1
|
Chen S, Zhang S, Zhu R. Biophysical phenotyping of single-cell based on impedance and application for individualized precision medicine. Biosens Bioelectron 2024; 259:116410. [PMID: 38781697 DOI: 10.1016/j.bios.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Single-cell biophysical characterization based on impedance measurement is an advantageous approach due to its label-free, high-efficiency, cost-effective and real-time capability. Biophysical phenotyping can yield timely and rich information on physiological and pathological state of cells for disease diagnosis, drug screening, precision medicine, etc. However, precise measurement on single-cell impedance is challenging, particularly hard to figure out the detailed biophysical parameters of single cell due to coupling and complexity of impedance model. Here, we propose an analytic determination method to decode single-cell electrophysiological parameters (including cell-substrate interface capacitance, cell membrane capacitance, cell membrane conductivity, and cytoplasm conductivity) from the impedances measured at optimized frequencies by using analytic solution rather than spectrum fitting. With this simple and fast analytic solution method, the physiological parameters of single cell in natural adhesion state can be accurately determined in real time. We validate this cell parameter determination method in monitoring the change of cell adhesion under hydraulic effects and exploring electrophysiological differences among MCF-7, HeLa, Huh7, and MDA-MB-231 cell lines. Particularly, we apply the approach to optimize tumor treating fields (TTFields) therapy, realizing individualized precision medicine. Our work provides an accurate and efficient approach for characterizing single-cell biophysical properties with real-time, in-situ, label-free, and less invasive advantages.
Collapse
Affiliation(s)
- Shengjie Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shengsen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Li M, Wu J, Geng W, Yang Y, Li X, Xu K, Li K, Li Y, Duan Q, Gao P, Cai K. Regulation of localized corrosion of 316L stainless steel on osteogenic differentiation of bone morrow derived mesenchymal stem cells. Biomaterials 2023; 301:122262. [PMID: 37542857 DOI: 10.1016/j.biomaterials.2023.122262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Localized corrosion has become a concerning issue in orthopedic implants as it is associated with peri-implant adverse tissue reactions and implant failure. Here, the pitting corrosion of 316 L stainless steels (316 L SSs) was initiated by electrochemical polarization to simulate the in vivo localized corrosion of orthopedic implants. The effect of localized corrosion on osteogenic differentiation of bone marrow derived mesenchymal stem cells (BMSCs) was systematically studied. The results suggest that pitting corrosion of 316 L SS reduced the viability, adhesion, proliferation, and osteogenic differentiation abilities of BMSCs, especially for the cells around the corrosion pits. The relatively high concentrations of metallic ions such as Cr3+ and Ni2+ released by pitting corrosion could cause cytotoxicity to the BMSCs. The inhomogeneous electrochemical environment resulted from localized corrosion could promote reactive oxygen species (ROS) generation around the corrosion pits and cause oxidative stress of BMSCs. In addition, localized corrosion could also electrochemically interact with the cells and lead to cell membrane depolarization. The depolarized cell membranes and relatively high levels of ROS mediated the degradation of the osteogenic capacity of BMSCs. This work provides new insights into corrosion-mediated cell function degeneration as well as the material-cell interactions.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Jing Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Wenbo Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Ke Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Yan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Qiaojian Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Pengfei Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
3
|
Zhang Y, Wei M, Zhang F, Guo J. High-accuracy gastric cancer cell viability evaluation based on multi-impedance spectrum characteristics. Heliyon 2023; 9:e14966. [PMID: 37095913 PMCID: PMC10121400 DOI: 10.1016/j.heliyon.2023.e14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing attention to precision medicine is widely paid to greatly rise the cure rate of cancer. Improving the stability and accuracy of cancer cell viability evaluation is one of the keys for precision medicine, as excess dosage of anti-cancer drugs not only kills the cancer cells, but also does harm to normal cells. Electrochemical impedance sensing (EIS) method is well known as a label-free, non-invasive approach for real-time, online monitoring of cell viability. However, the existing EIS methods using single-frequency impedances cannot reflect the comprehensive information of cellular impedance spectroscopy (CIS), ultimately leading to a poor stability and low accuracy of cancer cell viability evaluation. In this paper, we proposed a multi-frequency approach for improving the stability and accuracy of cancer cell viability evaluation based on multi-physical properties of CIS, including cell adhesion state and cell membrane capacitance. The results show that the mean relative error of multi-frequency method is reduced by 50% compared with single-frequency method, while the maximum relative error of the former is 7∼fold smaller than that of the latter. The accuracy of cancer cell viability evaluation is up to 99.6%.
Collapse
|
4
|
Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 2022; 216:114601. [DOI: 10.1016/j.bios.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
|
5
|
Modelling and Differential Quantification of Electric Cell-Substrate Impedance Sensing Growth Curves. SENSORS 2021; 21:s21165286. [PMID: 34450726 PMCID: PMC8401457 DOI: 10.3390/s21165286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Measurement of cell surface coverage has become a common technique for the assessment of growth behavior of cells. As an indirect measurement method, this can be accomplished by monitoring changes in electrode impedance, which constitutes the basis of electric cell-substrate impedance sensing (ECIS). ECIS typically yields growth curves where impedance is plotted against time, and changes in single cell growth behavior or cell proliferation can be displayed without significantly impacting cell physiology. To provide better comparability of ECIS curves in different experimental settings, we developed a large toolset of R scripts for their transformation and quantification. They allow importing growth curves generated by ECIS systems, edit, transform, graph and analyze them while delivering quantitative data extracted from reference points on the curve. Quantification is implemented through three different curve fit algorithms (smoothing spline, logistic model, segmented regression). From the obtained models, curve reference points such as the first derivative maximum, segmentation knots and area under the curve are then extracted. The scripts were tested for general applicability in real-life cell culture experiments on partly anonymized cell lines, a calibration setup with a cell dilution series of impedance versus seeded cell number and finally IPEC-J2 cells treated with 1% and 5% ethanol.
Collapse
|
6
|
Wei M, Zhang R, Zhang F, Yang N, Zhang Y, Li G. How to Choose a Proper Theoretical Analysis Model Based on Cell Adhesion and Nonadhesion Impedance Measurement. ACS Sens 2021; 6:673-687. [PMID: 33724797 DOI: 10.1021/acssensors.0c02710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The accurate equivalent circuit model contributes to the better fitting of required cell characteristics, such as cell impedance, cell adhesion area, and cell-electrode distance. However, so many theoretical models on specific modules make it difficult for new researchers to understand the whole model of electrode system physically. Besides, the accurate theoretical model and the simplified calculations obviously contradict each other; therefore, it is confusing for many researchers to choose the proper theoretical model to calculate the specific parameters required. In this review, we first discuss the problems and suggestions of electrode system design for cell adhesion-based measurement in terms of parasitic capacitance, detection range of cell number, electric field distribution, and interelectrode distance. The design of electrode system for cell nonadhesion measurement was analyzed in terms of microchannel size and electrode position. Then, we discuss the advantages and disadvantages of various equivalent circuit models according to different requirements of researchers, and simultaneously provide a corresponding theoretical model for researchers. Various factors influencing electric impedance spectroscopy (EIS) such as the parasitic capacitance between microelectrodes, the changes of cell adhesion area and cell-electrode distance, the electrode geometry, and the surface conductivity of electrode were quantitatively analyzed to contribute to better understanding of the equivalent models. Finally, we gave advice to optimize the theoretical models further and perspectives on building uniform principles of theoretical model optimization in the future.
Collapse
Affiliation(s)
- Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yecheng Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guoxiao Li
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
7
|
Chen X, Li H, Lam K. A multiphysics model of photo-sensitive hydrogels in response to light-thermo-pH-salt coupled stimuli for biomedical applications. Bioelectrochemistry 2020; 135:107584. [DOI: 10.1016/j.bioelechem.2020.107584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
|
8
|
Kasiviswanathan U, Poddar S, Kumar C, Jit S, Mahto SK, Sharma N. A portable standalone wireless electric cell-substrate impedance sensing (ECIS) system for assessing dynamic behavior of mammalian cells. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00223-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
Ren D, Chui CO. Feasibility of Tracking Multiple Single-Cell Properties with Impedance Spectroscopy. ACS Sens 2018; 3:1005-1015. [PMID: 29737153 DOI: 10.1021/acssensors.8b00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electric cell-substrate impedance sensing (ECIS) has been instrumental in tracking collective behavior of confluent cell layers for decades. Toward probing cellular heterogeneity in a population, the single-cell version of ECIS has also been explored, yet its intrinsic capability and limitation remain unclear. In this work, we argue for the fundamental feasibility of impedance spectroscopy to track changes of multiple cellular properties using a noninvasive single-cell approach. While changing individual properties is experimentally prohibitive, we take a simulation approach instead and mimic the corresponding changes using a 3D computational model. From the resultant impedance spectra, we identify the spectroscopic signature characteristic to each property considered herein. Since multiple properties change concurrently in practice, the respective signatures often overlap spectroscopically and become hidden. We further attempt to deconvolve such spectra and reveal the underlying property changes. This work provides the theoretical foundation to inspire experimental validation and adoption of ECIS for multiproperty single-cell measurements.
Collapse
|
10
|
Jo N, Kim B, Lee SM, Oh J, Park IH, Jin Lim K, Shin JS, Yoo KH. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility. Biosens Bioelectron 2017; 102:164-170. [PMID: 29132052 DOI: 10.1016/j.bios.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
To prevent spread of infection and antibiotic resistance, fast and accurate diagnosis of bacterial infection and subsequent administration of antimicrobial agents are important. However, conventional methods for bacterial detection and antibiotic susceptibility testing (AST) require more than two days, leading to delays that have contributed to an increase in antibiotic-resistant bacteria. Here, we report an aptamer-functionalized capacitance sensor array that can monitor bacterial growth and antibiotic susceptibility in real-time. While E. coli and S. aureus were cultured, the capacitance increased over time, and apparent bacterial growth curves were observed even when 10 CFU/mL bacteria was inoculated. Furthermore, because of the selectivity of aptamers, bacteria could be identified within 1h using the capacitance sensor array functionalized with aptamers. In addition to bacterial growth, antibiotic susceptibility could be monitored in real-time. When bacteria were treated with antibiotics above the minimum inhibitory concentration (MIC), the capacitance decreased because the bacterial growth was inhibited. These results demonstrate that the aptamer-functionalized capacitance sensor array might be applied for rapid ASTs.
Collapse
Affiliation(s)
- Namgyeong Jo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Bongjun Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun-Mi Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeseung Oh
- Proteomtech Inc., B202 Yonsei Dairy Building, Seoul 03722, Republic of Korea
| | - In Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kook Jin Lim
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea; Proteomtech Inc., B202 Yonsei Dairy Building, Seoul 03722, Republic of Korea
| | - Jeon-Soo Shin
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
11
|
Pradhan R, Rajput S, Mandal M, Mitra A, Das S. Frequency dependent impedimetric cytotoxic evaluation of anticancer drug on breast cancer cell. Biosens Bioelectron 2014; 55:44-50. [DOI: 10.1016/j.bios.2013.11.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/27/2022]
|
12
|
Gu W, Zhao Y. Cellular electrical impedance spectroscopy: an emerging technology of microscale biosensors. Expert Rev Med Devices 2014; 7:767-79. [DOI: 10.1586/erd.10.47] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Mondal D, RoyChaudhuri C. Extended Electrical Model for Impedance Characterization of Cultured HeLa Cells in Non-Confluent State Using ECIS Electrodes. IEEE Trans Nanobioscience 2013; 12:239-46. [DOI: 10.1109/tnb.2013.2266375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Hui GH, Ji P, Mi SS, Deng SP. Electrochemical impedance spectrum frequency optimization of bitter taste cell-based sensors. Biosens Bioelectron 2013; 47:164-70. [DOI: 10.1016/j.bios.2013.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/23/2013] [Accepted: 03/05/2013] [Indexed: 01/05/2023]
|
15
|
Heileman K, Daoud J, Tabrizian M. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Biosens Bioelectron 2013; 49:348-59. [PMID: 23796534 DOI: 10.1016/j.bios.2013.04.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/16/2013] [Indexed: 01/03/2023]
Abstract
The use of dielectric spectroscopy to carry out real time observations of cells and to extract a wealth of information about their physiological properties has expanded in recent years. This popularity is due to the simple, easy to use, non-invasive and real time nature of dielectric spectroscopy. The ease of integrating dielectric spectroscopy with microfluidic devices has allowed the technology to further expand into biomedical research. Dielectric spectra are obtained by applying an electrical signal to cells, which is swept over a frequency range. This review covers the different methods of interpreting dielectric spectra and progress made in applications of impedance spectroscopy for cell observations. First, methods of obtaining specific electrical properties of cells (cell membrane capacitance and cytoplasm conductivity) are discussed. These electrical properties are obtained by fitting the dielectric spectra to different models and equations. Integrating models to reduce the effects of the electrical double layer are subsequently covered. Impedance platforms are then discussed including electrical cell substrate impedance sensing (ECIS). Categories of ECIS systems are divided into microelectrode arrays, interdigitated electrodes and those that allow differential ECIS measurements. Platforms that allow single cell and sub-single cell measurements are then discussed. Finally, applications of impedance spectroscopy in a range of cell observations are elaborated. These applications include observing cell differentiation, mitosis and the cell cycle and cytotoxicity/cell death. Future applications such as drug screening and in point of care applications are then covered.
Collapse
Affiliation(s)
- Khalil Heileman
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
16
|
Lu L, Liu B, Li S, Zhang W, Xie G. Improved electrochemical immunosensor for myeloperoxidase in human serum based on nanogold/cerium dioxide-BMIMPF6/L-Cysteine composite film. Colloids Surf B Biointerfaces 2011; 86:339-44. [PMID: 21561744 DOI: 10.1016/j.colsurfb.2011.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/27/2011] [Accepted: 04/08/2011] [Indexed: 12/20/2022]
Abstract
An electrochemical immunosensing assay for myeloperoxidase (MPO) determination in human serum has been developed. Firstly, L-Cysteine was initially electropolymerized on an Au electrode to form L-Cysteine film. After that cerium dioxide (CeO2) dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) were immobilized on the L-Cysteine film. Then the negatively charged nanogold particles were adsorbed onto the membrane via the positive charge of CeO2, which aimed at assembling more antibody of MPO (anti-MPO). The resulting immunosensor showed a high sensitivity, broad linear response to the MPO concentration comprised between 10 ng/mL and 400 ng/mL with a detection limit of 0.06 ng/mL. Moreover, the surface morphology of the electrode was studied by means of a scanning electron microscope and the electrochemical properties of the fabricated immunosensor were further characterized by cyclic voltammetry. Also, factors influencing the performance of the resulting immunosensors were studied in detail.
Collapse
Affiliation(s)
- Lingsong Lu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | | | | | | | | |
Collapse
|
17
|
Ye ML, Xu B, Zhang WD. Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0508-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|