1
|
Li H, Wang D, Liu W, Ma Z, Wang D, Li Y, Huan W, Zhang Y. A LMOF/MIP paper-based chip and analysis of tetracycline in foodstuff with sample-to-answer performance. Talanta 2025; 281:126879. [PMID: 39293247 DOI: 10.1016/j.talanta.2024.126879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
The development of high-performance specific sensors is promising for the rapid detection of harmful residues in animal-derived foods. Recently, luminescent metal-organic framework/molecularly imprinted polymer (LMOF/MIP) materials have been developed as ideal candidates for the analysis of harmful residues. Here, we reported a simple fabrication protocol of paper-based chip through in-situ growth of LMOF on a negatively charged modified filter paper, a paper-based molecularly imprinting layer (FP@BA-Eu@MIP) was thereafter successfully prepared via the boronate affinity-based controllable oriented surface imprinting strategy. The paper-based chips obtained were used to construct a rapid test strip of tetracycline (TC). After addition of TC, significant fluorescence changes on the surface of the FP@BA-Eu@MIP paper-based chip could be observed from blue to red via inner filter effect and photo-induced electron transfer under the excitation of 360 nm. The adsorption kinetics was explored in detail. The presented strip exhibited satisfied selectiveness and sensitivity with a limit of detection of 8.47 μg L-1 for TC. It was confirmed that LMOF/MIP as a biomimetic recognition module can play a crucial role in enrichment and fluorescence response. This study provided a real application case for an in-situ fabricated fluorescence paper-based chip in rapidly detecting harmful residues.
Collapse
Affiliation(s)
- Han Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Donghui Wang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wei Liu
- College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhan Ma
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Dingnan Wang
- Institute of Zhejiang Aquatic Product Technology, Hangzhou, 310000, China
| | - Yang Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Yiming Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Leng Y, Qu P, Wang A, Jiang K, Dong Y, Han P, Cheng J, Zhang L. Fabrication of glass-based analytical devices by immobilizing nanomaterials on glass substrate with a fluorescent glue for the highly sensitive determination of mercury ions. Mikrochim Acta 2023; 190:333. [PMID: 37505293 DOI: 10.1007/s00604-023-05875-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023]
Abstract
A facile method is reported to develop glass-based analytical devices (GADs) based on immobilizing nanomaterials on a glass substrate with fluorescent glue. The fluorescent glue was first prepared by coupling bovine serum albumin (BSA)-protected Au nanoclusters (NCs) and sugars (i.e., ascorbic acid, AA). The glue was then used to immobilize carbon dots (C-dots) on glass substrates to fabricate the portable GADs. The liquid glue-C-dots mixture and probable GADs were developed for Hg2+ detection. Under 365-nm excitation wavelength, the emission at 652 nm from the glue is gradually quenched with increasing concentrations of Hg2+. This quenching is explained in terms of the Stern-Volmer equation and is ascribed to static quenching. The fluorescent color of the glue and GADs gradually changes from pink to blue, with increasing concentrations of Hg2+. The limits of detection (LODs) for Hg2+ determination by bare eyes are 1 nM both for the glue and GADs, suggesting an uncompromised sensing capability even after immobilization. The detection sensitivity of GADs shows a significant improvement compared with the same material-based papers (5 μM). A linear relationship is observed between the total Euclidean distances (EDs) and Hg2+ concentration in the range 0-100 nM, providing the potential for Hg2+ quantification using GADs. The LOD is estimated to be 0.84 nM. To show a potentially practical application, the GADs were used to detect Hg2+ in certified reference material and lake water.
Collapse
Affiliation(s)
- Yumin Leng
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China.
| | - Panpan Qu
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Anyi Wang
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China
| | - Kai Jiang
- Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yuchen Dong
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Pei Han
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jinbing Cheng
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Liwei Zhang
- School of Mathematics and Physics, Anqing Normal University, Anqing, 246133, China.
| |
Collapse
|
3
|
Ejjigu N, Abdelgadir K, Flaten Z, Hoff C, Li CZ, Sun D. Environmental noise reduction for tunable resistive pulse sensing of extracellular vesicles. SENSORS AND ACTUATORS. A, PHYSICAL 2022; 346:113832. [PMID: 37273787 PMCID: PMC10237153 DOI: 10.1016/j.sna.2022.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extracellular vesicles (EVs) bearing biomolecules from parental cells can represent a novel source of disease biomarkers and are under intensive study for their clinical potential. Tunable resistive pulse sensing (TRPS) quantifies the magnitude of a small ionic resistive pulse current to determine the size, concentration, and zeta potential of EVs. Environmental noise is a common limiting factor that affects the precision of sensing devices. TRPS is particularly vulnerable to environmental noise, including both mechanical and electrical. The upper detection limit of the TRPS relies on the physical size of the elastomeric tunable nanopore. The lower limit relies on the electrical signal-to-noise ratio. Guided by simulation, we designed an external device to suppress environmental noise for TRPS measurement. Both mechanical and electrical environmental noise reductions were observed after using the shield. The study also validated the noise reduction function of the shield by quantifying EVs from different cell origins. Detection of EVs smaller than 200 nm was improved by using the shield; which was reported challenging for conventional quantification methods. The study highlighted a feasible approach to solve environmental noise challenges for TRPS based EV quantification.
Collapse
Affiliation(s)
- Nega Ejjigu
- Biomedical Engineering Program, North Dakota State University, Engineering Administration, Room 203, 1401 Centennial Blvd, Fargo, ND 58102, USA
| | - Khalid Abdelgadir
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101 S, Fargo, ND 58102, USA
| | - Zachariah Flaten
- Biomedical Engineering Program, North Dakota State University, Engineering Administration, Room 203, 1401 Centennial Blvd, Fargo, ND 58102, USA
| | - Cameron Hoff
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101 S, Fargo, ND 58102, USA
| | - Chen-Zhong Li
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, Department of Biomedical Engineering, Tulane University, LA 70112, USA
| | - Dali Sun
- Biomedical Engineering Program, North Dakota State University, Engineering Administration, Room 203, 1401 Centennial Blvd, Fargo, ND 58102, USA
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101 S, Fargo, ND 58102, USA
| |
Collapse
|
4
|
Frontier and hot topics in electrochemiluminescence sensing technology based on CiteSpace bibliometric analysis. Biosens Bioelectron 2022; 201:113932. [DOI: 10.1016/j.bios.2021.113932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022]
|
5
|
Karmacharya M, Kumar S, Lee C, Cho YK. Lab-on-a-disc for ultrafast plasmonic assay of cysteamine. Biosens Bioelectron 2021; 194:113584. [PMID: 34474276 DOI: 10.1016/j.bios.2021.113584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022]
Abstract
Cysteamine (CA) is a cystine depleting agent used in the treatment of cystinosis and many other diseases. However, high dose of CA can be toxic and thus point-of-care-test devices measuring blood CA level can be highly beneficial. Here, we report a highly sensitive, straightforward, and quantitative assay for the colorimetric and spectroscopic determination of CA concentration using plasmonic nanoparticles. The principle is based on the chemical etching-induced exchange of the surface ligands of plasmonic gold nanoparticles (AuNPs) upon the addition of CA. Moreover, destabilized particles can aggregate to generate the plasmonic couplings that trigger the redshift in the ultraviolet-visible (UV-vis) spectrum (the absorption band shifted from 526 to 732 nm) and the solution color change (wine-red to blackish-blue). This plasmonic AuNPs sensor displays a clear red-to-blue colorimetric transition in the presence of CA among various biothiols with high specificity and sensitivity within a short time (<15 s). Furthermore, a lab-on-a-disc platform was applied to the analysis of blood samples donated by healthy volunteers spiked with known amounts of the CA standard solution. This fully automated lab-on-a-disc platform approach for naked eye detecting the CA concentration in human blood samples (20 μL) is highly simple and time-efficient (<6 min), and it would be potentially useful for the careful selection of CA doses in the hospital industry.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Chaeeun Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
6
|
|
7
|
A nanobiosensor based on graphene oxide and DNA binding dye for multi-microRNAs detection. Biosci Rep 2020; 39:221397. [PMID: 31833555 PMCID: PMC6911155 DOI: 10.1042/bsr20181404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
Multiplex assays for detection of biomarkers, provide advantageous analyses of different factors related to diagnoses of diseases. The Alzheimer’s disease (AD) is one of the most common disease in old people in societies which is increasing, significantly. A group of microRNAs (miRNAs) play an important role in developing the disease which can be considered as early stage biomarkers. Since, selective, sensitive, simple and rapid method for detection of these miRNAs in a single test is critical for early diagnosis and efficient therapy of the disease, herein, we report a sensitive fluorescence assay based on enzyme-free and isothermal hybridization chain reaction with SYBR Green and graphene oxide (GOX) for early detection of miR-137 and miR-142, as two Alzheimer’s biomarkers. Fluorescence spectrophotometry based on SYBR Green signal and GOX as the fluorescence quencher was used for detection and quantification of targets’ miRNAs and change in fluorescence intensity due to absence and presence of the targets was measured. The limit of detection in the newly designed nanobiosensor was achieved as 82 pM with a sensitive detection of the miRNAs from 0.05 to 5 nM, that is critical for detecting the biomarkers. Given the real range of concentrations of miRNAs in blood (from nanomolar to femtomolar values), the method holds great promise in dual and multiple targets detection due to its sensitivity, rapidness, inexpensive and specificity which provides a convenient detection method of Alzheimer’s in early stage.
Collapse
|
8
|
Fang X, Huang Y, Yu D, Shi C, Liu M. Highly stable folic acid functionalized copper-nanocluster/silica nanoparticles for selective targeting of cancer cells. RSC Adv 2020; 10:31463-31469. [PMID: 35520657 PMCID: PMC9056389 DOI: 10.1039/d0ra06523d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
In this paper, we present a novel strategy to construct folic acid functionalized conjugated Cu nanoclusters (CuNCs) and silica (SiO2) nanocomposites for targeted detection of cancer cells. First of all, BSA capped CuNCs were encapsulated into a SiO2 matrix. The resulting CuNCs@SiO2 nanoparticles showed bright red fluorescence with an enhanced photoluminescence quantum yield compared with free CuNCs, as well as improved stability in a complex biological environment owning to the protection of the SiO2 matrix. Upon attachment of folic acid via the poly-l-lysine conjugates (PLL-FA) on the surface of CuNCs@SiO2 driven by electrostatic interaction, the as-prepared CuNCs@SiO2/PLL-FA nanocomposites are capable of selectively recognizing folate receptor (FR) over-expressed cancer cells rather than FR-negative cells. The cell viability assay proved the low biotoxicity of CuNCs@SiO2/PLL-FA nanocomposites toward living cells and the in vitro cellular imaging assay results demonstrated their selective endocytosis of FR-positive cells (KB cells), bringing about red fluorescence labeling within the cells. Intriguingly, our strategy provides a novel route to synthesize functional CuNCs@SiO2/PLL-FA nanocomposites equipped with superior fluorescence properties, high stability against external stimuli and good biocompatibility, and have great application potential in bioimaging imaging and targeted cell detection. Folic acid functionalized CuNCs@SiO2 nanocomposites with superior fluorescence properties, high stability and good biocompatibility for targeted cell imaging.![]()
Collapse
Affiliation(s)
- Xiaoming Fang
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Yanhua Huang
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Dan Yu
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Caiwen Shi
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| | - Ming Liu
- Department of Respiratory, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital Changzhou 213003 China
| |
Collapse
|
9
|
Osuna FJ, Pavón E, Alba MD. An insight on the design of mercapto functionalized swelling brittle micas. J Colloid Interface Sci 2020; 561:533-541. [PMID: 31740136 DOI: 10.1016/j.jcis.2019.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022]
Abstract
Surface modification of natural clay minerals with reagents containing metal chelating groups has great environmental value. The functionalization by adsorption or grafting guarantees a durable immobilization of the reactive organic groups, preventing their leaching when they are used in liquid media. The aim of this research was the designed mercapto functionalization of swelling brittle micas, Na-Mn, thorough both chemical and physical mechanisms. Na-Mn were functionalized with 2-mercaptoethylammonium (MEA), 2,3-dimercapto-1-propanol (BAL) and (3-mercaptopropyl)trimethoxysilane (MPTMS). The thiol concentration on swelling brittle micas is higher than the observed value for others adsorbents. The cation exchange reaction with MEA and one-step grafting with MPTMS in acid medium are the most efficient mercapto functionalization mechanism.
Collapse
Affiliation(s)
- Francisco J Osuna
- Instituto Ciencia de los Materiales de Sevilla (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Esperanza Pavón
- Instituto Ciencia de los Materiales de Sevilla (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - María D Alba
- Instituto Ciencia de los Materiales de Sevilla (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
10
|
Deng HH, Fang XY, Huang KY, He SB, Peng HP, Xia XH, Chen W. Regulation of metal ion selectivity of fluorescent gold nanoclusters by metallophilic interactions. Anal Chim Acta 2019; 1088:116-122. [DOI: 10.1016/j.aca.2019.08.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 01/15/2023]
|
11
|
Verimli N, Demiral A, Yılmaz H, Çulha M, Erdem SS. Design of Dense Brush Conformation Bearing Gold Nanoparticles as Theranostic Agent for Cancer. Appl Biochem Biotechnol 2019; 189:709-728. [DOI: 10.1007/s12010-019-03151-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/13/2019] [Indexed: 01/05/2023]
|
12
|
Qian B, Váradi L, Trinchi A, Reichman SM, Bao L, Lan M, Wei G, Cole IS. The Design and Synthesis of Fluorescent Coumarin Derivatives and Their Study for Cu 2+ Sensing with an Application for Aqueous Soil Extracts. Molecules 2019; 24:molecules24193569. [PMID: 31581746 PMCID: PMC6804054 DOI: 10.3390/molecules24193569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
A series of fluorescent coumarin derivatives 2a–e were systematically designed, synthesized and studied for their Cu2+ sensing performance in aqueous media. The sensitivities and selectivities of the on-to-off fluorescent Cu2+ sensing signal were in direct correlation with the relative arrangements of the heteroatoms within the coordinating moieties of these coumarins. Probes 2b and 2d exhibited Cu2+ concentration dependent and selective fluorescence quenching, with linear ranges of 0–80 μM and 0–10 μM, and limits of detection of 0.14 μM and 0.38 μM, respectively. Structural changes of 2b upon Cu2+ coordination were followed by fluorescence titration, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), mass spectrometry, and single crystal X-ray diffraction on the isolated Cu2+-coumarin complex. The results revealed a 1:1 stoichiometry between 2b and Cu2+, and that the essential structural features for Cu2+-selective coordination are the coumarin C=O and a three-bond distance between the amide NH and heterocyclic N. Probe 2b was also used to determine copper (II) levels in aqueous soil extracts, with recovery rates over 80% when compared to the standard soil analysis method: inductively coupled plasma-mass spectrometry (ICP-MS).
Collapse
Affiliation(s)
- Bin Qian
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Linda Váradi
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia.
| | - Adrian Trinchi
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia.
| | - Suzie M Reichman
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Lei Bao
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Gang Wei
- CSIRO Mineral Resources, PO Box 218, Lindfield, NSW 2070, Australia.
| | - Ivan S Cole
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
13
|
Wang J, Lin X, Shu T, Su L, Liang F, Zhang X. Self-Assembly of Metal Nanoclusters for Aggregation-Induced Emission. Int J Mol Sci 2019; 20:E1891. [PMID: 30999556 PMCID: PMC6515624 DOI: 10.3390/ijms20081891] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023] Open
Abstract
Aggregation-induced emission (AIE) is an intriguing strategy to enhance the luminescence of metal nanoclusters (NCs). However, the morphologies of aggregated NCs are often irregular and inhomogeneous, leading to instability and poor color purity of the aggregations, which greatly limit their further potential in optical applications. Inspired by self-assembly techniques, manipulating metal NCs into well-defined architectures has achieved success. The self-assembled metal NCs often exhibit enhancing emission stability and intensity compared to the individually or randomly aggregated ones. Meanwhile, the emission color of metal NCs becomes tunable. In this review, we summarize the synthetic strategies involved in self-assembly of metal NCs for the first time. For each synthetic strategy, we describe the self-assembly mechanisms involved and the dependence of optical properties on the self-assembly. Finally, we outline the current challenges to and perspectives on the development of this area.
Collapse
Affiliation(s)
- Jianxing Wang
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiangfang Lin
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Tong Shu
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lei Su
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xueji Zhang
- Beijing Advanced Innovation Center of Materials Genome Engineering, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
14
|
Duan B, Wang M, Li Y, Jiang S, Liu Y, Huang Z. Dual-emitting zein-protected gold nanoclusters for ratiometric fluorescence detection of Hg2+/Ag+ ions in both aqueous solution and self-assembled protein film. NEW J CHEM 2019. [DOI: 10.1039/c9nj03524a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An abundant plant-sourced protein, zein, is used to prepare fluorescent Au nanoclusters as a promising alternative to animal/microorganism proteins.
Collapse
Affiliation(s)
- Bohui Duan
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Min Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yue Li
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Shan Jiang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yanmei Liu
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Zhenzhen Huang
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
15
|
Wang M, Huang Z, Guo Z, Yang W. Luminescent metal clusters/barium sulfate composites for white light-emitting devices and anti-counterfeiting labels. RSC Adv 2018; 8:2866-2871. [PMID: 35541208 PMCID: PMC9077558 DOI: 10.1039/c7ra11804j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2018] [Indexed: 11/23/2022] Open
Abstract
The applications of luminescent metal nanoclusters (NCs) in device fabrication have been greatly limited by their tough solidifying process and poor stability. In this work, we report the facile preparation of metal NCs/barium sulfate (BaSO4) composites by incorporating luminescent metal NCs into BaSO4 matrix by subsequent addition of Ba2+ and SO42− ions into the aqueous dispersions of the metal NCs. The resulting NCs/BaSO4 composites maintained the luminescent colour of the metal NCs and possessed improved stability under external stimuli, such as heating, strong acid and organic solvents. The solid metal NCs/BaSO4 composites with blue, green and red emissions were suitable for the fabrication of white light-emitting devices (WLEDs) and multicolour anti-counterfeiting labels. Metal NCs with blue, green and red emissions were incorporated into barium sulfate matrix to improve their stability and performance.![]()
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory for Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zhenzhen Huang
- State Key Laboratory for Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Zilong Guo
- State Key Laboratory for Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Wensheng Yang
- State Key Laboratory for Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
16
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 186.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
17
|
Li C, Chen H, Chen B, Zhao G. Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Crit Rev Food Sci Nutr 2017; 58:689-699. [PMID: 27558793 DOI: 10.1080/10408398.2016.1213698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Applications of nanotechnology in food have rapidly increased in the past decades. Ultra-small gold nanoclusters (Au NCs), composed of several to roughly a hundred atoms, represent a kind of novel nanomaterials. The Au NCs directed by food proteins have drawn considerable research attention due to their environment-friendly preparation, strong fluorescence, excellent photo-stability, and favorable biocompatibility. These interesting protein-Au hybrids have opened up a new area at the nano-bio-food interface, not only did they provide the missing link between single metal atoms and plasmonic metal nanoparticles, but also developed the hybrid system between biomacromolecule and inorganic ions. In this review, we highlighted the synthesis strategies and optical properties of the Au NCs stabilized by typical food proteins as well as their applications in detection of food contaminants or bioactive nutrients. In addition, we discussed current challenges and future development in food proteins- directed gold nanoclusters for size-controlled synthesis and multifunctional applications.
Collapse
Affiliation(s)
- Changan Li
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| | - Hai Chen
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| | - Bin Chen
- b Key Laboratory of Space Nutrition and Food Engineering , China Astronaut Research and Training Center , Beijing , China
| | - Guanghua Zhao
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| |
Collapse
|
18
|
Anjali Devi JS, Aswathy B, Asha S, George S. Lactose tailored boronic acid conjugated fluorescent gold nanoclusters for turn-on sensing of dopamine. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817040037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Li S, Huang P, Wu F. Highly selective and sensitive detection of heparin based on competition-modulated assembly and disassembly of fluorescent gold nanoclusters. NEW J CHEM 2017. [DOI: 10.1039/c6nj03155b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and economical fluorescence assay for heparin using glutathione-protected gold nanoclusters via competitive binding was developed.
Collapse
Affiliation(s)
- Sha Li
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | | | - Fangying Wu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| |
Collapse
|
20
|
Yu Y, Yu C, Yin T, Ou S, Sun X, Wen X, Zhang L, Tang D, Yin X. Functionalized poly (ionic liquid) as the support to construct a ratiometric electrochemical biosensor for the selective determination of copper ions in AD rats. Biosens Bioelectron 2016; 87:278-284. [PMID: 27567254 DOI: 10.1016/j.bios.2016.08.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/11/2016] [Accepted: 08/19/2016] [Indexed: 01/18/2023]
Abstract
An efficient ratiometric electrochemical biosensor for Cu2+ determination was constructed using dual hydroxyl-functionalized poly (ionic liquid) (DHF-PIL) as the catalyst support. The DHF-PIL exhibited typical macroporous structure, which provided a high surface area of 39.31m2/g for the sufficient loading of biomolecules. The specific recognition of Cu2+ was accomplished by employing neurokinin B (NKB) for the first time, which could bind to Cu2+ to form a [CuII(NKB)2] complex with high specificity. Meanwhile, a common redox mediator, 2, 2'-Azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) was modified into DHF-PIL by electrostatic interactions to act as an inner reference molecule, which provided a built-in correction for environmental effects and improving the detection accuracy. With this strategy, the developed electrochemical biosensor was capable of determining Cu2+ with a linear range between 0.9 and 36.1μM and low detection limit (LOD) and quantification limit (LOQ) of 0.24 and 0.6μM, respectively. The sensor also displayed a satisfactory selectivity against a series of interferences in the brain, including metal ions, amino acids and other endogenous compounds. Accordingly, the present biosensor was successfully applied to evaluate Cu2+ levels in normal and AD rats.
Collapse
Affiliation(s)
- Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China
| | - Chao Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China
| | - Tianxiao Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China
| | - Shanshan Ou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China
| | - Xiaoyu Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China
| | - Xiangru Wen
- College of Biomedical Sciences, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, PR China
| | - Lin Zhang
- Jiangsu Vcare Pharmatech Company, 15 Wanshou Road, Nanjing, Jiangsu 210000, PR China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
21
|
Abstract
Luminescent films have received great interest for chemo-/bio-sensing applications due to their distinct advantages over solution-based probes, such as good stability and portability, tunable shape and size, non-invasion, real-time detection, extensive suitability in gas/vapor sensing, and recycling. On the other hand, they can achieve selective and sensitive detection of chemical/biological species using special luminophores with a recognition moiety or the assembly of common luminophores and functional materials. Nowadays, the extensively used assembly techniques include drop-casting/spin-coating, Langmuir-Blodgett (LB), self-assembled monolayers (SAMs), layer-by-layer (LBL), and electrospinning. Therefore, this review summarizes the recent advances in luminescent films with these assembly techniques and their applications in chemo-/bio-sensing. We mainly focused on the discussion of the relationship between the sensing properties of the films and their architecture. Furthermore, we discussed some critical challenges existing in this field and possible solutions that have been or are being developed to overcome these challenges.
Collapse
Affiliation(s)
- Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | |
Collapse
|
22
|
Russell BA, Jachimska B, Kralka I, Mulheran PA, Chen Y. Human serum albumin encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics. J Mater Chem B 2016; 4:6876-6882. [DOI: 10.1039/c6tb01827k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The differences in the physiochemical properties between native Human Serum Albumin (HSA) and HSA encapsulated gold nanoclusters (HSA-AuNCs) are characterised.
Collapse
Affiliation(s)
- B. A. Russell
- Department of Physics
- Strathclyde University
- Glasgow G4 0NG
- UK
| | - B. Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- 30-239 Cracow
- Poland
| | - I. Kralka
- Jerzy Haber Institute of Catalysis and Surface Chemistry
- Polish Academy of Sciences
- 30-239 Cracow
- Poland
| | - P. A. Mulheran
- Department of Chemical and Process Engineering
- Strathclyde University
- Glasgow G1 1XJ
- UK
| | - Y. Chen
- Department of Physics
- Strathclyde University
- Glasgow G4 0NG
- UK
| |
Collapse
|
23
|
Zeng Z, Wen J, Yan H, Liu Z, Xu Y, Li H, Zhong C, Liu F, Sun S. A simple photoluminescent strategy for pH and amine vapors detection based on Eu(iii)-complex functionalized material. RSC Adv 2016. [DOI: 10.1039/c6ra03368g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple luminescence sensing strategy has been designed for pH and amine vapors detection after loaded luminescent compound Eu(DBM)3Phen (LMOF-1), Eu(DBM)3BPY (LMOF-2) on portable matrices such as neutral silica plate and normal filter paper.
Collapse
Affiliation(s)
- Zhichao Zeng
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Jia Wen
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Hui Yan
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Zonglun Liu
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Yongqian Xu
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Hongjuan Li
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Chongmin Zhong
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116023
- China
| | - Shiguo Sun
- College of Science
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
24
|
Şen M, Demirci A. pH-Dependent ionic-current-rectification in nanopipettes modified with glutaraldehyde cross-linked protein membranes. RSC Adv 2016. [DOI: 10.1039/c6ra19263g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Rao H, Liu W, Lu Z, Wang Y, Ge H, Zou P, Wang X, He H, Zeng X, Wang Y. Silica-coated carbon dots conjugated to CdTe quantum dots: a ratiometric fluorescent probe for copper(II). Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1682-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Unnikrishnan B, Wei SC, Chiu WJ, Cang J, Hsu PH, Huang CC. Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: mechanism and application. Analyst 2015; 139:2221-8. [PMID: 24634911 DOI: 10.1039/c3an02291a] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fluorescence quenching is an interesting phenomenon which is highly useful in developing fluorescence based sensors. A thorough understanding of the fluorescence quenching mechanism is essential to develop efficient sensors. In this work, we investigate different aspects governing the nitrite ion-induced fluorescence quenching of luminescent bovine serum albumin stabilized gold nanoclusters (BSA-Au NCs) and their application for detection of nitrite in urine. The probable events leading to photoluminescence (PL) quenching by nitrite ions were discussed on the basis of the results obtained from ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence measurements, circular dichroism (CD) spectroscopy, zeta potential and dynamic light scattering (DLS) studies. These studies suggested that PL quenching mainly occurred through the oxidation of Au(0) atoms to Au(i) atoms in the core of BSA-Au NCs mediated by nitrite ions. The interference caused by certain species such as Hg(2+), Cu(2+), CN(-), S(2-), glutathione, cysteine, etc. during the nitrite determination by fluorescence quenching was eliminated by using masking agents and optimising the conditions. Based on these findings we proposed a BSA-Au NC-modified membrane based sensor which would be more convenient for the real life applications such as nitrite detection in urine samples. The BSA-Au NC-modified nitrocellulose membrane (NCM) enabled the detection of nitrite at a level as low as 100 nM in aqueous solutions. This Au NC-based paper probe was validated to exhibit good performance for nitrite analysis in environmental water and urine samples, which makes it useful in practical applications.
Collapse
Affiliation(s)
- Binesh Unnikrishnan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, 20224, Keelung, Taiwan.
| | | | | | | | | | | |
Collapse
|
27
|
Senthamizhan A, Celebioglu A, Uyar T. Real-time selective visual monitoring of Hg(2+) detection at ppt level: An approach to lighting electrospun nanofibers using gold nanoclusters. Sci Rep 2015; 5:10403. [PMID: 26020609 PMCID: PMC4446990 DOI: 10.1038/srep10403] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
In this work, fluorescent gold nanocluster (AuNC) decorated polycaprolactone (PCL) nanofibers (AuNC*PCL-NF) for real time visual monitoring of Hg(2+) detection at ppt level in water is demonstrated. The resultant AuNC*PCL-NF exhibiting remarkable stability more than four months at ambient environment and facilitates increased accessibility to active sites resulting in improved sensing performance with rapid response time. The fluorescence changes of AuNC*PCL-NF and their corresponding time dependent spectra, upon introduction of Hg(2+), led to the visual identification of the sensor performance. It is observed that the effective removal of excess ligand (bovine serum albumin (BSA) greatly enhances the surface exposure of AuNC and therefore their selective sensing performance is achieved over competent metal ions such as Cu(2+), Ni(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+) present in the water. An exceptional interaction is observed between AuNC and Hg(2+), wherein the absence of excess interrupting ligand makes AuNC more selective towards Hg(2+). The underlying mechanism is found to be due to the formation of Au-Hg amalgam, which was further investigated with XPS, TEM and elemental mapping studies. In short, our findings may lead to develop very efficient fluorescent-based nanofibrous mercury sensor, keeping in view of its stability, simplicity, reproducibility, and low cost.
Collapse
Affiliation(s)
- Anitha Senthamizhan
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Asli Celebioglu
- 1] UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey [2] Institute of Materials Science &Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- 1] UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey [2] Institute of Materials Science &Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
28
|
A highly sensitive dual-readout assay based on gold nanoclusters for folic acid detection. Mikrochim Acta 2015. [DOI: 10.1007/s00604-014-1442-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Zhong Y, Zhu J, Wang Q, He Y, Ge Y, Song C. Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper(II) ion. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1407-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free detection of cysteamine. Biosens Bioelectron 2014; 66:155-61. [PMID: 25460897 DOI: 10.1016/j.bios.2014.10.073] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/18/2014] [Accepted: 10/31/2014] [Indexed: 11/23/2022]
Abstract
This study describes a novel Au nanocluster-based fluorescent sensor for label-free, separation-free and selective detection of cysteamine (CSH). The sensing mechanism is based on CSH etching-induced fluorescence quenching of the bovine serum albumin-protected Au25 nanoclusters (BSAGNCs). A series of characterizations is carried out towards a better understanding of the CSH-induced fluorescence quenching of the BSAGNCs. It is found that CSH can etch the Au25 nanoclusters, exhibiting the potent etching activity. Other thiol-containing compounds such as glutathione and cysteine and other 19 natural amino acids do not interfere with such CSH-induced etching process. The decreases in fluorescence intensity of the BSAGNCs allow sensitive detection of free CSH in the range of 500-10,000nM. The detection limit for CSH is 150nM (S/N=3). The spiked human serum samples can be analyzed with satisfactory results.
Collapse
|
31
|
Dithiothreitol-capped fluorescent gold nanoclusters: An efficient probe for detection of copper(II) ions in aqueous solution. Biosens Bioelectron 2014; 59:216-20. [DOI: 10.1016/j.bios.2014.03.045] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 11/21/2022]
|
32
|
Timin AS, Solomonov AV, Musabirov II, Sergeev SN, Ivanov SP, Rumyantsev EV, Goncharenko A. Immobilization of Bovine Serum Albumin onto Porous Poly(vinylpyrrolidone)-Modified Silicas. Ind Eng Chem Res 2014. [DOI: 10.1021/ie501915f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Alexander S. Timin
- Inorganic
Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7 Sheremetevsky Prospect, 153000 Ivanovo, Russian Federation
| | - Alexey V. Solomonov
- Inorganic
Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7 Sheremetevsky Prospect, 153000 Ivanovo, Russian Federation
| | - Irek I. Musabirov
- Institute for Metals Superplasticity Problems of the Russian Academy of Sciences, St. Khalturina Street 39, 450001 Ufa, Russian Federation
| | - Semen N. Sergeev
- Institute for Metals Superplasticity Problems of the Russian Academy of Sciences, St. Khalturina Street 39, 450001 Ufa, Russian Federation
| | - Sergey P. Ivanov
- Institute
of Organic Chemistry, Ufa Science Centre of the Russian Academy of Sciences, 71 Prospect Oktyabrya, 450054 Ufa, Russian Federation
| | - Evgeniy V. Rumyantsev
- Inorganic
Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7 Sheremetevsky Prospect, 153000 Ivanovo, Russian Federation
| | - Alexander Goncharenko
- Inorganic
Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7 Sheremetevsky Prospect, 153000 Ivanovo, Russian Federation
| |
Collapse
|
33
|
Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4'-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)). Colloids Surf B Biointerfaces 2014; 121:400-8. [PMID: 25009103 DOI: 10.1016/j.colsurfb.2014.06.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/15/2014] [Accepted: 06/11/2014] [Indexed: 02/05/2023]
Abstract
The interface between the nematic liquid crystal, 4-cyano-4'-pentylbiphenyl (5CB) and water within a transmission electron microscopy (TEM) grid cell coated with the pH-dependent weak cationic amphiphilic block copolymer poly((4-cyanobiphenyl-4'-oxyundecylacrylate)-b-((2-dimethyl amino) ethyl methacrylate)) (LCP-b-PDMAEMA) (which was successfully synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization) was subsequently evaluated for protein and deoxyribonucleic acid (DNA) detection. The LCP-b-PDMAEMA monolayer was fabricated using a Langmuir Blodgett trough, transferred to the 5CB-filled TEM grid, and placed on the octadecyltrichlorosilane-coated glass (TEMPDMAEMA) in such a way that the LCP chains were immersed in the 5CB while the PDMAEMA chains were pointed away from the 5CB surface and immersed in water. Several model proteins such as bovine serum albumin (BSA), hemoglobin (Hb), and chymotrypsinogen (ChTg) were tested at pH values ranging from 2 to 12 to determine the role of the charge state of the protein on protein detection by a weak polyelectrolyte such as PDMAEMA. PDMAEMA contains cationic and neutral states below and above the pKa value, respectively, and is thus able to absorb proteins below its pKa threshold through electrostatic interactions. BSA exhibited a homeotropic to planar (H-P) change in orientation within the TEMPDMAEMA grid cell at concentrations greater than 0.02wt% within the pH range between the isoelectric point (pI) of BSA and the pKa of PDMAEMA, where the charge states of BSA and PDMAEMA were negative and positive, respectively. However, this change in orientation did not occur with other proteins that exhibited a pI higher than the pKa of PDMAEMA due to the electrostatic repulsions resulting from their same cationic charges. This result indicates that the electrostatic interactions between proteins and PDMAEMA are a major contributing factor for protein detection by the H-P transformation within the TEMPDMAEMA grid cell. DNA, a pH-independent strong anionic polyelectrolyte, was also tested with the TEMPDMAEMA grid cell, and it exhibited an H-P transformation at the charged state of PDMAEMA below its pKa threshold at concentrations higher than 0.01wt%. Thus, we demonstrated that the TEMPDMAEMA grid cell effectively facilitated the detection of negatively charged biomaterials (i.e.; protein and DNA) through the H-P transformation using the polarized optical microscope. This simple and inexpensive experimental set-up for non-specific biomaterial detection lays the basic groundwork for developing effective biosensors using polyelectrolytes.
Collapse
|
34
|
Wang YQ, Zhao T, He XW, Li WY, Zhang YK. A novel core-satellite CdTe/Silica/Au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron 2014; 51:40-6. [DOI: 10.1016/j.bios.2013.07.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/13/2013] [Indexed: 12/13/2022]
|
35
|
Gao X, Xu H, Baloda M, Gurung AS, Xu LP, Wang T, Zhang X, Liu G. Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 2013; 54:578-84. [PMID: 24333569 DOI: 10.1016/j.bios.2013.10.055] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 12/22/2022]
Abstract
We report a DNA-gold nanoparticle (DNA-GNP) based lateral flow nucleic acid biosensor for visual detection of microRNA (miRNA)-215 in aqueous solutions and biological samples with low-cost and short analysis time. Sandwich-type hybridization reactions among GNP-labeled DNA probe, miRNA-215 and biotin-modified DNA probes were performed on the lateral flow device. The accumulation of GNPs on the test zone of the biosensor enables the visual detection of miRNA-215. After systematic optimization, the biosensor was able to detect a minimum concentration of 60 pM miRNA-215. The biosensor was applied to detect miRNA-215 from A549 cell lysate directly without complex sample treatment, and the detection limit of 0.148 million cells was obtained. This study provides a simple, rapid, specific and low-cost approach for miRNA detection in aqueous solutions and biological samples, showing great promise for clinical application and biomedical diagnosis in some malignant diseases.
Collapse
Affiliation(s)
- Xuefei Gao
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, PR China; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, USA
| | - Hui Xu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, USA
| | - Meenu Baloda
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, USA
| | - Anant S Gurung
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, USA
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Tao Wang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, USA
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, PR China.
| | - Guodong Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, USA; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 35002, PR China.
| |
Collapse
|