1
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
2
|
Rai P, Hoba SN, Buchmann C, Subirana-Slotos RJ, Kersten C, Schirmeister T, Endres K, Bufe B, Tarasov A. Protease detection in the biosensor era: A review. Biosens Bioelectron 2024; 244:115788. [PMID: 37952320 DOI: 10.1016/j.bios.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Proteases have been proposed as potential biomarkers for several pathological conditions including cancers, multiple sclerosis and cardiovascular diseases, due to their ability to break down the components of extracellular matrix and basement membrane. The development of protease biosensors opened up the possibility to investigate the proteolytic activity of dysregulated proteases with higher efficiency over the traditional detection assays due to their quick detection capability, high sensitivity and selectivity, simple instrumentation and cost-effective fabrication processes. In contrast to the recently published review papers that primarily focused on one specific class of proteases or one specific detection method, this review article presents different optical and electrochemical detection methods that can be used to design biosensors for all major protease families. The benefits and drawbacks of various transducer techniques integrated into protease biosensing platforms are analyzed and compared. The main focus is on activity-based biosensors that use peptides as biorecognition elements. The effects of nanomaterials on biosensor performance are also discussed. This review should help readers to select the biosensor that best fits their needs, and contribute to the further development of this research field. Protease biosensors may allow better comprehension of protease overexperession and potentially enable novel devices for point-of-care testing.
Collapse
Affiliation(s)
- Pratika Rai
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Celine Buchmann
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Robert J Subirana-Slotos
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 5, 55128, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Bernd Bufe
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany
| | - Alexey Tarasov
- Faculty of Computer Sciences and Microsystems Technology, Kaiserslautern University of Applied Sciences, Amerikastr.1, 66482, Zweibrücken, Germany.
| |
Collapse
|
3
|
Ultrafast one-minute electronic detection of SARS-CoV-2 infection by 3CL pro enzymatic activity in untreated saliva samples. Nat Commun 2022; 13:6375. [PMID: 36289211 PMCID: PMC9605950 DOI: 10.1038/s41467-022-34074-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Since its onset in December 2019, severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, has caused over 6.5 million deaths worldwide as of October 2022. Attempts to curb viral transmission rely heavily on reliable testing to detect infections since a large number of transmissions are carried through asymptomatic individuals. Many available detection methods fall short in terms of reliability or point-of-care applicability. Here, we report an electrochemical approach targeting a viral proteolytic enzyme, 3CLpro, as a marker of active infection. We detect proteolytic activity directly from untreated saliva within one minute of sample incubation using a reduction-oxidation pH indicator. Importantly, clinical tests of saliva samples from 50 subjects show accurate detection of SARS-CoV-2, with high sensitivity and specificity, validated by PCR testing. These, coupled with our platform's ultrafast detection, simplicity, low cost and point-of-care compatibility, make it a promising method for the real-world SARS-CoV-2 mass-screening.
Collapse
|
4
|
Rodriguez-Rios M, Megia-Fernandez A, Norman DJ, Bradley M. Peptide probes for proteases - innovations and applications for monitoring proteolytic activity. Chem Soc Rev 2022; 51:2081-2120. [PMID: 35188510 DOI: 10.1039/d1cs00798j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Maria Rodriguez-Rios
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Alicia Megia-Fernandez
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Daniel J Norman
- Technical University of Munich, Trogerstrasse, 30, 81675, Munich, Germany
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
5
|
Feng Y, Liu G, La M, Liu L. Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles. Molecules 2022; 27:molecules27030615. [PMID: 35163874 PMCID: PMC8840628 DOI: 10.3390/molecules27030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been regarded as one of the ideal targets for the development of antiviral drugs. The currently used methods for the probing of Mpro activity and the screening of its inhibitors require the use of a double-labeled peptide substrate. In this work, we suggested that the label-free peptide substrate could induce the aggregation of AuNPs through the electrostatic interactions, and the cleavage of the peptide by the Mpro inhibited the aggregation of AuNPs. This fact allowed for the visual analysis of Mpro activity by observing the color change of the AuNPs suspension. Furthermore, the co-assembly of AuNPs and peptide was achieved on the peptide-covered electrode surface. Cleavage of the peptide substrate by the Mpro limited the formation of AuNPs/peptide assembles, thus allowing for the development of a simple and sensitive electrochemical method for Mpro detection in serum samples. The change of the electrochemical signal was easily monitored by electrochemical impedance spectroscopy (EIS). The detection limits of the colorimetric and electrochemical methods are 10 and 0.1 pM, respectively. This work should be valuable for the development of effective antiviral drugs and the design of novel optical and electrical biosensors.
Collapse
Affiliation(s)
- Yunxiao Feng
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450011, China
| | - Ming La
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
- Correspondence: (M.L.); (L.L.)
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- Correspondence: (M.L.); (L.L.)
| |
Collapse
|
6
|
Abstract
A new approach to on-resin detection of three model proteases (trypsin, chymotrypsin, and thrombin) has been developed, while at the same time already described methodology for simultaneous detection of two enzymes (trypsin and chymotrypsin) has been additionally generalized. Appropriate immobilized substrates, comprising specifically cleavable peptide sequences capped with fluorescent dyes, have been synthesized on Rink Amide PEGA resin or Amino PEGA resin modified with backbone amide linker (BAL). Resulting solid support-bound probes were then dispersed into Tris-HCl buffer solution (pH = 8.0) and subjected to enzymatic cleavage. Liberated fluorophores have been tracked by fluorescence measuring. The competitive activities of studied proteases towards the thrombin probe have been efficiently limited and controlled by employing a Bowman-Birk inhibitor into a system.
Collapse
|
7
|
Cherenkov IA, Krivilev MD, Ignat’eva MM, Vakhrusheva EV, Sergeev VG. Bioelectrochemical Modeling of Toluidine Blue Diffusion in a Hydrogel in the Presence of Peroxidase and Trypsin. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092105002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Hu Q, Su L, Chen Z, Huang Y, Qin D, Niu L. Coenzyme-Mediated Electro-RAFT Polymerization for Amplified Electrochemical Interrogation of Trypsin Activity. Anal Chem 2021; 93:9602-9608. [PMID: 34185503 DOI: 10.1021/acs.analchem.1c01766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypsin is a key proteolytic enzyme in the digestive system and its abnormal levels are indicative of some pancreatic diseases. Taking advantage of the coenzyme-mediated electrografting of ferrocenyl polymers as a novel strategy for signal amplification, herein, a signal-on cleavage-based electrochemical biosensor is reported for the highly selective interrogation of trypsin activity at ultralow levels. The construction of the trypsin biosensor involves (i) the immobilization of peptide substrates (without free carboxyl groups) via the N-terminus, (ii) the tryptic cleavage of peptide substrates, (iii) the site-specific labeling of the reversible addition-fragmentation chain transfer (RAFT) agents, and (iv) the grafting of ferrocenyl polymers through the electro-RAFT (eRAFT) polymerization, which is mediated by potentiostatic reduction of nicotinamide adenine dinucleotide (NAD+) coenzymes. Through the NAD+-mediated eRAFT (NAD+-eRAFT) polymerization of ferrocenylmethyl methacrylate (FcMMA), the presence of a few tryptic cleavage events can eventually result in the recruitment of a considerable amount of ferrocene redox tags. Obviously, the NAD+-eRAFT polymerization is low-cost and easy to operate as a highly efficient strategy for signal amplification. As expected, the as-constructed biosensor is highly selective and sensitive toward the signal-on interrogation of trypsin activity. Under optimal conditions, the detection limit can be as low as 18.2 μU/mL (∼72.8 pg/mL). The results also demonstrate that the as-constructed electrochemical trypsin biosensor is applicable to inhibitor screening and the interrogation of enzyme activity in the presence of complex sample matrices. Moreover, it is low-cost, less susceptible to false-positive results, and relatively easy to fabricate, thus holding great potential in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Qiong Hu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Luofeng Su
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhuohua Chen
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yanyu Huang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongdong Qin
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Li CP, Liu F, Zheng J, Zhao H. A novel electrochemical assay for chymosin determination using a label-free peptide as a substrate. J Dairy Sci 2021; 104:2511-2519. [PMID: 33455776 DOI: 10.3168/jds.2020-19282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
Chymosin is a predominant enzyme in rennet and is used in cheese production because of its excellent milk-clotting activity. Herein, we proposed a facile and label-free electrochemical method for determining chymosin activity based on a peptide-based enzyme substrate. The synthesized substrate peptide for chymosin was assembled onto the surface of the Au-deposited grassy carbon electrode. The current was proportional to chymosin activity, and thus chymosin activity could be determined. The detection ranges of chymosin activity were 2.5 to 25 U mL-1. The detection limit of chymosin activity was 0.8 U mL-1. The sensing platform was used to quantify chymosin activity in commercial rennet with high selectivity, excellent stability, and satisfactory reproducibility. We developed a facile, fast, and effective electrochemical assay for detecting chymosin activity, which has potential applications in cheesemaking.
Collapse
Affiliation(s)
- Can-Peng Li
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China.
| | - Feng Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China
| | - Jing Zheng
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, 2 North Cuihu Road, Kunming 650091, People's Republic of China.
| |
Collapse
|
10
|
Hu Q, Bao Y, Gan S, Zhang Y, Han D, Niu L. Electrochemically controlled grafting of polymers for ultrasensitive electrochemical assay of trypsin activity. Biosens Bioelectron 2020; 165:112358. [DOI: 10.1016/j.bios.2020.112358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022]
|
11
|
Adem S, Jain S, Sveiven M, Zhou X, O'Donoghue AJ, Hall DA. Giant magnetoresistive biosensors for real-time quantitative detection of protease activity. Sci Rep 2020; 10:7941. [PMID: 32409675 PMCID: PMC7224196 DOI: 10.1038/s41598-020-62910-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Proteases are enzymes that cleave proteins and are crucial to physiological processes such as digestion, blood clotting, and wound healing. Unregulated protease activity is a biomarker of several human diseases. Synthetic peptides that are selectively hydrolyzed by a protease of interest can be used as reporter substrates of unregulated protease activity. We developed an activity-based protease sensor by immobilizing magnetic nanoparticles (MNPs) to the surface of a giant magnetoresistive spin-valve (GMR SV) sensor using peptides. Cleavage of these peptides by a protease releases the magnetic nanoparticles resulting in a time-dependent change in the local magnetic field. Using this approach, we detected a significant release of MNPs after 3.5 minutes incubation using just 4 nM of the cysteine protease, papain. In addition, we show that proteases in healthy human urine do not release the MNPs, however addition of 20 nM of papain to the urine samples resulted in a time-dependent change in magnetoresistance. This study lays the foundation for using GMR SV sensors as a platform for real-time, quantitative detection of protease activity in biological fluids.
Collapse
Affiliation(s)
- Sandeep Adem
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Sonal Jain
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Michael Sveiven
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA
| | - Xiahan Zhou
- University of California - San Diego, Department of Electrical and Computer Engineering, La Jolla, CA, 92093, USA
| | - Anthony J O'Donoghue
- University of California - San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, 92093, USA.
| | - Drew A Hall
- University of California - San Diego, Department of Bioengineering, La Jolla, CA, 92093, USA.
- University of California - San Diego, Department of Electrical and Computer Engineering, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
A Matrix Metalloproteinase Sensing Biosensor for the Evaluation of Chronic Wounds. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3403-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Electrochemical assay for 20S proteasome activity and inhibition with anti-cancer drugs. Talanta 2019; 199:32-39. [DOI: 10.1016/j.talanta.2019.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/09/2023]
|
14
|
Song L, Zhang L, Xu K, Huang Y, Gao P, Fang H, Zhang J, Nie Z, Chen T. Fluorescent microsphere probe for rapid qualitative and quantitative detection of trypsin activity. NANOSCALE ADVANCES 2019; 1:162-167. [PMID: 36132465 PMCID: PMC9473197 DOI: 10.1039/c8na00111a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/15/2018] [Indexed: 06/15/2023]
Abstract
Current technologies still face a big challenge to achieve simultaneous rapid qualitative and quantitative detection of trypsin. In our present study, we developed a simple and effective strategy to sensitively, qualitatively and quantitatively analyze the activity of trypsin using a fluorescent polystyrene (PS) microsphere probe. PS spheres were first functionalized by the surface coating of polyethylene glycol (PEG), which could significantly decrease the possibility of nonspecific physical adsorption of the fluorescein isothiocyanate isomer-modified peptide (peptide-FITC). Then, the obtained PS-PEG spheres were chemically interacted with peptide-FITC, which were then employed to monitor the real-time activity of trypsin. The peptide used in our work contained rich lysine and arginine residues, which were the recognition sites of trypsin. When trypsin interacted with the PS-FITC-peptide microspheres, the peptide-FITC rapidly decomposed into free small fragments in solution, resulting in a gradual decrease in the fluorescence of the PS spheres. By taking advantage of the fluorescence changes using confocal microscopy imaging and fluorescence spectrum intensity, it is easy to achieve the qualitative and quantitative detection of trypsin, with a highly sensitive detection limit as low as 0.5 ng mL-1 and high selectivity. Thus, the designed fluorescent PS microsphere probe would be very promising in various applications such as food safety inspection, personal healthcare and on-site environmental monitoring.
Collapse
Affiliation(s)
- Liping Song
- Division of Polymer and Composite Materials, Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science 1219 Zhongguan West Road Ningbo 315201 China
- University of Chinese Academy of Sciences 19A, Yuquan Road Beijing 100049 China
| | - Lei Zhang
- Division of Polymer and Composite Materials, Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science 1219 Zhongguan West Road Ningbo 315201 China
| | - Kai Xu
- Department of Urology, Zhujiang Hospital of Southern Medical University Guangzhou China
| | - Youju Huang
- Division of Polymer and Composite Materials, Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science 1219 Zhongguan West Road Ningbo 315201 China
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Pan Gao
- Zhejiang Cellpro Biotech Co.,Ltd, Ningbo National High-tech Building No. 2 Elite Tech Park, 139 Xinhui Rd. Ningbo Zhejiang China
| | - Haiyan Fang
- Zhejiang Cellpro Biotech Co.,Ltd, Ningbo National High-tech Building No. 2 Elite Tech Park, 139 Xinhui Rd. Ningbo Zhejiang China
| | - Jiawei Zhang
- Division of Polymer and Composite Materials, Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science 1219 Zhongguan West Road Ningbo 315201 China
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Tao Chen
- Division of Polymer and Composite Materials, Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science 1219 Zhongguan West Road Ningbo 315201 China
- University of Chinese Academy of Sciences 19A, Yuquan Road Beijing 100049 China
| |
Collapse
|
15
|
Yao D, Zhao W, Zhang L, Tian Y. A ratiometric electrochemical strategy for sensitive determination of Furin activity based on dual signal amplification and antifouling nanosurfaces. Analyst 2018; 142:4215-4220. [PMID: 29058010 DOI: 10.1039/c7an01295k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Developing a sensitive and accurate method for Furin activity is still the bottleneck for understanding the role played by Furin in cell-surface systems and even in Alzheimer's disease. In this work, a ratiometric electrochemical biosensor was developed for sensitive and accurate determination of Furin activity in the cell based on dual signal amplification stemming from a peptide with multiple response sites and the antifouling gold nano-bellflowers (GBFs). A new peptide, HS-CMRVRR↓YKDFDFG (P3), was designed for the first time to be selectively cleaved by Furin at site↓. More importantly, this peptide P3 constitutes three amino acid residues with the -COOH group subsequently used to bind with the response molecule of ferrocene, and can remarkably improve the determination sensitivity by about 2.3 fold. Meanwhile, GBFs stabilized by PEG were taken as a second element to magnify the signal of the ferrocene group via a large ratio surface area and good conductivity, as well as an antibiofouling nanosurface to reduce the biofouling of the electrode surface in cells. This double amplification strategy can greatly enhance the sensitivity of Furin detection by 6.5-fold, which is favorable for detection of low amounts of Furin. In addition, 5'-MB-GGCGCGA(T)13-SH-3' was co-assembled as an inner reference to provide a built-in element to correct the determination error resulting from a complicated analysis environment. Finally, this sensitive and accurate Furin biosensor was successfully applied to detect Furin activity in Furin overexpressed U251 and MDA-MB-468 cells. As far as we know, this is the first report to mention an electrochemical strategy to detect Furin activity in cells.
Collapse
Affiliation(s)
- Dazhi Yao
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dong Chuan Road 500, Shanghai 200241, P.R. China.
| | | | | | | |
Collapse
|
16
|
Abstract
Proteases play a pivotal role in regulating important physiological processes from food digestion to blood clotting. They are also important biomarkers for many diseases such as cancers. The importance of proteases has led to extensive efforts in the screening of proteases and their inhibitors as potential drug molecules. For example, human immunodeficiency virus (HIV) patients have been treated with HIV-1 protease inhibitors to prolong the life expectancy of patients. Such a close relationship between diseases and proteases provides a strong motivation for developing sensitive, selective, and robust protease assays and sensors, which can be exploited to discover new proteases and inhibitors. In this aspect, protease assays based on levels of proteolytic activities are more relevant than protease affinity assays such as immunoassays. In this review, recent developments of protease activity assays based on different detection principles are discussed and compared. For homogenous assays, fluorescence-based techniques are the most popular due to their high sensitivity and quantitative results. However, homogeneous assays have limited multiplex sensing capabilities. In contrast, heterogeneous assays can be employed to detect multiple proteases simultaneously, given the microarray technology that is already available. Among them, electrochemical methods, surface spectroscopy techniques, and enzyme-linked peptide protease assays are commonly used. Finally, recent developments in liquid crystal (LC)-based protease assays and their applications for detecting proteases and their inhibitors are discussed.
Collapse
Affiliation(s)
| | - Kun-Lin Yang
- National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| |
Collapse
|
17
|
Su D, Wang M, Liu Q, Qu Z, Su X. A novel fluorescence strategy for mercury ion and trypsin activity assay based on nitrogen-doped graphene quantum dots. NEW J CHEM 2018. [DOI: 10.1039/c8nj02790k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent detection of Hg2+ and trypsin based on trypsin-modulated competition between Hg2+, N-GQDs and HSA.
Collapse
Affiliation(s)
- Dandan Su
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Mengke Wang
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Qing Liu
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhengyi Qu
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
18
|
El Harrad L, Amine A. Chronoamperometric Biosensor for Protease Activity Assay and Inhibitor Screening. ELECTROANAL 2017. [DOI: 10.1002/elan.201700340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Loubna El Harrad
- Laboratoire de Génie des Procédés et Environnement, Faculty of Science and Techniques; Hassan II University of Casablanca; B.P.146 Mohammedia Morocco
| | - Aziz Amine
- Laboratoire de Génie des Procédés et Environnement, Faculty of Science and Techniques; Hassan II University of Casablanca; B.P.146 Mohammedia Morocco
| |
Collapse
|
19
|
Liu T, Meng F, Cheng W, Sun H, Luo Y, Tang Y, Miao P. Preparation of a Peptide-Modified Electrode for Capture and Voltammetric Determination of Endotoxin. ACS OMEGA 2017; 2:2469-2473. [PMID: 30023666 PMCID: PMC6044874 DOI: 10.1021/acsomega.7b00495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/22/2017] [Indexed: 05/10/2023]
Abstract
Endotoxin is the major structural constituent of the outer membrane of Gram-negative bacteria, which is a great threat to human health. Herein, a sensitive electrochemical biosensor for the detection of endotoxin is established by recording the voltammetric responses of the peptide-modified electrode. The utilized peptide has a high affinity for the target endotoxin, which ensures the high selectivity of this method. After the capture of endotoxin on the electrode surface, a negatively charged layer is formed, and the electron-transfer process is significantly hindered because of the increased steric hindrance and the electrostatic repulsion. The declined electrochemical signal could be used to indicate the concentration of endotoxin. This method is simple but effective, which requires limited reagents. Another highlight of this method is its user-friendly operation. Moreover, its applicability in human blood plasma promises its great potential utility in the near future.
Collapse
Affiliation(s)
- Tao Liu
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P.
R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Fanyu Meng
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P.
R. China
| | - Wenbo Cheng
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P.
R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Haixuan Sun
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P.
R. China
| | - Yan Luo
- Department
of Chemical Engineering, West Virginia University, 313 Engineering Research Building,
Evansdale Drive, Morgantown, West Virginia 26506, United States
- E-mail: . (Y.L.)
| | - Yuguo Tang
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P.
R. China
- E-mail: (Y.T.)
| | - Peng Miao
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P.
R. China
- E-mail: Phone: +86-512-69588279 (P.M.)
| |
Collapse
|
20
|
Park S, Kim G, Seo J, Yang H. Ultrasensitive Protease Sensors Using Selective Affinity Binding, Selective Proteolytic Reaction, and Proximity-Dependent Electrochemical Reaction. Anal Chem 2016; 88:11995-12000. [PMID: 28193073 DOI: 10.1021/acs.analchem.6b03255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The development of a fast and ultrasensitive protease detection method is a challenging task. This paper reports ultrasensitive protease sensors exploiting (i) selective affinity binding, (ii) selective proteolytic reaction, and (iii) proximity-dependent electrochemical reaction. The selective affinity binding to capture IgG increases the concentration of the target protease (trypsin as a model protease) near the electrode, and the selective proteolytic reaction by trypsin increases the concentration of the redox-active species near the electrode. The electrochemical reaction, which is more sensitive to the concentration of the redox-active species near the electrode than to its bulk concentration, provides an increased electrochemical signal, which is further amplified by the electrochemical-chemical redox cycling. An indium-tin oxide electrode modified with reduced graphene oxide, avidin, and biotinylated capture IgG is used as the electrode, and p-aminophenol liberated from an oligopeptide is used as the redox-active species. The new sensor scheme using no washing process is compared with the new sensor scheme using washing process, and with the conventional scheme using only proteolytic reaction. The new scheme provides a higher signal-to-background ratio and a lower detection limit. Moreover, the increased electrochemical signal offers a more selective protease detection. Trypsin can be detected in phosphate-buffered saline and in artificial serum containing l-ascorbic acid with a low detection limit of 0.5 pg/mL, over a wide range of concentrations, and with an incubation period of only 30 min without washing process. The washing-free electrochemical protease sensor is highly promising for simple, fast, ultrasensitive, and selective point-of-care testing of low-abundance proteases.
Collapse
Affiliation(s)
- Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| | - Gamwoo Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| | - Jeongwook Seo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| |
Collapse
|
21
|
Han SW, Koh WG. Hydrogel-Framed Nanofiber Matrix Integrated with a Microfluidic Device for Fluorescence Detection of Matrix Metalloproteinases-9. Anal Chem 2016; 88:6247-53. [DOI: 10.1021/acs.analchem.5b04867] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sang Won Han
- Department
of Chemical and
Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Won-Gun Koh
- Department
of Chemical and
Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| |
Collapse
|
22
|
Yin T, Li H, Zhang Y, Yang N, Sun L, Cao Y, Xiang Y. Sensitive and low-background electrochemical assay of corin activity via supramolecular recognition and rolling circle amplification. Anal Chim Acta 2016; 919:28-33. [PMID: 27086096 DOI: 10.1016/j.aca.2016.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Corin is an important member of type II transmembrane serine proteases that is involved in a variety of cardiovascular and pregnancy-related diseases. Herein, a sensitive and low-background electrochemical method is proposed to assay the activity of corin. In principle, a peptide comprising both the substrate motif of corin and binding site of cucurbit[8]uril (CB[8]) is first designed and immobilized on the electrode surface. Thereafter, via CB[8]-mediated supramolecular recognition, a DNA-primer is recruited, subsequently triggering the rolling circle amplification (RCA) reaction. In this way, a succeeding propagation of DNA strands is achieved on the electrode surface, which would produce remarkable repelling effect against the electrochemical species [Fe(CN)6](3-/4-), and thereby yield a highly minimized background signal. However, in the presence of activated corin, the peptide is specifically recognized and cleaved, breaching the recruitment of DNA primer as well as the RCA reaction, which decreases the repulsion to [Fe(CN)6](3-/4-), leading to a remarkable electrochemical response. As a result, the proposed assay method can sensitively determine the activity of corin with a detection limit of 0.92 pM, and can further be directly used in maternal plasma samples. Therefore, this method may provide a promising tool for pathological research and clinical diagnosis of corin-related diseases.
Collapse
Affiliation(s)
- Tingting Yin
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Zhang
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Nana Yang
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Lizhou Sun
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China.
| | - Ya Cao
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
23
|
Yang L, Wu T, Fu C, Chen G, Xu S, Xu W. SERS determination of protease through a particle-on-a-film configuration constructed by electrostatic assembly in an enzymatic hydrolysis reaction. RSC Adv 2016. [DOI: 10.1039/c6ra15679g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We describe a simple and universal method for trypsin determination with the surface-enhanced Raman scattering (SERS) technique.
Collapse
Affiliation(s)
- Liyuan Yang
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Tong Wu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Cuicui Fu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Gang Chen
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structures and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
24
|
Microfluidic multiplex biochip based on a point-of-care electrochemical detection system for matrix metalloproteinases. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Miao P, Tang Y, Wang B, Han K, Chen X, Sun H. An aptasensor for detection of potassium ions based on RecJ(f) exonuclease mediated signal amplification. Analyst 2015; 139:5695-9. [PMID: 25248650 DOI: 10.1039/c4an01350f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrochemical biosensor for potassium has been developed combining specific potassium-aptamer binding and RecJf exonuclease mediated signal amplification. Generally, the DNA probe with a stem-loop structure containing an anti-K(+) aptamer sequence is designed and modified on a gold electrode. K(+) can specifically bind to the aptamer and a G-quadruplex structure forms, which breaks the original stem-loop structure. The induced single-stranded 5' end can be further digested by RecJf exonuclease, releasing K(+) which can bind to another DNA probe on the electrode. After cycles of RecJf exonuclease cleavage initiated by K(+), the electrochemical signal intensity is significantly decreased, and can be used to determine the concentration of K(+). This aptasensor shows high sensitivity, selectivity as well as excellent stability and accuracy, which provides possibilities for further applications of K(+) assay in clinical diagnosis.
Collapse
Affiliation(s)
- Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| | | | | | | | | | | |
Collapse
|
26
|
Wu Z, Liu Y, Liu Y, Xiao H, Shen A, Zhou X, Hu J. A simple and universal “turn-on” detection platform for proteases based on surface enhanced Raman scattering (SERS). Biosens Bioelectron 2015; 65:375-81. [DOI: 10.1016/j.bios.2014.10.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/19/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
|
27
|
Park S, Yang H. Sensitive and selective trypsin detection using redox cycling in the presence ofl-ascorbic acid. Analyst 2014; 139:4051-5. [DOI: 10.1039/c4an00465e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol Sci 2013; 34:497-507. [DOI: 10.1016/j.tips.2013.07.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/01/2013] [Indexed: 11/22/2022]
|