1
|
Wei W, Wang Z, Wang B, Pang W, Yang Q, Duan X. Concentration of Microparticles/Cells Based on an Ultra-Fast Centrifuge Virtual Tunnel Driven by a Novel Lamb Wave Resonator Array. BIOSENSORS 2024; 14:280. [PMID: 38920584 PMCID: PMC11202289 DOI: 10.3390/bios14060280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
The µTAS/LOC, a highly integrated microsystem, consolidates multiple bioanalytical functions within a single chip, enhancing efficiency and precision in bioanalysis and biomedical operations. Microfluidic centrifugation, a key component of LOC devices, enables rapid capture and enrichment of tiny objects in samples, improving sensitivity and accuracy of detection and diagnosis. However, microfluidic systems face challenges due to viscosity dominance and difficulty in vortex formation. Acoustic-based centrifugation, particularly those using surface acoustic waves (SAWs), have shown promise in applications such as particle concentration, separation, and droplet mixing. However, challenges include accurate droplet placement, energy loss from off-axis positioning, and limited energy transfer from low-frequency SAW resonators, restricting centrifugal speed and sample volume. In this work, we introduce a novel ring array composed of eight Lamb wave resonators (LWRs), forming an Ultra-Fast Centrifuge Tunnel (UFCT) in a microfluidic system. The UFCT eliminates secondary vortices, concentrating energy in the main vortex and maximizing acoustic-to-streaming energy conversion. It enables ultra-fast centrifugation with a larger liquid capacity (50 μL), reduced power usage (50 mW) that is one order of magnitude smaller than existing devices, and greater linear speed (62 mm/s), surpassing the limitations of prior methods. We demonstrate successful high-fold enrichment of 2 μm and 10 μm particles and explore the UFCT's potential in tissue engineering by encapsulating cells in a hydrogel-based micro-organ with a ring structure, which is of great significance for building more complex manipulation platforms for particles and cells in a bio-compatible and contactless manner.
Collapse
Affiliation(s)
| | | | | | | | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China; (W.W.); (Z.W.); (B.W.); (W.P.)
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China; (W.W.); (Z.W.); (B.W.); (W.P.)
| |
Collapse
|
2
|
Fillingham P, Belur N, Sweem R, Barbour MC, Marsh LMM, Aliseda A, Levitt MR. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms. Med Phys 2024; 51:1499-1508. [PMID: 38150511 PMCID: PMC10922831 DOI: 10.1002/mp.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Computational fluid dynamics (CFD) simulations are a powerful tool for studying cerebral aneurysms, capable of evaluating hemodynamics in a way that is infeasible with imaging alone. However, the difficulty of incorporating patient-specific information and inherent obstacles of in vivo validation have limited the clinical usefulness of CFD of cerebral aneurysms. In this work we investigate the effect of using standardized blood viscosity values in CFD simulations of cerebral aneurysms when compared to simulations of the same aneurysms using patient-specific viscosity values derived from hematocrit measurements. PURPOSE The objective of this work is to determine the level of error, on average, that is, caused by using standardized values of viscosity in CFD simulations of cerebral aneurysms. By quantifying this error, we demonstrate the need for incorporating patient-specific viscosity in future CFD investigations of cerebral aneurysms. METHODS CFD simulations of forty-one cerebral aneurysms were conducted using patient-specific boundary conditions. For each aneurysm two simulations were conducted, one utilizing patient-specific blood viscosity derived from hematocrit measurements and another using a standardized value for blood viscosity. Hemodynamic parameters such as wall shear stress (WSS), wall shear stress gradient (WSSG), and the oscillatory shear index (OSI) were calculated for each of the simulations for each aneurysm. Paired t-tests for differences in the time-averaged maps of these hemodynamic parameters between standardized and patient-specific viscosity simulations were conducted for each aneurysm. Bland-Altman analysis was used to examine the cohort-wide changes in the hemodynamic parameters. Subjects were broken into two groups, those with higher than standard viscosity and those with lower than standard viscosity. An unpaired t-test was used to compare the percent change in WSS, WSSG, and OSI between patient-specific and standardized viscosity simulations for the two cohorts. The percent changes in hemodynamic parameters were correlated against the direction and magnitude of percent change in viscosity, aneurysm size, and aneurysm location. For all t-tests, a Bonferroni-corrected significance level of 0.0167 was used. RESULTS 63.2%, 41.5%, and 48.7% of aneurysms showed statistically significant differences between patient-specific and standardized viscosity simulations for WSS, WSSG, and OSI respectively. No statistically significant difference was found in the percent changes in WSS, WSSG, and OSI between the group with higher than standard viscosity and those with lower than standard viscosity, indicating an increase in viscosity can cause either an increase or decrease in each of the hemodynamic parameters. On a study-wide level no significant bias was found in either direction for WSS, WSSG, or OSI between the simulation groups due to the bidirectional effect of changing viscosity. No correlation was found between percent change of viscosity and percent change of WSS, WSSG, or OSI, meaning an after-the-fact correction for patient-specific viscosity is not feasible. CONCLUSION Standardizing viscosity values in CFD of cerebral aneurysms has a large and unpredictable impact on the calculated WSS, WSSG, and OSI when compared to CFD simulations of the same aneurysms using a patient-specific viscosity. We recommend implementing hematocrit-based patient-specific blood viscosity values for all CFD simulations of cerebral aneurysms.
Collapse
Affiliation(s)
- Patrick Fillingham
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Neethi Belur
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Rebecca Sweem
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Michael C. Barbour
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Laurel M. M. Marsh
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Alberto Aliseda
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Michael R. Levitt
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Khan AA, Akram K, Zaman A, Anwar Bég O, Bég TA. Electro-osmotic peristaltic flow and heat transfer in an ionic viscoelastic fluid through a curved micro-channel with viscous dissipation. Proc Inst Mech Eng H 2022; 236:1080-1092. [DOI: 10.1177/09544119221105848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging systems in microfluidics are embracing bio-inspired designs in which boundaries are flexible and mimic peristaltic propulsion mechanisms encountered in nature. These devices utilize electro-kinetic body forces to manipulate very precisely ionic biofluids for a range of medical applications including. Motivated by exploring in more detail electro-hemorheological micro-pumping, in the current article, a mathematical model is developed for peristalsis propulsion of a viscoelastic biofluid in a curved microchannel with electro-osmotic effect and thermal transport under static axial electrical field and with viscous heating. The third grade Reiner-Rivlin model is deployed for blood rheology. The novelty of the current work is therefore the simultaneous consideration of electrokinetics, viscoelastic behavior with the third grade Reiner-Rivlin model and coupled flow and heat transport with viscous dissipation in peristaltic pumping in a curved micro-channel. A Poisson-Boltzmann formulation is adopted to simulate the charge number density associated with the electrical potential. Asymmetric zeta potential (25 mV) is prescribed and mobilizes an electric double layer (EDL). The governing conservation equations for mass, energy, momentum and electrical potential with associated boundary conditions are simplified using lubrication approximations and rendered dimensionless via appropriate scaling transformations. Analytical solutions are derived in the form of Bessel functions and numerical evaluations are conducted via the ND solver command in MATHEMATICA symbolic software. The simulations show that with stronger viscoelastic effect, boluses are eliminated and there is relaxation in streamlines in the core and peripheral regions of the micro-channel. Increasing Brinkman number (dissipation parameter) elevates temperatures. An increase in electrical double layer thickness initially produces a contraction in the upper bolus and an expansion (lateral) in the lower bolus in the micro-channel. With modification in zeta potential ratio parameter from positive to negative values, in the lower half of the micro-channel, axial flow deceleration is generated.
Collapse
Affiliation(s)
- Ambreen Afsar Khan
- Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
| | - Kaenat Akram
- Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
| | - Akbar Zaman
- Informatics Complex, International Islamic University, Islamabad, Pakistan
| | - O Anwar Bég
- Multi-Physical Engineering Sciences Group, Mechanical Engineering Department, School of Science, Engineering and Environment (SEE), University of Salford, Manchester, UK
| | | |
Collapse
|
4
|
Mabrouk S, Whittingslow D, Inan OT. Robust Method for Mid-Activity Tracking and Evaluation of Ankle Health Post-Injury. IEEE Trans Biomed Eng 2021; 68:1341-1350. [PMID: 32997618 DOI: 10.1109/tbme.2020.3027477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To present a robust methodology for evaluating ankle health during ambulation using a wearable device. Methods: We developed a novel data capture system that leverages changes within the ankle during ambulation for real-time tracking of bioimpedance. The novel analysis compares the range of reactance at 5 kHz to the range of reactance at 100 kHz; which removes the technique's previous reliance on a known baseline. To aid in interpretation of the measurements, we developed a quantitative simulation model based on a literature review of the effects on joint bioimpedance of variations in edematous fluid volume, muscle fiber tears, and blood flow changes. Results: The results of the simulation predicted a significant difference in the ratio of the range of the reactance from 5 kHz to 100 kHz between the healthy and injured ankles. These results were validated in 15 subjects - with 11 healthy ankles and 7 injured ankles measured. The injured subjects had lateral ankle sprains 2-4 weeks prior to the measurement. The analysis technique differentiated between the healthy and the injured population (p<<0.01), and a correlation (R = 0.8) with a static protocol previously validated for its sensitivity to edema. Conclusion: The technology presented can detect variations in ankle edema and structural integrity of ankles, and thus could provide valuable feedback to clinicians and patients during the rehabilitation of an ankle injury. Significance: This technology could lead to better-informed decision making regarding a patient's readiness to return to activity and / or tailoring rehabilitation activities to an individual's changing needs.
Collapse
|
5
|
Microfluidic Quantification of Blood Pressure and Compliance Properties Using Velocity Fields under Periodic On–Off Blood Flows. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To monitor variations of blood samples effectively, it is required to quantify static and dynamic properties simultaneously. With previous approaches, the viscosity and elasticity of blood samples are obtained for static and transient flows with two syringe pumps. In this study, simultaneous measurement of pressure and equivalent compliance is suggested by analyzing the velocity fields of blood flows, where a blood sample is delivered in a periodic on-off fashion with a single syringe pump. The microfluidic device is composed of a main channel (mc) for quantifying the equivalent compliance and a pressure channel (pc) for measuring the blood pressure. Based on the mathematical relation, blood pressure at junction (Px) is expressed as Px = kβ. Here, β is calculated by integrating the averaged velocity in the pressure channel (<Upc>). The equivalent compliance (Ceq) is then quantified as Ceq = λoff · Q0/Px with a discrete fluidic model. The time constant (λoff ) is obtained from the transient behavior of the averaged blood velocity in the main channel (<Umc>). According to results, Px and Ceq varied considerably with respect to the hematocrit and flow rate. The present method (i.e., blood pressure, compliance) shows a strong correlation with the previous method (i.e., blood viscosity, elasticity). In conclusion, the present method can be considered as a potential tool for monitoring the mechanical properties of blood samples supplied periodically from a single syringe pump.
Collapse
|
6
|
Kang YJ. Simultaneous measurement method of erythrocyte sedimentation rate and erythrocyte deformability in resource-limited settings. Physiol Meas 2020; 41:025009. [PMID: 32000147 DOI: 10.1088/1361-6579/ab71f3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The individual effects of plasma and red blood cells (RBCs) on the biophysical properties of blood can be monitored by measuring the erythrocyte sedimentation rate (ESR) and RBC deformability simultaneously. However, the previous methods require bulky and expensive facilities (i.e. microscope, high-speed camera, and syringe pump) to deliver blood or capture blood flows. APPROACH To resolve these issues, a simple method for sequential measurement of the ESR and RBC deformability is demonstrated by quantifying the cell-free volume (V CF ), cell-rich volume (V CR ), and blood volume (V B ) inside an air-compressed syringe (ACS). A microfluidic device consists of multiple micropillar channels, an inlet, and outlet. After the ACS is filled with air (V air = 0.4 ml) and a blood sample (V B = 0.6 ml, hematocrit = 30%) sequentially, the ACS is fitted into the inlet. The cavity inside the ACS is compressed to V comp = 0.4 ml after closing the outlet with a stopper. A smartphone camera is employed to capture variations in the V CF , V CR , and V B inside the ACS. The ESR index suggested in this study (ESR PM ) is obtained by dividing the V CF (t = t 1) with an elapse of t 1. By removing the stopper, ΔV B (ΔV B = V B [t = t 1] - V B ) is obtained and fitted as a two-term exponential model ([Formula: see text]. As a performance demonstration, the proposed method is employed to detect an ESR-enhanced blood sample, homogeneous hardened blood sample, and heterogeneous blood sample. MAIN RESULTS From the experimental results, it is found that the proposed method has the ability to detect various bloods by quantifying the ESR PM and two coefficients (a, b) simultaneously. SIGNIFICANCE In conclusion, the present method can be effectively used to measure the ESR and RBC deformability in resource-limited settings.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
7
|
Zhbanov A, Yang S. Electrochemical Impedance Characterization of Blood Cell Suspensions-Part 2: Three-Phase Systems With Single-Shelled Particles. IEEE Trans Biomed Eng 2020; 67:2979-2989. [PMID: 32091989 DOI: 10.1109/tbme.2020.2975816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The analyses presented in Part 1 are expanded to three-phase composite materials. The theory developed in Part 1 is used for analytical and numerical calculations of dielectric spectra. In this study, three-phase systems with single-shelled particles were considered. The disordered particle distribution, aligned orientation of particles, and particles placed in different lattice structures are studied. It is shown that both two-phase and three-phase composites exhibit β-dispersion, while three-phase composites additionally exhibit δ-dispersion. This is the fundamental difference in the spectra for two- and three-phase materials. In the case of aligned orientation, the effective permittivity in the direction perpendicular to the spheroid plane exhibits a maximum at a volume fraction of approximately 0.5. Both two- and three-phase materials display this behavior. This may be of interest for the development of new metamaterials. The dielectric properties of composite materials with random distribution and periodic arrangement of particles differ significantly. The dielectric spectrum of erythrocyte suspension in plasma was measured by means of electrochemical impedance spectroscopy. The measurement system consisted of a small chamber with two planar electrodes placed at the bottom and an impedance analyzer. The dielectric properties of erythrocyte cytoplasm and membrane were numerically determined based on experimental data. The measurement of the dielectric properties of whole blood and blood components is very promising for various medical applications.
Collapse
|
8
|
Kang YJ. Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System. MICROMACHINES 2020; 11:mi11020215. [PMID: 32093288 PMCID: PMC7074636 DOI: 10.3390/mi11020215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 11/16/2022]
Abstract
To quantify the variation of red blood cells (RBCs) or plasma proteins in blood samples effectively, it is necessary to measure blood viscosity and erythrocyte sedimentation rate (ESR) simultaneously. Conventional microfluidic measurement methods require two syringe pumps to control flow rates of both fluids. In this study, instead of two syringe pumps, two air-compressed syringes (ACSs) are newly adopted for delivering blood samples and reference fluid into a T-shaped microfluidic channel. Under fluid delivery with two ACS, the flow rate of each fluid is not specified over time. To obtain velocity fields of reference fluid consistently, RBCs suspended in 40% glycerin solution (hematocrit = 7%) as the reference fluid is newly selected for avoiding RBCs sedimentation in ACS. A calibration curve is obtained by evaluating the relationship between averaged velocity obtained with micro-particle image velocimetry (μPIV) and flow rate of a syringe pump with respect to blood samples and reference fluid. By installing the ACSs horizontally, ESR is obtained by monitoring the image intensity of the blood sample. The averaged velocities of the blood sample and reference fluid (<UB>, <UR>) and the interfacial location in both fluids (αB) are obtained with μPIV and digital image processing, respectively. Blood viscosity is then measured by using a parallel co-flowing method with a correction factor. The ESR is quantified as two indices (tESR, IESR) from image intensity of blood sample (<IB>) over time. As a demonstration, the proposed method is employed to quantify contributions of hematocrit (Hct = 30%, 40%, and 50%), base solution (1× phosphate-buffered saline [PBS], plasma, and dextran solution), and hardened RBCs to blood viscosity and ESR, respectively. Experimental Results of the present method were comparable with those of the previous method. In conclusion, the proposed method has the ability to measure blood viscosity and ESR consistently, under fluid delivery of two ACSs.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
| |
Collapse
|
9
|
Agarwal R, Sarkar A, Paul S, Chakraborty S. A portable rotating disc as blood rheometer. BIOMICROFLUIDICS 2019; 13:064120. [PMID: 31803338 PMCID: PMC6887659 DOI: 10.1063/1.5128937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Abnormalities in biophysical properties of blood are often strong indicators of life threatening infections. However, there is no existing device that integrates the sensing of blood hematocrit (or equivalently, packed cell volume), viscosity, and erythrocyte sedimentation rate (ESR) in a unified paradigm for point-of-care diagnostics. In an effort to develop a rapid, integrated, accurate, portable, and inexpensive sensing platform to diagnose the corresponding pathophysical parameters, we develop a simple and portable spinning disk capable of yielding these results in a few minutes instead of the traditional duration of hours. The device requires only 40 μl of unprocessed freshly drawn blood treated with an anticoagulant ethylenediaminetetraacetic acid, instead of the traditional requirement of 2 ml of blood for just the ESR measurement and still more for hematocrit determination. In contrast to the sophisticated instrumentation required to determine these parameters by the previously proposed microfluidic devices, our device requires minimal infrastructure. The measurement of hematocrit is accomplished by means of a simple 15 cm ruler. Additionally, a simple measurement of the blood flow rate enables the determination of the ESR value. The rapidity, ease, accuracy, portability, frugality, and possible automation of the overall measurement process of some of the most important parameters of blood under infection pinpoint its utility in extreme point-of-care settings.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Subhechchha Paul
- Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
10
|
França FL, Honorio-França AC, Honorio MS, Silva FHD, Fujimori M, França EL, Araújo FGDS. Dental implant surfaces treated with phosphoric acid can modulate cytokine production by blood MN cells. Braz Oral Res 2019; 33:e040. [PMID: 31508724 DOI: 10.1590/1807-3107bor-2019.vol33.0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/09/2019] [Indexed: 11/22/2022] Open
Abstract
The study characterizes dental implant surfaces treated with phosphoric acid to assess the effects of acid treatment on blood cells and correlate them with cytokine levels. The implant surfaces examined were divided into untreated metal surface (US; n = 50), metal surface treated with phosphoric acid (ATS; n = 50) and cement surface (CS; n = 50) groups. The samples were characterized by scanning electron microscopy (SEM) and rheometry. The implants were incubated with human blood mononuclear cells for 24 h, with surface rinsing in the ATS treatment. Cell viability was determined by colorimetric methods and cytokines in the culture supernatant were quantified using flow cytometry. In the ATS group, the surface porosity and contact surface were increased and plaques were observed on the surface. The blood flow and viscosity curves were similar among the treatments, and the high cell viability rates indicate the biocompatibility of the materials used. An increase in the levels of IL-2, IL-4, IL-6, IL-10 and TNF-α was observed in the ATS and CS groups. There were positive correlations between IL-10 and IL-2 levels and between IL-10 and IL-4 levels in the culture supernatant of the ATS group. The results suggest that implant surface treatment with phosphoric acid activates the production of inflammatory cytokines. The increased cytokine levels can modulate the immune response, thereby improving biofunctional processes and promoting the success of dental implants.
Collapse
Affiliation(s)
- Fernando Luzía França
- Program of Materials Engineering, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Mariana Silva Honorio
- Institute of Biological and Health Science, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brazil
| | - Fabiana Helen da Silva
- Institute of Biological and Health Science, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brazil
| | - Mahmi Fujimori
- Institute of Biological and Health Science, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brazil
| | - Eduardo Luzía França
- Institute of Biological and Health Science, Universidade Federal de Mato Grosso, Barra do Garças, MT, Brazil
| | | |
Collapse
|
11
|
Microfluidic-Based Biosensor for Sequential Measurement of Blood Pressure and RBC Aggregation Over Continuously Varying Blood Flows. MICROMACHINES 2019; 10:mi10090577. [PMID: 31480325 PMCID: PMC6780160 DOI: 10.3390/mi10090577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
Aggregation of red blood cells (RBCs) varies substantially depending on changes of several factors such as hematocrit, membrane deformability, and plasma proteins. Among these factors, hematocrit has a strong influence on the aggregation of RBCs. Thus, while measuring RBCs aggregation, it is necessary to monitor hematocrit or, additionally, the effect of hematocrit (i.e., blood viscosity or pressure). In this study, the sequential measurement method of pressure and RBC aggregation is proposed by quantifying blood flow (i.e., velocity and image intensity) through a microfluidic device, in which an air-compressed syringe (ACS) is used to control the sample injection. The microfluidic device used is composed of two channels (pressure channel (PC), and blood channel (BC)), an inlet, and an outlet. A single ACS (i.e., air suction = 0.4 mL, blood suction = 0.4 mL, and air compression = 0.3 mL) is employed to supply blood into the microfluidic channel. At an initial time (t < 10 s), the pressure index (PI) is evaluated by analyzing the intensity of microscopy images of blood samples collected inside PC. During blood delivery with ACS, shear rates of blood flows vary continuously over time. After a certain amount of time has elapsed (t > 30 s), two RBC aggregation indices (i.e., SEAI: without information on shear rate, and erythrocyte aggregation index (EAI): with information on shear rate) are quantified by analyzing the image intensity and velocity field of blood flow in BC. According to experimental results, PI depends significantly on the characteristics of the blood samples (i.e., hematocrit or base solutions) and can be used effectively as an alternative to blood viscosity. In addition, SEAI and EAI also depend significantly on the degree of RBC aggregation. In conclusion, on the basis of three indices (two RBC aggregation indices and pressure index), the proposed method is capable of measuring RBCs aggregation consistently using a microfluidic device.
Collapse
|
12
|
Kang YJ, Lee SJ. In vitro and ex vivo measurement of the biophysical properties of blood using microfluidic platforms and animal models. Analyst 2019; 143:2723-2749. [PMID: 29740642 DOI: 10.1039/c8an00231b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Haemorheologically impaired microcirculation, such as blood clotting or abnormal blood flow, causes interrupted blood flows in vascular networks. The biophysical properties of blood, including blood viscosity, blood viscoelasticity, haematocrit, red blood bell (RBC) aggregation, erythrocyte sedimentation rate and RBC deformability, have been used to monitor haematological diseases. In this review, we summarise several techniques for measuring haemorheological properties, such as blood viscosity, RBC deformability and RBC aggregation, using in vitro microfluidic platforms. Several methodologies for the measurement of haemorheological properties with the assistance of an extracorporeal rat bypass loop are also presented. We briefly discuss several emerging technologies for continuous, long-term, multiple measurements of haemorheological properties under in vitro or ex vivo conditions.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, Gwangju, Republic of Korea
| | | |
Collapse
|
13
|
Quantitative Measurement and Evaluation of Red Blood Cell Aggregation in Normal Blood Based on a Modified Hanai Equation. SENSORS 2019; 19:s19051095. [PMID: 30836669 PMCID: PMC6427202 DOI: 10.3390/s19051095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 02/06/2023]
Abstract
The aggregation of red blood cells (RBCs) in normal blood (non-coagulation) has been quantitatively measured by blood pulsatile flow based on multiple-frequency electrical impedance spectroscopy. The relaxation frequencies fc under static and flowing conditions of blood pulsatile flow are utilized to evaluate the RBC aggregation quantitatively with the consideration of blood flow factors (RBC orientation, deformation, thickness of electrical double layer (EDL)). Both porcine blood and bovine blood are investigated in experiments, for the reason that porcine blood easily forms RBC aggregates, while bovine blood does not. The results show that the relaxation frequencies fc of porcine blood and bovine blood present opposite performance, which indicates that the proposed relaxation frequency fc is efficient to measure RBCs aggregation. Furthermore, the modified Hanai equation is proposed to quantitatively calculate the influence of RBCs aggregation on relaxation frequency fc. The study confirms the feasibility of a high speed, on-line RBC aggregation sensing method in extracorporeal circulation systems.
Collapse
|
14
|
Hong H, Song JM, Yeom E. 3D printed microfluidic viscometer based on the co-flowing stream. BIOMICROFLUIDICS 2019; 13:014104. [PMID: 30867875 PMCID: PMC6404922 DOI: 10.1063/1.5063425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Considering the role of viscosity in the dynamics of physical, chemical, and biological systems, accurate measurement of viscosity is essential. Although many conventional viscometers have been widely used, these conventional viscometers suffer from some drawbacks. In this study, a three-dimensional (3D) printed microfluidic viscometer was proposed based on the estimation of the pressure between two fluids to easily measure viscosity with small samples. The 3D printed microfluidic viscometer can be fabricated through amine-epoxy bonding on 3D printed blocks. By separately delivering samples and reference fluids into two inlets, an interfacial line could be induced. Based on the relation between the pressure ratio and the width of the reference flow, the viscosity (μ) of the sample can be estimated by measuring the relative width of the reference flow. The relation between the pressure and interfacial width between test samples and reference flows in the 3D printed microfluidic viscometers was analyzed by experiment and simulation to determine the effects of the mesh-like pattern of the 3D printed viscometers on the pressure estimation. To validate the proposed method, the viscosity values of glycerol mixtures measured by the 3D printed viscometer were compared with those measured by a conventional viscometer. As an application of the 3D printed viscometer, the viscosity curves for blood samples collected from diabetic and non-diabetic patients depending on their shear rates were compared. As expected, a high blood viscosity in the diabetic group was observed. Based on the experimental demonstrations, the 3D printed viscometer has strong potential to develop portable viscometers that can be translated to commercial outcomes.
Collapse
Affiliation(s)
- Hyeonji Hong
- School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea
| | - Jae Min Song
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Busan 49241, South Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
15
|
Kang YJ. Microfluidic-Based Technique for Measuring RBC Aggregation and Blood Viscosity in a Continuous and Simultaneous Fashion. MICROMACHINES 2018; 9:E467. [PMID: 30424400 PMCID: PMC6187833 DOI: 10.3390/mi9090467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023]
Abstract
Hemorheological properties such as viscosity, deformability, and aggregation have been employed to monitor or screen patients with cardiovascular diseases. To effectively evaluate blood circulating within an in vitro closed circuit, it is important to quantify its hemorheological properties consistently and accurately. A simple method for measuring red blood cell (RBC) aggregation and blood viscosity is proposed for analyzing blood flow in a microfluidic device, especially in a continuous and simultaneous fashion. To measure RBC aggregation, blood flows through three channels: the left wide channel, the narrow channel and the right wide channel sequentially. After quantifying the image intensity of RBCs aggregated in the left channel () and the RBCs disaggregated in the right channel (), the RBC aggregation index (AIPM) is obtained by dividing by . Simultaneously, based on a modified parallel flow method, blood viscosity is obtained by detecting the interface between two fluids in the right wide channel. RBC aggregation and blood viscosity were first evaluated under constant and pulsatile blood flows. AIPM varies significantly with respect to blood flow rate (for both its amplitude and period) and the concentration of the dextran solution used. According to our quantitative comparison between the proposed aggregation index (AIPM) and the conventional aggregation index (AICM), it is found that AIPM provides consistent results. Finally, the suggested method is employed to obtain the RBC aggregation and blood viscosity of blood circulating within an in vitro fluidic circuit. The experimental results lead to the conclusion that the proposed method can be successfully used to measure RBC aggregation and blood viscosity, especially in a continuous and simultaneous fashion.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| |
Collapse
|
16
|
Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy. Biosens Bioelectron 2018; 112:79-85. [PMID: 29698811 DOI: 10.1016/j.bios.2018.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
Abstract
Red blood cells (RBCs) aggregability AG of coagulating blood in extracorporeal circulation system has been investigated under the condition of pulsatile flow. Relaxation frequency fc from the multiple-frequency electrical impedance spectroscopy is utilized to obtain RBCs aggregability AG. Compared with other methods, the proposed multiple-frequency electrical impedance method is much easier to obtain non-invasive measurement with high speed and good penetrability performance in biology tissues. Experimental results show that, RBCs aggregability AG in coagulating blood falls down with the thrombus formation while that in non-coagulation blood almost keeps the same value, which has a great agreement with the activated clotting time (ACT) fibrinogen concertation (Fbg) tests. Modified Hanai formula is proposed to quantitatively analyze the influence of RBCs aggregation on multiple-frequency electrical impedance measurement. The reduction of RBCs aggregability AG is associated with blood coagulation reaction, which indicates the feasibility of the high speed, compact and cheap on-line thrombus measurement biosensors in extracorporeal circulation systems.
Collapse
|
17
|
Kang YJ. Periodic and simultaneous quantification of blood viscosity and red blood cell aggregation using a microfluidic platform under in-vitro closed-loop circulation. BIOMICROFLUIDICS 2018; 12:024116. [PMID: 29682144 PMCID: PMC5891346 DOI: 10.1063/1.5017052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/29/2018] [Indexed: 05/13/2023]
Abstract
To evaluate variations of blood circulating in closed loops, hemorheological properties including blood viscosity and red blood cells (RBCs) are quantitatively measured with independent in-vitro instruments after collecting blood from a closed loop. But, most previous methods require periodic blood collections which induce several problems such as geometric differences between the fluidic channel and the in-vitro method, hemodilution, storage time, and unspecific blood flow rates. To resolve these issues, in this study, blood viscosity and RBC aggregation of blood circulating within a closed loop are measured with a microfluidic platform periodically and simultaneously. To demonstrate the proposed method, in-vitro closed-loop circulation is established by connecting several components (peristaltic pump, air compliance unit, fluid divider, and reservoir) in series. In addition, to measure blood viscosity and RBC aggregation, a microfluidic platform composed of a microfluidic device, pinch valve, and syringe pump is created. During each period, blood viscosity and RBC aggregation are measured by monitoring blood flow at constant blood flow, and image intensity at stationary blood flow. The proposed method is first employed to evaluate the effect of hematocrits and dextran concentrations on the RBC aggregation and blood viscosity by using a syringe pump (i.e., specific blood flow-rate). The method is then applied to detect the blood viscosity and RBC aggregation under in-vitro closed-loop circulation (i.e., unspecific blood flow-rate). From these experimental demonstrations, it is found that the suggested method can be effectively used to monitor the RBC aggregation and blood viscosity under in-vitro closed-loop circulation. Since this method does not require periodic collection from closed-loop circulation or an additional procedure for estimating blood flow-rate with a syringe pump, it will be effectively used to monitor variations of blood circulating in extracorporeal bypass loops.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, South Korea
| |
Collapse
|
18
|
Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations. SENSORS 2017; 17:s17092037. [PMID: 28878199 PMCID: PMC5620946 DOI: 10.3390/s17092037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/02/2017] [Accepted: 09/04/2017] [Indexed: 01/29/2023]
Abstract
Red blood cell (RBC) aggregation and erythrocyte sedimentation rate (ESR) are considered to be promising biomarkers for effectively monitoring blood rheology at extremely low shear rates. In this study, a microfluidic-based measurement technique is suggested to evaluate RBC aggregation under hematocrit variations due to the continuous ESR. After the pipette tip is tightly fitted into an inlet port, a disposable suction pump is connected to the outlet port through a polyethylene tube. After dropping blood (approximately 0.2 mL) into the pipette tip, the blood flow can be started and stopped by periodically operating a pinch valve. To evaluate variations in RBC aggregation due to the continuous ESR, an EAI (Erythrocyte-sedimentation-rate Aggregation Index) is newly suggested, which uses temporal variations of image intensity. To demonstrate the proposed method, the dynamic characterization of the disposable suction pump is first quantitatively measured by varying the hematocrit levels and cavity volume of the suction pump. Next, variations in RBC aggregation and ESR are quantified by varying the hematocrit levels. The conventional aggregation index (AI) is maintained constant, unrelated to the hematocrit values. However, the EAI significantly decreased with respect to the hematocrit values. Thus, the EAI is more effective than the AI for monitoring variations in RBC aggregation due to the ESR. Lastly, the proposed method is employed to detect aggregated blood and thermally-induced blood. The EAI gradually increased as the concentration of a dextran solution increased. In addition, the EAI significantly decreased for thermally-induced blood. From this experimental demonstration, the proposed method is able to effectively measure variations in RBC aggregation due to continuous hematocrit variations, especially by quantifying the EAI.
Collapse
|
19
|
Introduction to Electrochemical Point-of-Care Devices. Bioanalysis 2017. [DOI: 10.1007/978-3-319-64801-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Zong S, Ji J, Li J, Yang QH, Ye M. Physicochemical properties and anticoagulant activity of polyphenols derived from Lachnum singerianum. J Food Drug Anal 2016; 25:837-844. [PMID: 28987360 PMCID: PMC9328885 DOI: 10.1016/j.jfda.2016.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/11/2016] [Accepted: 08/31/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, polyphenols (LSP) were obtained from the fermentation broth of Lachnum singerianum. Two fractions were isolated by Sephadex LH-20 chromatographic column, and the primary fraction (LSP-1) was collected. The comprehensive physicochemical properties of phenolic acids and polyhydroxy phenolic compounds of LSP-1 were determined by UV-visible spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography–mass spectrometry. Results of anticoagulant activity assay in vitro showed that LSP-1 could lengthen prothrombin time, activated partial thromboplastin time, and thrombin time of mouse plasma. In addition, anticoagulant activity results in vivo showed that high dose of LSP-1 could significantly prolong bleeding time, coagulation time, prothrombin time, activated partial thromboplastin time, and thrombin time of hypercoagulable mice induced by adrenaline, reduce the content of fibrinogen and enhance antithrombin III activity. All results indicated that the LSP-1 could serve well as an anticoagulant, and might be used as a potential natural drug candidate for thrombosis.
Collapse
Affiliation(s)
- Shuai Zong
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jing Ji
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Jinglei Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Qing-Hua Yang
- School of Medical Engineering, Hefei University of Technology, Hefei, China
| | - Ming Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
21
|
CheheiliSobbi S, van den Boogaard M, Slooter AJC, van Swieten HA, Ceelen L, Pop G, Abdo WF, Pickkers P. Absence of association between whole blood viscosity and delirium after cardiac surgery: a case-controlled study. J Cardiothorac Surg 2016; 11:132. [PMID: 27495293 PMCID: PMC4975921 DOI: 10.1186/s13019-016-0517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/27/2016] [Indexed: 12/02/2022] Open
Abstract
Background Delirium after cardiothoracic surgery is common and associated with impaired outcomes. Although several mechanisms have been proposed (including changes in cerebral perfusion), the pathophysiology of postoperative delirium remains unclear. Blood viscosity is related to cerebral perfusion and thereby might contribute to the development of delirium after cardiothoracic surgery. The aim of this study was to investigate whether whole blood viscosity differs between cardiothoracic surgery patients with and without delirium. Methods In this observational study postoperative whole blood viscosity of patients that developed delirium (cases) were compared with non-delirious cardiothoracic surgery patients (controls). Cases were matched with the controls, yielding a 1:4 case–control study. Serial hematocrit, fibrinogen, and whole blood viscosity were determined pre-operatively and at each postoperative day. Delirium was assessed using the validated Confusion Assessment Method for the Intensive Care Unit or Delirium Screening Observation scale. Results In total 80 cardiothoracic surgery patients were screened of whom 12 delirious and 48 matched non-delirious patients were included. No significant difference was found between both groups in fibrinogen (p = 0.36), hematocrit (p = 0.23) and the area under curve of the whole blood viscosity between shear rates 0.02 and 50 s-1 (p = 0.80) or between shear rates 0.02 and 5 s-1 (p = 0.78). Conclusion In this case control study in cardiothoracic surgery patients changes in whole blood viscosity were not associated with the development of delirium.
Collapse
Affiliation(s)
- Shokoufeh CheheiliSobbi
- Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands. .,Department of Cardiothoracic Surgery, Radboudumc, Nijmegen, The Netherlands. .,Department of Cardiology, Radboudumc, Nijmegen, The Netherlands.
| | | | - Arjen J C Slooter
- Department of Intensive Care Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Linda Ceelen
- Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Gheorghe Pop
- Department of Cardiology, Radboudumc, Nijmegen, The Netherlands
| | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Kang YJ, Ha YR, Lee SJ. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations. Analyst 2015; 141:319-30. [PMID: 26616556 DOI: 10.1039/c5an01988e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Red blood cell (RBC) deformability has been considered a potential biomarker for monitoring pathological disorders. High throughput and detection of subpopulations in RBCs are essential in the measurement of RBC deformability. In this paper, we propose a new method to measure RBC deformability by evaluating temporal variations in the average velocity of blood flow and image intensity of successively clogged RBCs in the microfluidic channel array for specific time durations. In addition, to effectively detect differences in subpopulations of RBCs, an air compliance effect is employed by adding an air cavity into a disposable syringe. The syringe was equally filled with a blood sample (V(blood) = 0.3 mL, hematocrit = 50%) and air (V(air) = 0.3 mL). Owing to the air compliance effect, blood flow in the microfluidic device behaved transiently depending on the fluidic resistance in the microfluidic device. Based on the transient behaviors of blood flows, the deformability of RBCs is quantified by evaluating three representative parameters, namely, minimum value of the average velocity of blood flow, clogging index, and delivered blood volume. The proposed method was applied to measure the deformability of blood samples consisting of homogeneous RBCs fixed with four different concentrations of glutaraldehyde solution (0%-0.23%). The proposed method was also employed to evaluate the deformability of blood samples partially mixed with normal RBCs and hardened RBCs. Thereafter, the deformability of RBCs infected by human malaria parasite Plasmodium falciparum was measured. As a result, the three parameters significantly varied, depending on the degree of deformability. In addition, the deformability measurement of blood samples was successfully completed in a short time (∼10 min). Therefore, the proposed method has significant potential in deformability measurement of blood samples containing hematological diseases with high throughput and precise detection of subpopulations in RBCs.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University, Gwangju, Republic of Korea
| | | | | |
Collapse
|
23
|
Karsten SL, Tarhan MC, Kudo LC, Collard D, Fujita H. Point-of-care (POC) devices by means of advanced MEMS. Talanta 2015; 145:55-9. [PMID: 26459443 DOI: 10.1016/j.talanta.2015.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 12/21/2022]
Abstract
Microelectromechanical systems (MEMS) have become an invaluable technology to advance the development of point-of-care (POC) devices for diagnostics and sample analyses. MEMS can transform sophisticated methods into compact and cost-effective microdevices that offer numerous advantages at many levels. Such devices include microchannels, microsensors, etc., that have been applied to various miniaturized POC products. Here we discuss some of the recent advances made in the use of MEMS devices for POC applications.
Collapse
Affiliation(s)
- Stanislav L Karsten
- NeuroInDx, Inc., E. 28th Street, Signal Hill, CA 90755, USA; Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Mehmet C Tarhan
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Lili C Kudo
- NeuroInDx, Inc., E. 28th Street, Signal Hill, CA 90755, USA
| | - Dominique Collard
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; LIMMS/CNRS-IIS (UMI 2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hiroyuki Fujita
- Center for International Research on MicroMechatronics, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
24
|
An instantaneous low-cost point-of-care anemia detection device. SENSORS 2015; 15:4564-77. [PMID: 25690552 PMCID: PMC4367425 DOI: 10.3390/s150204564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/28/2022]
Abstract
We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 μL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%.
Collapse
|
25
|
Punter-Villagrasa J, Cid J, Colomer-Farrarons J, Rodriguez-Villarreal I, Miribel-Catala PL. Toward an Anemia Early Detection Device Based on 50-μL Whole Blood Sample. IEEE Trans Biomed Eng 2015; 62:708-16. [DOI: 10.1109/tbme.2014.2364139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Soylu K, Gulel O, Yucel H, Yuksel S, Aksan G, Soylu Aİ, Demircan S, Yılmaz O, Sahin M. The effect of blood cell count on coronary flow in patients with coronary slow flow phenomenon. Pak J Med Sci 2014; 30:936-41. [PMID: 25225502 PMCID: PMC4163207 DOI: 10.12669/pjms.305.4935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background and Objective: The coronary slow flow phenomenon (CSFP) is a coronary artery disease with a benign course, but its pathological mechanisms are not yet fully understood.The purpose of this controlled study was to investigate the cellular content of blood in patients diagnosed with CSFP and the relationship of this with coronary flow rates. Methods: Selective coronary angiographies of 3368 patients were analyzed to assess Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) values. Seventy eight of them had CSFP, and their demographic and laboratory findings were compared with 61 patients with normal coronary flow. Results: Patients’ demographic characteristics were similar in both groups. Mean corrected TFC (cTFC) values were significantly elevated in CSFP patients (p<0.001). Furthermore, hematocrit and hemoglobin values, and eosinophil and basophil counts of the CSFP patients were significantly elevated compared to the values obtained in the control group (p=0.005, p=0.047, p=0.001 and p=0.002, respectively). The increase observed in hematocrit and eosinophil levels showed significant correlations with increased TFC values (r=0.288 and r=0.217, respectively). Conclusion: Significant changes have been observed in the cellular composition of blood in patients diagnosed with CSFP as compared to the patients with normal coronary blood flow. The increases in hematocrit levels and in the eosinophil and basophil counts may have direct or indirect effects on the rate of coronary blood flow.
Collapse
Affiliation(s)
- Korhan Soylu
- Korhan Soylu, MD, Assistant Professor, Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Okan Gulel
- Okan Gulel, MD, Associate Professor, Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Huriye Yucel
- Huriye Yucel, MD, Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Serkan Yuksel
- Serkan Yuksel, MD, Assistant Professor, Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Gokhan Aksan
- Gokhan Aksan, MD, Department of Cardiology, Gazi State Hospital, Samsun, Turkey
| | - Ayşegül İdil Soylu
- Ayşegül İdil Soylu, MD, Department of Radiology, Samsun Education Research Hospital, Samsun, Turkey
| | - Sabri Demircan
- Sabri Demircan, MD, Associate Professor, Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ozcan Yılmaz
- Özcan Yılmaz, MD, Professor, Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mahmut Sahin
- Mahmut Sahin, MD, Professor, Department of Cardiology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
27
|
Kang YJ, Ha YR, Lee SJ. Microfluidic-based measurement of erythrocyte sedimentation rate for biophysical assessment of blood in an in vivo malaria-infected mouse. BIOMICROFLUIDICS 2014; 8:044114. [PMID: 25379099 PMCID: PMC4189293 DOI: 10.1063/1.4892037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/23/2014] [Indexed: 05/26/2023]
Abstract
This study suggests a new erythrocyte sedimentation rate (ESR) measurement method for the biophysical assessment of blood by using a microfluidic device. For an effective ESR measurement, a disposable syringe filled with blood is turned upside down and aligned at 180° with respect to gravitational direction. When the blood sample is delivered into the microfluidic device from the top position of the syringe, the hematocrit of blood flowing in the microfluidic channel decreases because the red blood cell-depleted region is increased from the top region of the syringe. The variation of hematocrit is evaluated by consecutively capturing images and conducting digital image processing technique for 10 min. The dynamic variation of ESR is quantitatively evaluated using two representative parameters, namely, time constant (λ) and ESR-area (AESR). To check the performance of the proposed method, blood samples with various ESR values are prepared by adding different concentrations of dextran solution. λ and AESR are quantitatively evaluated by using the proposed method and a conventional method, respectively. The proposed method can be used to measure ESR with superior reliability, compared with the conventional method. The proposed method can also be used to quantify ESR of blood collected from malaria-infected mouse under in vivo condition. To indirectly compare with the results obtained by the proposed method, the viscosity and velocity of the blood are measured using the microfluidic device. As a result, the biophysical properties, including ESR and viscosity of blood, are significantly influenced by the parasitemia level. These experimental demonstrations support the notion that the proposed method is capable of effectively monitoring the biophysical properties of blood.
Collapse
Affiliation(s)
- Yang Jun Kang
- Department of Mechanical Engineering, Chosun University , Gwangju, South Korea
| | - Young-Ran Ha
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology , Pohang, South Korea
| | | |
Collapse
|
28
|
Yeom E, Kang YJ, Lee SJ. Changes in velocity profile according to blood viscosity in a microchannel. BIOMICROFLUIDICS 2014; 8:034110. [PMID: 25377092 PMCID: PMC4162413 DOI: 10.1063/1.4883275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/03/2014] [Indexed: 05/14/2023]
Abstract
Red blood cells (RBCs) are important to dictate hemorheological properties of blood. The shear-thinning effect of blood is mainly attributed to the characteristics of the RBCs. Variations in hemorheological properties alter flow resistance and wall shear stress in blood vessels. Therefore, detailed understanding of the relationship between the hemorheological and hemodynamic properties is of great importance. In this study, blood viscosity and blood flow were simultaneously measured in the same microfluidic device by monitoring the flow-switching phenomenon. To investigate blood flows according to hemorheological variations, the flow rate of blood samples (RBCs suspended in autologous plasma, dextran-treated plasma, and in phosphate buffered saline solution) was precisely controlled with a syringe pump. Velocity profiles of blood flows were measured by using a micro-particle imagevelocimetry technique. The shape of velocity profiles was quantified by using a curve-fitting equation. It is found that the shape of the velocity profiles is highly correlated with blood viscosity. To demonstrate the relationship under ex vivo conditions, biophysical properties and velocity profiles were measured in an extracorporeal rat bypass loop. Experimental results show that increased blood viscosity seems to induce blunt velocity profile with high velocity component at the wall of the microchannel. Simultaneous measurement of blood viscosity and velocity profile would be useful for understanding the effects of hemorheological features on the hemodynamic characteristics in capillary blood vessels.
Collapse
Affiliation(s)
- Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology , Pohang, South Korea
| | - Yang Jun Kang
- Department of Mechanical Engineering, Chosun University , Gwangju, South Korea
| | - Sang-Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology , Pohang, South Korea
| |
Collapse
|
29
|
Kang YJ, Yeom E, Lee SJ. Microfluidic Biosensor for Monitoring Temporal Variations of Hemorheological and Hemodynamic Properties Using an Extracorporeal Rat Bypass Loop. Anal Chem 2013; 85:10503-11. [DOI: 10.1021/ac402505z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Jun Kang
- Center
for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 Republic of Korea
| | - Eunseop Yeom
- Department
of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk, 790-784 Republic of Korea
| | - Sang-Joon Lee
- Center
for Biofluid and Biomimic Research, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 Republic of Korea
- Department
of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk, 790-784 Republic of Korea
| |
Collapse
|
30
|
Jun Kang Y, Yeom E, Lee SJ. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network. BIOMICROFLUIDICS 2013; 7:54111. [PMID: 24404074 PMCID: PMC3799722 DOI: 10.1063/1.4823586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 09/16/2013] [Indexed: 05/07/2023]
Abstract
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.
Collapse
Affiliation(s)
- Yang Jun Kang
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea
| | - Eunseop Yeom
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea ; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
31
|
Jun Kang Y, Ryu J, Lee SJ. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel. BIOMICROFLUIDICS 2013; 7:44106. [PMID: 24404040 PMCID: PMC3739827 DOI: 10.1063/1.4816713] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/11/2013] [Indexed: 05/07/2023]
Abstract
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio ( R J L / R L , fluidic resistance in the junction channel ( R J L ) to fluidic resistance in the side channel ( R L )) strongly affects the measurement accuracy. The microfluidic device with smaller R J L / R L values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures.
Collapse
Affiliation(s)
- Yang Jun Kang
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea
| | - Jeongeun Ryu
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea ; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
32
|
Jun Kang Y, Lee SJ. Blood viscoelasticity measurement using steady and transient flow controls of blood in a microfluidic analogue of Wheastone-bridge channel. BIOMICROFLUIDICS 2013; 7:54122. [PMID: 24396531 PMCID: PMC3829929 DOI: 10.1063/1.4827355] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/16/2013] [Indexed: 05/06/2023]
Abstract
Accurate measurement of blood viscoelasticity including viscosity and elasticity is essential in estimating blood flows in arteries, arterials, and capillaries and in investigating sub-lethal damage of RBCs. Furthermore, the blood viscoelasticity could be clinically used as key indices in monitoring patients with cardiovascular diseases. In this study, we propose a new method to simultaneously measure the viscosity and elasticity of blood by simply controlling the steady and transient blood flows in a microfluidic analogue of Wheastone-bridge channel, without fully integrated sensors and labelling operations. The microfluidic device is designed to have two inlets and outlets, two side channels, and one bridge channel connecting the two side channels. Blood and PBS solution are simultaneously delivered into the microfluidic device as test fluid and reference fluid, respectively. Using a fluidic-circuit model for the microfluidic device, the analytical formula is derived by applying the linear viscoelasticity model for rheological representation of blood. First, in the steady blood flow, the relationship between the viscosity of blood and that of PBS solution (μBlood /μPBS ) is obtained by monitoring the reverse flows in the bridge channel at a specific flow-rate rate (QPBS (SS) /QBlood (L) ). Next, in the transient blood flow, a sudden increase in the blood flow-rate induces the transient behaviors of the blood flow in the bridge channel. Here, the elasticity (or characteristic time) of blood can be quantitatively measured by analyzing the dynamic movement of blood in the bridge channel. The regression formula (ABlood (t) = A α + A β exp [-(t - t 0 )/λBlood ]) is selected based on the pressure difference (ΔP = PA - PB ) at each junction (A, B) of both side channels. The characteristic time of blood (λBlood ) is measured by analyzing the area (ABlood ) filled with blood in the bridge channel by selecting an appropriate detection window in the microscopic images captured by a high-speed camera (frame rate = 200 Hz, total measurement time = 7 s). The elasticity of blood (GBlood ) is identified using the relationship between the characteristic time and the viscosity of blood. For practical demonstrations, the proposed method is successfully applied to evaluate the variations in viscosity and elasticity of various blood samples: (a) various hematocrits form 20% to 50%, (b) thermal-induced treatment (50 °C for 30 min), (c) flow-induced shear stress (53 ± 0.5 mL/h for 120 min), and (d) normal rat versus spontaneously hypertensive rat. Based on these experimental demonstrations, the proposed method can be effectively used to monitor variations in viscosity and elasticity of bloods, even with the absence of fully integrated sensors, tedious labeling and calibrations.
Collapse
Affiliation(s)
- Yang Jun Kang
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea
| | - Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, South Korea ; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|