for the detection of benzaldehyde and γ-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulla Wollenberger
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-331-977-5122; Fax: +49-331-977-5128
| |
Collapse
|
27
|
Krondorfer I, Brugger D, Paukner R, Scheiblbrandner S, Pirker KF, Hofbauer S, Furtmüller PG, Obinger C, Haltrich D, Peterbauer CK. Agaricus meleagris pyranose dehydrogenase: influence of covalent FAD linkage on catalysis and stability. Arch Biochem Biophys 2014; 558:111-9. [PMID: 25043975 PMCID: PMC4148704 DOI: 10.1016/j.abb.2014.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Pyranose dehydrogenase (PDH) is a monomeric flavoprotein belonging to the glucose-methanol-choline (GMC) family of oxidoreductases. It catalyzes the oxidation of free, non-phosphorylated sugars to the corresponding keto sugars. The enzyme harbors an FAD cofactor that is covalently attached to histidine 103 via an 8α-N(3) histidyl linkage. Our previous work showed that variant H103Y was still able to bind FAD (non-covalently) and perform catalysis but steady-state kinetic parameters for several substrates were negatively affected. In order to investigate the impact of the covalent FAD attachment in Agaricus meleagris PDH in more detail, pre-steady-state kinetics, reduction potential and stability of the variant H103Y in comparison to the wild-type enzyme were probed. Stopped-flow analysis revealed that the mutation slowed down the reductive half-reaction by around three orders of magnitude whereas the oxidative half-reaction was affected only to a minor degree. This was reflected by a decrease in the standard reduction potential of variant H103Y compared to the wild-type protein. The existence of an anionic semiquinone radical in the resting state of both the wild-type and variant H103Y was demonstrated using electron paramagnetic resonance (EPR) spectroscopy and suggested a higher mobility of the cofactor in the variant H103Y. Unfolding studies showed significant negative effects of the disruption of the covalent bond on thermal and conformational stability. The results are discussed with respect to the role of covalently bound FAD in catalysis and stability.
Collapse
Affiliation(s)
- Iris Krondorfer
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Dagmar Brugger
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Regina Paukner
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Stefan Scheiblbrandner
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU - University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Dietmar Haltrich
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Clemens K Peterbauer
- Department of Food Science and Technology, Food Biotechnology Laboratory, BOKU - University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
28
|
Cruys-Bagger N, Badino SF, Tokin R, Gontsarik M, Fathalinejad S, Jensen K, Toscano MD, Sørensen TH, Borch K, Tatsumi H, Väljamäe P, Westh P. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases. Enzyme Microb Technol 2014; 58-59:68-74. [DOI: 10.1016/j.enzmictec.2014.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
29
|
Krondorfer I, Lipp K, Brugger D, Staudigl P, Sygmund C, Haltrich D, Peterbauer CK. Engineering of pyranose dehydrogenase for increased oxygen reactivity. PLoS One 2014; 9:e91145. [PMID: 24614932 PMCID: PMC3948749 DOI: 10.1371/journal.pone.0091145] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/07/2014] [Indexed: 11/22/2022] Open
Abstract
Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.
Collapse
Affiliation(s)
- Iris Krondorfer
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Katharina Lipp
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
- University of Applied Sciences Wiener Neustadt – Campus Tulln, Tulln, Austria
| | - Dagmar Brugger
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Petra Staudigl
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Sygmund
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, Department of Food Science and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail:
| |
Collapse
|
30
|
Ammam M, Fransaer J. Microbiofuel cell powered by glucose/O2 based on electrodeposition of enzyme, conducting polymer and redox mediators. Part II: Influence of the electropolymerized monomer on the output power density and stability. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Karaskiewicz M, Biernat JF, Rogalski J, Roberts KP, Bilewicz R. Fluoroaromatic substituents attached to carbon nanotubes help to increase oxygen concentration on biocathode in biosensors and biofuel cells. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.08.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Yakovleva ME, Killyéni A, Seubert O, O Conghaile P, Macaodha D, Leech D, Gonaus C, Popescu IC, Peterbauer CK, Kjellström S, Gorton L. Further insights into the catalytical properties of deglycosylated pyranose dehydrogenase from Agaricus meleagris recombinantly expressed in Pichia pastoris. Anal Chem 2013; 85:9852-8. [PMID: 24016351 PMCID: PMC3798088 DOI: 10.1021/ac4023988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study focuses on fragmented deglycosylated pyranose dehydrogenase (fdgPDH) from Agaricus meleagris recombinantly expressed in Pichia pastoris . Fragmented deglycosylated PDH is formed from the deglycosylated enzyme (dgPDH) when it spontaneously loses a C-terminal fragment when stored in a buffer solution at 4 °C. The remaining larger fragment has a molecular weight of ∼46 kDa and exhibits higher volumetric activity for glucose oxidation compared with the deglycosylated and glycosylated (gPDH) forms of PDH. Flow injection amperometry and cyclic voltammetry were used to assess and compare the catalytic activity of the three investigated forms of PDH, "wired" to graphite electrodes with two different osmium redox polymers: [Os(4,4'-dimethyl-2,2'-bipyridine)2(poly(vinylimidazole))10Cl](+) [Os(dmbpy)PVI] and [Os(4,4'-dimethoxy-2,2'-bipyridine)2(poly-(vinylimidazole))10Cl](+) [Os(dmobpy)PVI]. When "wired" with Os(dmbpy)PVI, the graphite electrodes modified with fdgPDH showed a pronounced increase in the current density with Jmax 13- and 6-fold higher than that observed for gPDH- and dgPDH-modified electrodes, making the fragmented enzyme extraordinarily attractive for further biotechnological applications. An easier access of the substrate to the active site and improved communication between the enzyme and mediator matrix are suggested as the two main reasons for the excellent performance of the fdgPDH when compared with that of gPDH and dgPDH. Three of the four glycosites in PDH: N(75), N(175), and N(252) were assigned using mass spectrometry in conjunction with endoglycosidase treatment and tryptic digestion. Determination of the asparagine residues carrying carbohydrate moieties in PDH can serve as a solid background for production of recombinant enzyme lacking glycosylation.
Collapse
Affiliation(s)
- Maria E Yakovleva
- Department of Biochemistry and Structural Biology, Lund University , PO Box 124, 221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Optimization of a Membraneless Glucose/Oxygen Enzymatic Fuel Cell Based on a Bioanode with High Coulombic Efficiency and Current Density. Chemphyschem 2013; 14:2260-9. [DOI: 10.1002/cphc.201300046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Indexed: 11/07/2022]
|
34
|
Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, Gorton L. Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Anal Bioanal Chem 2013; 405:3637-58. [PMID: 23329127 PMCID: PMC3608873 DOI: 10.1007/s00216-012-6627-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
The flavocytochrome cellobiose dehydrogenase (CDH) is a versatile biorecognition element capable of detecting carbohydrates as well as quinones and catecholamines. In addition, it can be used as an anode biocatalyst for enzymatic biofuel cells to power miniaturised sensor-transmitter systems. Various electrode materials and designs have been tested in the past decade to utilize and enhance the direct electron transfer (DET) from the enzyme to the electrode. Additionally, mediated electron transfer (MET) approaches via soluble redox mediators and redox polymers have been pursued. Biosensors for cellobiose, lactose and glucose determination are based on CDH from different fungal producers, which show differences with respect to substrate specificity, pH optima, DET efficiency and surface binding affinity. Biosensors for the detection of quinones and catecholamines can use carbohydrates for analyte regeneration and signal amplification. This review discusses different approaches to enhance the sensitivity and selectivity of CDH-based biosensors, which focus on (1) more efficient DET on chemically modified or nanostructured electrodes, (2) the synthesis of custom-made redox polymers for higher MET currents and (3) the engineering of enzymes and reaction pathways. Combination of these strategies will enable the design of sensitive and selective CDH-based biosensors with reduced electrode size for the detection of analytes in continuous on-site and point-of-care applications.
Collapse
Affiliation(s)
- Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Roberto Ortiz
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, 226 46 Lund, Sweden
| | - Christopher Schulz
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, 226 46 Lund, Sweden
| | - Wolfgang Harreither
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Sygmund
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, 226 46 Lund, Sweden
| |
Collapse
|
35
|
Shao M, Pöller S, Sygmund C, Ludwig R, Schuhmann W. A low-potential glucose biofuel cell anode based on a toluidine blue modified redox polymer and the flavodehydrogenase domain of cellobiose dehydrogenase. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Schröder U. Self-assembling enzyme networks--a new path towards multistep bioelectrocatalytic systems. Angew Chem Int Ed Engl 2013; 52:3568-9. [PMID: 23404795 DOI: 10.1002/anie.201300532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Uwe Schröder
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
37
|
Gutiérrez-Sánchez C, Pita M, Toscano MD, De Lacey AL. Bilirubin Oxidase-Based Nanobiocathode Working in Serum-Mimic Buffer for Implantable Biofuel Cell. ELECTROANAL 2013. [DOI: 10.1002/elan.201200668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Selbstorganisierte Enzymnetzwerke - ein Weg zu komplexen bioelektrokatalytischen Systemen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Shao M, Nadeem Zafar M, Sygmund C, Guschin DA, Ludwig R, Peterbauer CK, Schuhmann W, Gorton L. Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints. Biosens Bioelectron 2013; 40:308-14. [DOI: 10.1016/j.bios.2012.07.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/13/2012] [Indexed: 11/16/2022]
|
40
|
Kavanagh P, Leech D. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives. Phys Chem Chem Phys 2013; 15:4859-69. [DOI: 10.1039/c3cp44617d] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Fapyane D, Lee SJ, Kang SH, Lim DH, Cho KK, Nam TH, Ahn JP, Ahn JH, Kim SW, Chang IS. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions. Phys Chem Chem Phys 2013; 15:9508-12. [DOI: 10.1039/c3cp51864g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Cell-free Biosystems in the Production of Electricity and Bioenergy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:125-52. [PMID: 23748347 DOI: 10.1007/10_2013_201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
: Increasing needs of green energy and concerns of climate change are motivating intensive R&D efforts toward the low-cost production of electricity and bioenergy, such as hydrogen, alcohols, and jet fuel, from renewable sugars. Cell-free biosystems for biomanufacturing (CFB2) have been suggested as an emerging platform to replace mainstream microbial fermentation for the cost-effective production of some biocommodities. As compared to whole-cell factories, cell-free biosystems comprised of synthetic enzymatic pathways have numerous advantages, such as high product yield, fast reaction rate, broad reaction condition, easy process control and regulation, tolerance of toxic compound/product, and an unmatched capability of performing unnatural reactions. However, issues pertaining to high costs and low stabilities of enzymes and cofactors as well as compromised optimal conditions for different source enzymes need to be solved before cell-free biosystems are scaled up for biomanufacturing. Here, we review the current status of cell-free technology, update recent advances, and focus on its applications in the production of electricity and bioenergy.
Collapse
|
43
|
|
44
|
Kovacs G, Ortiz R, Coman V, Harreither W, Popescu IC, Ludwig R, Gorton L. Graphite electrodes modified with Neurospora crassa cellobiose dehydrogenase: Comparative electrochemical characterization under direct and mediated electron transfer. Bioelectrochemistry 2012; 88:84-91. [DOI: 10.1016/j.bioelechem.2012.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/02/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
45
|
Heat and drying time modulate the O2 reduction current of modified glassy carbon electrodes with bilirubin oxidases. Bioelectrochemistry 2012; 88:65-9. [DOI: 10.1016/j.bioelechem.2012.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 02/07/2023]
|
46
|
|
47
|
|
48
|
|
49
|
Haddad R, Xia W, Guschin DA, Pöller S, Shao M, Vivekananthan J, Muhler M, Schuhmann W. Carbon Cloth/Carbon Nanotube Electrodes for Biofuel Cells Development. ELECTROANAL 2012. [DOI: 10.1002/elan.201200444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
|