1
|
Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties. Polymers (Basel) 2022; 14:polym14142767. [PMID: 35890546 PMCID: PMC9322352 DOI: 10.3390/polym14142767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The conformation of a fluorescent polymer, in the solid state or in solution, plays a critical role in the polymer’s fluorescent properties. Thus, grafted side chains on a fluorescent polymer can directly influence its optical properties. In this study, the effect of grafted polymeric side chains on the photoluminescent properties of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene ethynylene) (PPE) were investigated. Low- and high-molecular-weight grafts of neutral poly(n-butyl acrylate), cationic poly(trimethylaminoethyl methacrylate) and anionic poly(sulfopropyl acrylate) were grafted onto PPVs and PPEs, and the effect of the grafting on the graft copolymer’s absorption and emission wavelengths, the fluorescence intensity and the quantum yield were studied. The results indicate that in the case of the ionic grafts, contrary to the expectations, the polymers have a reduced quantum yield. This contrasts with the copolymers with uncharged side chains (PnBA), where a major increase in the quantum yield is seen for the self-quenching conjugated pristine polymers. These results reinforce that the molecular conformation of the polymer in a solid or solution plays a critical role in fluorescent polymers photoluminescent properties.
Collapse
|
2
|
Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021; 9:biomedicines9080964. [PMID: 34440168 PMCID: PMC8391662 DOI: 10.3390/biomedicines9080964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022] Open
Abstract
Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than 95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the lack of sufficient and early-stage detection methods. Many liver cancer-associated non-coding RNAs (ncRNAs) have been extensively examined to serve as promising biomarkers for precise diagnostics, prognostics, and the evaluation of the therapeutic progress. For the simple, rapid, and selective ncRNA detection, various nanomaterial-enhanced biosensors have been developed based on electrochemical, optical, and electromechanical detection methods. This review presents ncRNAs as the potential biomarkers for the early-stage diagnosis of liver cancer. Moreover, a comprehensive overview of recent developments in nanobiosensors for liver cancer-related ncRNA detection is provided.
Collapse
|
3
|
Zhu B, Travas-Sejdic J. PNA versus DNA in electrochemical gene sensing based on conducting polymers: study of charge and surface blocking effects on the sensor signal. Analyst 2018; 143:687-694. [PMID: 29297913 DOI: 10.1039/c7an01590a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this communication, we present an in-depth study of DNA/DNA, DNA/PNA and PNA/PNA hybridisation on a conducting polymer-modified electrode, measured by means of electrochemical impedance spectroscopy (EIS). DNA or PNA nucleic base sequence probes (where DNA stands for deoxyribonucleic acid and PNA for peptide nucleic acid) were covalently attached onto the sensor surface. As PNA is a non-charged variant of DNA, we investigate the effects of the surface charge and surface blocking by the surface confined probe/target nucleic bases complexes onto the kinetics of redox reaction of Fe(CN)63-/4- couple occurring at the electrode/solution interface that provides electrochemical readout for hybridisation. A range of hybridisation detection experiments were performed, where the surface charge and surface charge density were varied, through varying the charged nature of the probe and the target (i.e. PNA or DNA) and the density of surface-bound PNA and DNA probes. To further the understanding of these effects on the measured electrochemical signal, kinetic studies of the hybridisation reactions were undertaken, and the equilibrium binding constants and binding rate constants for the hybridisation reactions were obtained. The study provides valuable insights to guide future designs of biosensors.
Collapse
Affiliation(s)
- Bicheng Zhu
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
4
|
Kerr-Phillips TE, Aydemir N, Chan EWC, Barker D, Malmström J, Plesse C, Travas-Sejdic J. Conducting electrospun fibres with polyanionic grafts as highly selective, label-free, electrochemical biosensor with a low detection limit for non-Hodgkin lymphoma gene. Biosens Bioelectron 2017; 100:549-555. [PMID: 29017070 DOI: 10.1016/j.bios.2017.09.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
Abstract
A highly selective, label-free sensor for the non-Hodgkin lymphoma gene, with an aM detection limit, utilizing electrochemical impedance spectroscopy (EIS) is presented. The sensor consists of a conducting electrospun fibre mat, surface-grafted with poly(acrylic acid) (PAA) brushes and a conducting polymer sensing element with covalently attached oligonucleotide probes. The sensor was fabricated from electrospun NBR rubber, embedded with poly(3,4-ethylenedioxythiophene) (PEDOT), followed by grafting poly(acrylic acid) brushes and then electrochemically polymerizing a conducting polymer monomer with ssDNA probe sequence pre-attached. The resulting non-Hodgkin lymphoma gene sensor showed a detection limit of 1aM (1 × 10-18mol/L), more than 400 folds lower compared to a thin-film analogue. The sensor presented extraordinary selectivity, with only 1%, 2.7% and 4.6% of the signal recorded for the fully non-complimentary, T-A and G-C base mismatch oligonucleotide sequences, respectively. We suggest that such greatly enhanced selectivity is due to the presence of negatively charged carboxylic acid moieties from PAA grafts that electrostatically repel the non-complementary and mismatch DNA sequences, overcoming the non-specific binding.
Collapse
Affiliation(s)
- Thomas E Kerr-Phillips
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Nihan Aydemir
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Eddie Wai Chi Chan
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Barker
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Jenny Malmström
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand; Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Cedric Plesse
- LPPI-EA2528, Institut des Materiaux, 5 mail Gay Lussac, Neuville sur Oise, Cergy-Pontoise cedex 95031, France
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Centre (PERC), School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
5
|
Ryskulova K, Rao Gulur Srinivas A, Kerr-Phillips T, Peng H, Barker D, Travas-Sejdic J, Hoogenboom R. Multiresponsive Behavior of Functional Poly(p-phenylene vinylene)s in Water. Polymers (Basel) 2016; 8:E365. [PMID: 30974643 PMCID: PMC6432201 DOI: 10.3390/polym8100365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
The multiresponsive behavior of functionalized water-soluble conjugated polymers (CPs) is presented with potential applications for sensors. In this study, we investigated the aqueous solubility behavior of water-soluble CPs with high photoluminescence and with a particular focus on their pH and temperature responsiveness. For this purpose, two poly(phenylene vinylene)s (PPVs)-namely 2,5-substituted PPVs bearing both carboxylic acid and methoxyoligoethylene glycol units-were investigated, with different amount of carboxylic acid units. Changes in the pH and temperature of polymer solutions led to a response in the fluorescence intensity in a pH range from 3 to 10 and for temperatures ranging from 10 to 85 °C. Additionally, it is demonstrated that the polymer with the largest number of carboxylic acid groups displays upper critical solution temperature (UCST)-like thermoresponsive behavior in the presence of a divalent ion like Ca2+. The sensing capability of these water-soluble PPVs could be utilized to design smart materials with multiresponsive behavior in biomedicine and soft materials.
Collapse
Affiliation(s)
- Kanykei Ryskulova
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4, Ghent B-9000, Belgium.
| | - Anupama Rao Gulur Srinivas
- Polymer Electronics Research Center, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
| | - Thomas Kerr-Phillips
- Polymer Electronics Research Center, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
| | - Hui Peng
- Key Laboratory of Polarized Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200062, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - David Barker
- Polymer Electronics Research Center, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Jadranka Travas-Sejdic
- Polymer Electronics Research Center, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4, Ghent B-9000, Belgium.
| |
Collapse
|
6
|
Zhang Y, Ren W, Luo HQ, Li NB. Label-free cascade amplification strategy for sensitive visual detection of thrombin based on target-triggered hybridization chain reaction-mediated in situ generation of DNAzymes and Pt nanochains. Biosens Bioelectron 2016; 80:463-470. [PMID: 26878483 DOI: 10.1016/j.bios.2016.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/19/2022]
Abstract
A new magnetic bead-based cascade amplification strategy for highly sensitive visual detection of proteins (thrombin as a model analyte) was developed by coupling target-triggered hybridization chain reaction (HCR) with the synergistic catalysis of DNA concatemer-mediated hemin/G-quadruplex DNAzymes and Pt nanozymes. Initially, the biotinylated primer DNA (P-DNA) was complementary with aptamer to form dsDNA which was further linked to streptavidin-coated magnetic bead (MB), thereby fabricating the expected MB-based aptasensor. In the presence of target TB, the aptamer was taken away from the aptasensor, and the free P-DNA immediately triggered HCR to spontaneously form DNA concatemer-directed nanochains with numerous DNAzymes and Pt nanoclusters (PtNCs) to achieve cascades signal amplification. The dual peroxidase mimetics catalyzed the H2O2-mediated oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the colored TMB oxides (oxTMB), causing intensified color change of the chromogenic solution for the highly sensitive naked-eye detection of as low as 100.0 pM TB. In this strategy, the employment of magnetic separation and exonuclease III (Exo III)-assisted digestion of residual dsDNA minimized the background noise and avoided the false positive results, greatly improving the detection accuracy and sensitivity with a low limit of detection (LOD=15.0 pM). The proposed visual platform has promise for detecting various types of proteins with careful DNA sequence designs.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; College of Chemistry and Pharmaceutical Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Wang Ren
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; College of Chemistry and Pharmaceutical Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Hong Qun Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
7
|
|
8
|
Leng Y, Sun K, Chen X, Li W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev 2015; 44:5552-95. [PMID: 26021602 PMCID: PMC5223091 DOI: 10.1039/c4cs00382a] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and "point of care" platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields.
Collapse
Affiliation(s)
- Yuankui Leng
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | |
Collapse
|
9
|
Gulur Srinivas AR, Barker D, Travas-Sejdic J. ‘Switch-on’ DNA sensor based on poly (p-phenylene vinylenes) bound tentacle probes. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2014-1114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThe development of highly sensitive and selective DNA sensors has fuelled applications in a wide range of fields including medical diagnostics, forensics, biodefense, food contamination and environment monitoring. We demonstrate a novel superquenching based DNA sensor with “switch-on” readout using poly(p-phenylenevinylene) (PPV) coated magnetic beads (PPV-MagSi) and quencher functionalized tentacle probes (TP). The sensor design utilizes signal amplification properties of PPV and cooperativity of TPs to monitor hybridization of target oligonucleotides (ONs). The switch-on sensor exhibits excellent sensitivity and selectively discriminates mismatches in the target DNA sequence. Two novel anionic PPVs – poly (6,6′-((2-methyl-5-((E)-4-((E)-prop-1-en-1-yl)styryl)-1,4-phenylene)-bis(oxy) dihexanoic acid) (PMDH) and poly (6,6′-((2-((E)-2,5-bis(2-methoxyethoxy)-4-((E)-prop-1-en-1-yl)styryl)-5-methyl-1,4-phenylene)-bis-(oxy)) di-hexanoic acid) (PDMonoG) were tested and compared against each other as part of the sensor design. The employed hairpin TPs possess further advantages of avoiding labelling of target ON, increased selectivity and sensitivity; faster assay time, and capability of magnetically controlled deployment and separation of PPV-MagSi beads.
Collapse
Affiliation(s)
- Anupama R. Gulur Srinivas
- 1Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David Barker
- 1Polymer Electronics Research Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
10
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 498] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
11
|
Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J. Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2014; 2:4593-4609. [DOI: 10.1039/c4tb00598h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The fabrication of conductive polymer nanowires and their sensing of nucleic acids, proteins and pathogens is reviewed in this feature article.
Collapse
Affiliation(s)
- J. Travas-Sejdic
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - N. Aydemir
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - B. Kannan
- Revolution Fibres Ltd
- , New Zealand
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
| | - D. E. Williams
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| | - J. Malmström
- School of Chemical Sciences
- University of Auckland
- Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- Wellington 6140, New Zealand
| |
Collapse
|
12
|
Cortie MB, Nafea EH, Chen H, Valenzuela SM, Ting SS, Sonvico F, Milthorpe B. Nanomedical research in Australia and New Zealand. Nanomedicine (Lond) 2013; 8:1999-2006. [PMID: 24279489 DOI: 10.2217/nnm.13.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although Australia and New Zealand have a combined population of less than 30 million, they have an active and interlinked community of nanomedical researchers. This report provides a synopsis and update on this network with a view to identifying the main topics of interest and their likely future trajectories. In addition, our report may also serve to alert others to opportunities for joint projects. Australian and New Zealand researchers are engaged in most of the possible nanomedical topics, but the majority of interest is focused on drug and nucleic acid delivery using nanoparticles or nanoporous constructs. There are, however, smaller programs directed at hyperthermal therapy and radiotherapy, various kinds of diagnostic tests and regenerative technologies.
Collapse
Affiliation(s)
- Michael B Cortie
- Institute for Nanoscale Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Park H, Hwang MP, Lee KH. Immunomagnetic nanoparticle-based assays for detection of biomarkers. Int J Nanomedicine 2013; 8:4543-52. [PMID: 24285924 PMCID: PMC3841294 DOI: 10.2147/ijn.s51893] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The emergence of biomarkers as key players in the paradigm shift towards preventative medicine underscores the need for their detection and quantification. Advances made in the field of nanotechnology have played a crucial role in achieving these needs, and have contributed to recent advances in the field of medicine. Nanoparticle-based immunomagnetic assays, in particular, offer numerous advantages that utilize the unique physical properties of magnetic nanoparticles. In this review, we focus on recent developments and trends with regards to immunomagnetic assays used for detection of biomarkers. The various immunomagnetic assays are categorized into the following: particle-based multiplexing, signal control, microfluidics, microarray, and automation. Herein, we analyze each category and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Hoyoung Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea ; Department of Biomedical Engineering, University of Science and Technology, Seoul, Republic of Korea
| | | | | |
Collapse
|
14
|
Gulur Srinivas AR, Kerr-Phillips TE, Peng H, Barker D, Travas-Sejdic J. Water-soluble anionic poly(p-phenylene vinylenes) with high luminescence. Polym Chem 2013. [DOI: 10.1039/c3py21090a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Zhan F, Zhou X, Xing D. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction. Anal Chim Acta 2012; 761:71-7. [PMID: 23312316 DOI: 10.1016/j.aca.2012.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/04/2012] [Accepted: 11/09/2012] [Indexed: 01/26/2023]
Abstract
A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2'-bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs-TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection. In this study, rotavirus in fecal specimens was successfully detected within 1.5 h. Experimental results showed that the detection limit of the assay was 0.2 pg μL(-1) of rotavirus. The ECL intensity was linearly with the concentration from 0.2 pg μL(-1) to 400 pg μL(-1). What's more, the specificity of this method was confirmed by detecting other fecal specimens of patients with nonrotavirus-associated gastroenteritis. We anticipate that the proposed magnetic primer based RT-PCR with ECL detection strategy will find numerous applications in food safety field and clinical diagnosis.
Collapse
Affiliation(s)
- Fangfang Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|