1
|
Li L, Gopinath SC, Lakshmipriya T, Subramaniam S, Anbu P. Zeolite-iron oxide integrated interdigitated electrode sensor for diagnosing cervical cancer. Heliyon 2024; 10:e31851. [PMID: 38845893 PMCID: PMC11154609 DOI: 10.1016/j.heliyon.2024.e31851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Cervical cancer is caused by changes in the cervix that lead to precancerous cells and eventually progress to cancer. Human papillomavirus (HPV) infections are the primary cause of cervical cancer. Early detection of HPV is crucial in preventing cervical cancer, and regular screening for HPV infection can identify cell changes before they develop into cancer. While Pap smear tests are reliable for cervical cancer screening, they are critical, expensive, and labor-intensive. Therefore, researchers are focusing on identifying blood-based biomarkers using biosensors for cervical cancer screening. HPV strains 16, 45, and 18 are common culprits in cervical cancer. This study aimed to develop an HPV-16 DNA biosensor on a zeolite-iron oxide (zeolite-IO) modified interdigitated electrode (IDE) sensor. The DNA probe was immobilized on the IDE through amine-modified zeolite-IO, enhancing the hybridization of the target and DNA probe. The detection limit of the DNA-DNA duplex was found to be 7.5 pM with an R2 value of 0.9868. Additionally, control experiments with single and triple mismatched sequences showed no increase in current responses, and the identification of target DNA in a serum-spiked sample indicated specific and selective target identification.
Collapse
Affiliation(s)
- Ling Li
- Obstetrics and Gynecology, Xi'an Forth Hospital, Xi'an, 710004, China
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Thangavel Lakshmipriya
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Sreeramanan Subramaniam
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Georgetown, 11800, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Periasamy Anbu
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| |
Collapse
|
2
|
Li S, Huang S, Ke Y, Chen H, Dang J, Huang C, Liu W, Cui D, Wang J, Zhi X, Ding X. A HiPAD Integrated with rGO/MWCNTs Nano-Circuit Heater for Visual Point-of-Care Testing of SARS-CoV-2. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2100801. [PMID: 34230825 PMCID: PMC8250055 DOI: 10.1002/adfm.202100801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Indexed: 05/03/2023]
Abstract
Nowadays, the main obstacle for further miniaturization and integration of nucleic acids point-of-care testing devices is the lack of low-cost and high-performance heating materials for supporting reliable nucleic acids amplification. Herein, reduced graphene oxide hybridized multi-walled carbon nanotubes nano-circuit integrated into an ingenious paper-based heater is developed, which is integrated into a paper-based analytical device (named HiPAD). The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still raging across the world. As a proof of concept, the HiPAD is utilized to visually detect the SARS-CoV-2 N gene using colored loop-mediated isothermal amplification reaction. This HiPAD costing a few dollars has comparable detection performance to traditional nucleic acids amplifier costing thousands of dollars. The detection range is from 25 to 2.5 × 1010 copies mL-1 in 45 min. The detection limit of 25 copies mL-1 is 40 times more sensitive than 1000 copies mL-1 in conventional real-time PCR instruments. The disposable paper-based chip could also avoid potential secondary transmission of COVID-19 by convenient incineration to guarantee biosafety. The HiPAD or easily expanded M-HiPAD (for multiplex detection) has great potential for pathogen diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Sijie Li
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Shiyi Huang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Yuqing Ke
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute518 Ziyue Road, Minhang DistrictShanghai200241China
| | - Jingqi Dang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Chengjie Huang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Wenjia Liu
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Daxiang Cui
- Shanghai Engineering Center for Intelligent Diagnosis and Treatment InstrumentSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong University800 Dongchuan RD, Minghang DistrictShanghai200240China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and BiosecurityInstitute of Microbiology and Epidemiology20 Dongda Street, Fengtai DistrictBeijing100071China
| | - Xiao Zhi
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong University1954 Huashan RD, Xuhui DistrictShanghai200030China
| |
Collapse
|
3
|
Paul R, Ostermann E, Wei Q. Advances in point-of-care nucleic acid extraction technologies for rapid diagnosis of human and plant diseases. Biosens Bioelectron 2020; 169:112592. [PMID: 32942143 PMCID: PMC7476893 DOI: 10.1016/j.bios.2020.112592] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.
Collapse
Affiliation(s)
- Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Emily Ostermann
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA; Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
4
|
Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochim Acta 2019; 187:70. [PMID: 31853644 DOI: 10.1007/s00604-019-3822-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
Abstract
This review (with 187 refs.) summarizes the progress that has been made in the design of lateral flow biosensors (LFBs) based on the use of micro- and nano-materials. Following a short introduction into the field, a first section covers features related to the design of LFBs, with subsections on strip-based, cotton thread-based and vertical flow- and syringe-based LFBs. The next chapter summarizes methods for sample pretreatment, from simple method to membrane-based methods, pretreatment by magnetic methods to device-integrated sample preparation. Advances in flow control are treated next, with subsections on cross-flow strategies, delayed and controlled release and various other strategies. Detection conditionst and mathematical modelling are briefly introduced in the following chapter. A further chapter covers methods for reliability improvement, for example by adding other validation lines or adopting different detection methods. Signal readouts are summarized next, with subsections on color-based, luminescent, smartphone-based and SERS-based methods. A concluding section summarizes the current status and addresses challenges in future perspectives. Graphical abstractRecent development and breakthrough points of lateral flow biosensors.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Wenqian Wang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China
| | - Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China. .,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
5
|
Optical fiber amplifier for quantitative and sensitive point-of-care testing of myoglobin and miRNA-141. Biosens Bioelectron 2019; 129:87-92. [DOI: 10.1016/j.bios.2018.12.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
|
6
|
Xu J, Qian J, Li H, Wu ZS, Shen W, Jia L. Intelligent DNA machine for the ultrasensitive colorimetric detection of nucleic acids. Biosens Bioelectron 2016; 75:41-7. [DOI: 10.1016/j.bios.2015.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2015] [Revised: 07/22/2015] [Accepted: 08/10/2015] [Indexed: 01/14/2023]
|
7
|
A novel GMO biosensor for rapid ultrasensitive and simultaneous detection of multiple DNA components in GMO products. Biosens Bioelectron 2015; 66:431-7. [DOI: 10.1016/j.bios.2014.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2014] [Revised: 11/17/2014] [Accepted: 12/01/2014] [Indexed: 01/07/2023]
|
8
|
Giamblanco N, Conoci S, Russo D, Marletta G. Single-step label-free hepatitis B virus detection by a piezoelectric biosensor. RSC Adv 2015. [DOI: 10.1039/c5ra03467a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
Probe densityvs.genome recognition selectivity.
Collapse
Affiliation(s)
- Nicoletta Giamblanco
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN)
- Department of Chemical Sciences
- University of Catania and CSGI
- 95125 Catania
- Italy
| | | | | | - Giovanni Marletta
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN)
- Department of Chemical Sciences
- University of Catania and CSGI
- 95125 Catania
- Italy
| |
Collapse
|
9
|
Yao CY, Fu WL. Biosensors for hepatitis B virus detection. World J Gastroenterol 2014; 20:12485-12492. [PMID: 25253948 PMCID: PMC4168081 DOI: 10.3748/wjg.v20.i35.12485] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2014] [Revised: 03/01/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.
Collapse
|