1
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
2
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Cova CM, Rincón E, Espinosa E, Serrano L, Zuliani A. Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). BIOSENSORS 2022; 12:51. [PMID: 35200311 PMCID: PMC8869180 DOI: 10.3390/bios12020051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 05/06/2023]
Abstract
The efficient and selective detection of volatile organic compounds (VOCs) provides key information for various purposes ranging from the toxicological analysis of indoor/outdoor environments to the diagnosis of diseases or to the investigation of biological processes. In the last decade, different sensors and biosensors providing reliable, rapid, and economic responses in the detection of VOCs have been successfully conceived and applied in numerous practical cases; however, the global necessity of a sustainable development, has driven the design of devices for the detection of VOCs to greener methods. In this review, the most recent and innovative VOC sensors and biosensors with sustainable features are presented. The sensors are grouped into three of the main industrial sectors of daily life, including environmental analysis, highly important for toxicity issues, food packaging tools, especially aimed at avoiding the spoilage of meat and fish, and the diagnosis of diseases, crucial for the early detection of relevant pathological conditions such as cancer and diabetes. The research outcomes presented in the review underly the necessity of preparing sensors with higher efficiency, lower detection limits, improved selectivity, and enhanced sustainable characteristics to fully address the sustainable manufacturing of VOC sensors and biosensors.
Collapse
Affiliation(s)
- Camilla Maria Cova
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| | - Esther Rincón
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Eduardo Espinosa
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Luis Serrano
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Alessio Zuliani
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| |
Collapse
|
4
|
Wang GH, Tsai TH, Kui CC, Cheng CY, Huang TL, Chung YC. Analysis of bioavailable toluene by using recombinant luminescent bacterial biosensors with different promoters. J Biol Eng 2021; 15:2. [PMID: 33407661 PMCID: PMC7789755 DOI: 10.1186/s13036-020-00254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/29/2020] [Indexed: 01/24/2023] Open
Abstract
In this study, we constructed recombinant luminescent Escherichia coli with T7, T3, and SP6 promoters inserted between tol and lux genes as toluene biosensors and evaluated their sensitivity, selectivity, and specificity for measuring bioavailable toluene in groundwater and river water. The luminescence intensity of each biosensor depended on temperature, incubation time, ionic strength, and concentrations of toluene and coexisting organic compounds. Toluene induced the highest luminescence intensity in recombinant lux-expressing E. coli with the T7 promoter [T7-lux-E. coli, limit of detection (LOD) = 0.05 μM], followed by that in E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.2 μM) and SP6 promoter (SP6-lux-E. coli, LOD = 0.5 μM). Luminescence may have been synergistically or antagonistically affected by coexisting organic compounds other than toluene; nevertheless, low concentrations of benzoate and toluene analogs had no such effect. In reproducibility experiments, the biosensors had low relative standard deviation (4.3-5.8%). SP6-lux-E. coli demonstrated high adaptability to environmental interference. T7-lux-E. coli biosensor-with low LOD, wide measurement range (0.05-500 μM), and acceptable deviation (- 14.3 to 9.1%)-is an efficient toluene biosensor. This is the first study evaluating recombinant lux E. coli with different promoters for their potential application in toluene measurement in actual water bodies.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, 361008, China
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Chi Kui
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Tzu-Ling Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan.
| |
Collapse
|
5
|
Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. SENSORS 2015; 15:30011-31. [PMID: 26633409 PMCID: PMC4721704 DOI: 10.3390/s151229783] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/16/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.
Collapse
|
6
|
Thakkar IG, Lear KL, Vickers J, Heinze BC, Reardon KF. A plastic total internal reflection photoluminescence device for enzymatic biosensing. LAB ON A CHIP 2013; 13:4775-4783. [PMID: 24141691 DOI: 10.1039/c3lc50692d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A total internal reflection photoluminescence (TIRPh) device employing an easily fabricated PMMA/PDMS waveguide system provides a detection limit comparable to the best reported results but without using an excitation filter. The optical mechanism is similar to total-internal-reflection-fluorescence (TIRF) but uses a ruthenium-based phosphorescent dye (Ru(dpp)3) deposited on the PMMA core, motivating the generalized term of photoluminescence to include both fluorescence and phosphorescence. An enzymatic hydrogen peroxide (H2O2) biosensor incorporating catalase was fabricated on the TIRPh platform without photolithography or etching. The O2-sensitive phosphorescence of Ru(dpp)3 was used as a transduction mechanism and catalase was used as a biocomponent for sensing. The H2O2 sensor exhibits a phosphorescence to scattered excitation light ratio of 76 ± 10 without filtering. The unfiltered device demonstrates a detection limit of (2.2 ± 0.6) μM with a linear range of 0.1 mM to 20 mM. The device is the first total internal reflection photoluminescence based enzymatic biosensor platform, and is promising for cost-effective, low excitation interference, field-portable sensing.
Collapse
Affiliation(s)
- Ishan G Thakkar
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373, USA.
| | | | | | | | | |
Collapse
|
7
|
Schenkmayerová A, Bučko M, Gemeiner P, Katrlík J. Microbial monooxygenase amperometric biosensor for monitoring of Baeyer–Villiger biotransformation. Biosens Bioelectron 2013; 50:235-8. [DOI: 10.1016/j.bios.2013.06.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
|
8
|
Long F, Zhu A, Shi H. Recent advances in optical biosensors for environmental monitoring and early warning. SENSORS (BASEL, SWITZERLAND) 2013; 13:13928-48. [PMID: 24132229 PMCID: PMC3859100 DOI: 10.3390/s131013928] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/20/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
The growing number of pollutants requires the development of innovative analytical devices that are precise, sensitive, specific, rapid, and easy-to-use to meet the increasing demand for legislative actions on environmental pollution control and early warning. Optical biosensors, as a powerful alternative to conventional analytical techniques, enable the highly sensitive, real-time, and high-frequency monitoring of pollutants without extensive sample preparation. This article reviews important advances in functional biorecognition materials (e.g., enzymes, aptamers, DNAzymes, antibodies and whole cells) that facilitate the increasing application of optical biosensors. This work further examines the significant improvements in optical biosensor instrumentation and their environmental applications. Innovative developments of optical biosensors for environmental pollution control and early warning are also discussed.
Collapse
Affiliation(s)
- Feng Long
- School of Environment and Natural Resources, Renmin University of China, No.59, Zhongguancun Street, Haidian District, Beijing 100872, China
| | - Anna Zhu
- Research Institute of Chemical Defence, No.1, Huanyin Street, Changping District, Beijing 100872, China; E-Mail:
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, No.1, Tsinghua Yuan, Haidian District, Beijing 100872, China
| |
Collapse
|
9
|
Wang XD, Wolfbeis OS. Fiber-Optic Chemical Sensors and Biosensors (2008–2012). Anal Chem 2012; 85:487-508. [DOI: 10.1021/ac303159b] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu-Dong Wang
- Institute of Analytical Chemistry, Chemo-
and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - Otto S. Wolfbeis
- Institute of Analytical Chemistry, Chemo-
and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
10
|
Narsaiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R. Optical biosensors for food quality and safety assurance-a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2012; 49:383-406. [PMID: 23904648 PMCID: PMC3550887 DOI: 10.1007/s13197-011-0437-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 01/18/2023]
Abstract
Food quality and safety is a scientific discipline describing handling, preparation and storage of food in ways that prevent food borne illness. Food serves as a growth medium for microorganisms that can be pathogenic or cause food spoilage. Therefore, it is imperative to have stringent laws and standards for the preparation, packaging and transportation of food. The conventional methods for detection of food contamination based on culturing, colony counting, chromatography and immunoassay are tedious and time consuming while biosensors have overcome some of these disadvantages. There is growing interest in biosensors due to high specificity, convenience and quick response. Optical biosensors show greater potential for the detection of pathogens, pesticide and drug residues, hygiene monitoring, heavy metals and other toxic substances in the food to check whether it is safe for consumption or not. This review focuses on optical biosensors, the recent developments in the associated instrumentation with emphasis on fiber optic and surface plasmon resonance (SPR) based biosensors for detecting a range of analytes in food samples, the major advantages and challenges associated with optical biosensors. It also briefly covers the different methods employed for the immobilization of bio-molecules used in developing biosensors.
Collapse
Affiliation(s)
- K. Narsaiah
- Agricultural Structures and Environmental Control Division, Central Institute of Post-harvest Engineering and Technology, Ludhiana, 141004 India
| | - Shyam Narayan Jha
- Agricultural Structures and Environmental Control Division, Central Institute of Post-harvest Engineering and Technology, Ludhiana, 141004 India
| | - Rishi Bhardwaj
- Agricultural Structures and Environmental Control Division, Central Institute of Post-harvest Engineering and Technology, Ludhiana, 141004 India
| | - Rajiv Sharma
- Agricultural Structures and Environmental Control Division, Central Institute of Post-harvest Engineering and Technology, Ludhiana, 141004 India
| | - Ramesh Kumar
- Agricultural Structures and Environmental Control Division, Central Institute of Post-harvest Engineering and Technology, Ludhiana, 141004 India
| |
Collapse
|
11
|
Wang Z, Lin P, Baker GA, Stetter J, Zeng X. Ionic Liquids as Electrolytes for the Development of a Robust Amperometric Oxygen Sensor. Anal Chem 2011; 83:7066-73. [DOI: 10.1021/ac201235w] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhe Wang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Peiling Lin
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri−Columbia, Columbia, Missouri 65211, United States
| | - Joseph Stetter
- KWJ Engineering Incorporated, 8440 Central Avenue [Suite 2B or 2D], Newark, California 94560, United States
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| |
Collapse
|