1
|
Zhang Y, Huang T, Yang F, Tan Q, Ye J, Feng X, Zhang D. Entropy-Driven Circuit Integrated with Ligases to Regulate DNA-AuNP Network Disintegration for Colorimetric Detection of Single Nucleotide Polymorphisms. Anal Chem 2025. [PMID: 39973570 DOI: 10.1021/acs.analchem.4c06146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
In recent years, entropy-driven circuit (EDC) dynamic DNA networks have garnered significant attention in nucleic acid detection owing to their simplicity, efficiency, and flexible design. Nevertheless, conventional EDC reactions face a constraint in achieving optimal signal amplification due to a solitary and feeble driving force. To overcome this limitation, we innovatively devised a gold nanoparticle (AuNP) dispersion-enhanced EDC (Au-EDC) approach, pioneering a novel colorimetric signal amplification and output system. The system was harmoniously integrated with the ligase chain reaction (LCR) for precise single nucleotide polymorphism (SNP) genotyping. Specifically, LCR was selectively executed solely on the positive strand of the mutant target (MT), facilitating precise point-to-strand information transduction. Subsequently, the LCR product triggered the Au-EDC cycling reaction, causing the DNA-AuNPs network to progressively disintegrate and release a pronounced colorimetric signal. This strategic design ingeniously harnessed the entropy increase that occurs as AuNPs undergo a transition from aggregated to dispersed states, offering a supplemental impetus for the EDC cycle. The integrated LCR-Au-EDC system excelled in detecting MT at concentrations as low as 320 fM and differentiating pooled samples with mutation frequencies as low as 0.1%. Moreover, the system accurately performed SNP genotyping on the real genomes derived from soybean leaves. Consequently, this study not only develops a colorimetric signal amplification and output sensing system based on EDC reactions but also provides a cost-effective and efficient SNP genotyping tool.
Collapse
Affiliation(s)
- Yunshan Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Tuo Huang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Fang Yang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Qianglong Tan
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jing Ye
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Diming Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Laboratory, Hangzhou 311121, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
2
|
Zhang Y, Yang F, Huang T, Xu S, Ye J, Weng L, Hu Y, Huang H, Li S, Zhang D. Entropy-Driven Catalytic G-Quadruple Cycle Amplification Integrated with Ligases for Label-Free Detection of Single Nucleotide Polymorphisms. Anal Chem 2024; 96:14971-14979. [PMID: 39213531 DOI: 10.1021/acs.analchem.4c03057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
G-Quadruplex/thioflavin (G4/THT) has become a very promising label-free fluorescent luminescent element for nucleic acid detection due to its good programmability and compatibility. However, the weak fluorescence efficiency of single-molecule G4/THT limits its potential applications. Here, we developed an entropy-driven catalytic (EDC) G4 (EDC-G4) cycle amplification technology as a universal label-free signal amplification and output system by properly programming classical EDC and G4 backbone sequences, preintegrated ligase chain reaction (LCR) for label-free sensitive detection of single nucleotide polymorphisms (SNPs). First, the positive strand LCR enabled specific transduction and preliminary signal amplification from single-base mutation information to single-strand information. Subsequently, the EDC-G4 cycle amplification reaction was activated, accompanied by the production of a large number of G4/THT luminophores to output fluorescent signals. The EDC-G4 system was proposed to address the weak fluorescence of G4/THT and obtain a label-free fluorescence signal amplification. The dual-signal amplification effect enabled the LCR-EDC-G4 detection system to accurately detect mutant target (MT) at concentrations as low as 22.39 fM and specifically identify 0.01% MT in a mixed detection pool. Moreover, the LCR-EDC-G4 system was further demonstrated for its potential application in real biological samples. Therefore, this study not only contributes ideas for the development of label-free fluorescent biosensing strategies but also provides a high-performance and practical SNP detection tool in parallel.
Collapse
Affiliation(s)
- Yunshan Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Fang Yang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Tuo Huang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shijie Xu
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Jing Ye
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| | - Lin Weng
- Research Center for Intelligent Computing Platforms, Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, China
| | - Haowen Huang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Diming Zhang
- Research Center for Novel Computational Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
3
|
Yan X, Yang P, Qiu D, Chen D, Pan J, Zhang X, Ju H, Zhou J. Ligation-Based High-Performance Mimetic Enzyme Sensing Platform for Nucleic Acid Detection. Anal Chem 2024; 96:388-393. [PMID: 38153911 DOI: 10.1021/acs.analchem.3c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
G-quadruplex (G4)/hemin DNAzyme is a promising candidate to substitute horseradish peroxidase in biosensing systems, especially for the detection of nucleic acids. However, the relatively suboptimal catalytic capacity limits its potential applications. This makes it imperative to develop an ideal signal for the construction of highly sensitive biosensing platforms. Herein, we integrated a novel chimeric peptide-DNAzyme (CPDzyme) with the ligase chain reaction (LCR) for the cost-efficient and highly sensitive detection of nucleic acids. By employing microRNA (miRNA) and single-nucleotide polymorphism detection as the model, we designed a G4-forming sequence on the LCR probe with a terminally labeled amino group. Subsequently, asymmetric hemin with carboxylic arms allowed assembly with the LCR products and peptide to form CPDzyme, followed by the magnetic separation of the extraneous components and chemiluminescence detection. Compared with the conventional G4/hemin signaling-based method, the LCR-CPDzyme system demonstrated 3 orders of magnitude improved sensitivity, with accurate quantification of as low as 25 aM miRNA and differentiation of 0.1% of mutant DNA from the pool containing a large amount of wild-type DNA. The proposed LCR-CPDzyme strategy is a potentially powerful method for in vitro diagnostics and serves as a reference for the development of other ligation- or hybridization-based nucleic acid amplification assays.
Collapse
Affiliation(s)
- Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Peiru Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Dehui Qiu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Desheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
4
|
Li W, Wu G, Wang M, Yue A, Du W, Liu D, Zhao J. Colorimetric detection of class A soybean saponins by coupling DNAzyme with the gap ligase chain reaction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3361-3367. [PMID: 32930223 DOI: 10.1039/d0ay00820f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Class A saponins are responsible for the taste of soybean products, and the rapid identification of class A saponins from soybean food is essential for both food safety and cultivar screening. In this study, we propose a colorimetric assay based on the coupling of gap ligase chain reaction (Gap-LCR) with DNAzyme to detect the target GmSg-1 genes of class A soybean saponins with the naked eye, without the involvement of expensive instruments. The limits of detection (LODs) for the GmSg-1a and GmSg-1b genes were determined to be 0.1618 and 0.1625 μM, respectively, with a linear range of 0.2-1.2 μM. The DNAzyme-based Gap LCR assay was successfully employed to identify the target genes from different soybean cultivars, providing a simple means for monitoring the quality of soybean products.
Collapse
Affiliation(s)
- Wenshuai Li
- College of Arts and Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Guorui Wu
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Min Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Aiqin Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Weijun Du
- College of Agronomy, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Dingbin Liu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jinzhong Zhao
- College of Arts and Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
5
|
Fu Y, Duan X, Huang J, Huang L, Zhang L, Cheng W, Ding S, Min X. Detection of KRAS mutation via ligation-initiated LAMP reaction. Sci Rep 2019; 9:5955. [PMID: 30976068 PMCID: PMC6459849 DOI: 10.1038/s41598-019-42542-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
KRAS mutations are abnormalities widely found in genomic DNA and circulating tumor DNA (ctDNA) of various types of cancers. Thus, highly sensitive detection of KRAS mutations in genomic DNA is of great significance in disease diagnosis and personalized medicine. Here, we developed a ligation-initiated loop-mediated isothermal amplification (LAMP) assaying method for ultrasensitive detection of KRAS mutation. In the presence of mutant KRAS DNA (mutDNA), the dumbbell-shaped structure (DSS) is formed by the specific ligation of two substrates (SLS1 and SLS2), which act as a template to initiate the following LAMP amplification. Making use of the outstanding specificity of ligation reaction and superior amplification of LAMP, 10 aM mutDNA can be accurately determined. In addition, as low as 0.1% mutDNA can be detected in the presence of a large excess of wild-type KRAS DNA (wtDNA), indicating the high sensitivity and specificity of the method. Furthermore, this strategy has been successfully applied for detection of a KRAS mutation from tissue samples of colorectal cancer patients. Thus, the developed ligation-initiated LAMP fluorescence assaying strategy presents a promising prospect for ultrasensitive detection of mutations.
Collapse
Affiliation(s)
- Yixin Fu
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P.R. China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China
| | - Xiaolei Duan
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China.,Key Laboratory of Clinical Laboratory Diagnostics (Ministry of education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Jian Huang
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P.R. China.,School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China
| | - Lizhen Huang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Lutan Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, P.R. China
| | - Xun Min
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, P.R. China. .,School of Laboratory Medicine, Zunyi Medical University, Zunyi, 563003, P.R. China.
| |
Collapse
|
6
|
Gibriel AA, Adel O. Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: Detection and applications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:66-90. [PMID: 28927538 PMCID: PMC7108312 DOI: 10.1016/j.mrrev.2017.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Genetic variants have been reported to cause several genetic diseases. Various genotyping assays have been developed for diagnostic and screening purposes but with certain limitations in sensitivity, specificity, cost effectiveness and/or time savings. Since the discovery of ligase chain reaction (LCR) in the late nineties, it became one of the most favored platforms for detecting these variants and also for genotyping low abundant contaminants. Recent and powerful modifications with the integration of various detection strategies such as electrochemical and magnetic biosensors, nanoparticles (NPs), quantum dots, quartz crystal and leaky surface acoustic surface biosensors, DNAzyme, rolling circle amplification (RCA), strand displacement amplification (SDA), surface enhanced raman scattering (SERS), chemiluminescence and fluorescence resonance energy transfer have been introduced to both LCR and ligation based amplifications to enable high-throughput and inexpensive multiplex genotyping with improved robustness, simplicity, sensitivity and specificity. In this article, classical and up to date modifications in LCR and ligation based amplifications are critically evaluated and compared with emphasis on points of strength and weakness, sensitivity, cost, running time, equipment needed, applications and multiplexing potential. Versatile genotyping applications such as genetic diseases detection, bacterial and viral pathogens detection are also detailed. Ligation based gold NPs biosensor, ligation based RCA and ligation mediated SDA assays enhanced detection limit tremendously with a discrimination power approaching 1.5aM, 2aM and 0.1fM respectively. MLPA (multiplexed ligation dependent probe amplification) and SNPlex assays have been commercialized for multiplex detection of at least 48 SNPs at a time. MOL-PCR (multiplex oligonucleotide ligation) has high-throughput capability with multiplex detection of 50 SNPs/well in a 96 well plate. Ligase detection reaction (LDR) is one of the most widely used LCR versions that have been successfully integrated with several detection strategies with improved sensitivity down to 0.4fM.
Collapse
Affiliation(s)
- Abdullah A Gibriel
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; Center for Drug Research & Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt.
| | - Ola Adel
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt; Center for Drug Research & Development (CDRD), Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
7
|
Bao B, Zhu J, Gong L, Chen J, Pan Y, Wang L. Sensitive DNA detection using cascade amplification strategy based on conjugated polyelectrolytes and hybridization chain reaction. RSC Adv 2017. [DOI: 10.1039/c6ra25882d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel cascade amplification strategy that combines the molecular wire effects of CPEs with the signal amplification capability of the HCR has been developed for sensitive DNA detection.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Jin Zhu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Lina Gong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Yanrui Pan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
| |
Collapse
|
8
|
Choi SJ, Ban C. Crystal structure of a DNA aptamer bound to PvLDH elucidates novel single-stranded DNA structural elements for folding and recognition. Sci Rep 2016; 6:34998. [PMID: 27725738 PMCID: PMC5057103 DOI: 10.1038/srep34998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Structural elements are key elements for understanding single-stranded nucleic acid folding. Although various RNA structural elements have been documented, structural elements of single-stranded DNA (ssDNA) have rarely been reported. Herein, we determined a crystal structure of PvLDH in complex with a DNA aptamer called pL1. This aptamer folds into a hairpin-bulge contact by adopting three novel structural elements, viz, DNA T-loop-like motif, base-phosphate zipper, and DNA G·G metal ion zipper. Moreover, the pL1:PvLDH complex shows unique properties compared with other protein:nucleic acid complexes. Generally, extensive intermolecular hydrogen bonds occur between unpaired nucleotides and proteins for specific recognitions. Although most protein-interacting nucleotides of pL1 are unpaired nucleotides, pL1 recognizes PvLDH by predominant shape complementarity with many bridging water molecules owing to the combination of three novel structural elements making protein-binding unpaired nucleotides stable. Moreover, the additional set of Plasmodium LDH residues which were shown to form extensive hydrogen bonds with unpaired nucleotides of 2008s does not participate in the recognition of pL1. Superimposition of the pL1:PvLDH complex with hLDH reveals steric clashes between pL1 and hLDH in contrast with no steric clashes between 2008s and hLDH. Therefore, specific protein recognition mode of pL1 is totally different from that of 2008s.
Collapse
Affiliation(s)
- Sung-Jin Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| |
Collapse
|
9
|
Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Zhang Y, Fan J, Nie J, Le S, Zhu W, Gao D, Yang J, Zhang S, Li J. Timing readout in paper device for quantitative point-of-use hemin/G-quadruplex DNAzyme-based bioassays. Biosens Bioelectron 2015; 73:13-18. [DOI: 10.1016/j.bios.2015.04.081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 12/31/2022]
|
11
|
Chemiluminescence resonance energy transfer imaging on magnetic particles for single-nucleotide polymorphism detection based on ligation chain reaction. Biosens Bioelectron 2015; 65:139-44. [DOI: 10.1016/j.bios.2014.10.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 01/15/2023]
|
12
|
Gribas AV, Korolev SP, Zatsepin TS, Gottikh MB, Sakharov IY. Structure–activity relationship study for design of highly active covalent peroxidase-mimicking DNAzyme. RSC Adv 2015. [DOI: 10.1039/c5ra03167b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We synthesized a series of conjugates of hemin and its aptamer EAD2, named covalent peroxidase-mimicking DNAzymes (PMDNAzymes), varying the length, rigidity and 5′-/3′-position of the linker between the oligonucleotide and hemin.
Collapse
Affiliation(s)
| | - Sergey P. Korolev
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
- Belozersky Institute of Physical and Chemical Biology
| | - Timofey S. Zatsepin
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
- Belozersky Institute of Physical and Chemical Biology
| | - Marina B. Gottikh
- Belozersky Institute of Physical and Chemical Biology
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| | - Ivan Yu. Sakharov
- Department of Chemistry
- Lomonosov Moscow State University
- Moscow 119991
- Russia
| |
Collapse
|
13
|
Su F, Wang L, Sun Y, Liu C, Duan X, Li Z. Highly sensitive and multiplexed analysis of CpG methylation at single-base resolution with ligation-based exponential amplification. Chem Sci 2014; 6:1866-1872. [PMID: 28706642 PMCID: PMC5494546 DOI: 10.1039/c4sc03135k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023] Open
Abstract
DNA methylation is a primary epigenetic mechanism for transcriptional regulation during normal development and the occurrence of diseases, including cancers. DNA methylation has been increasingly utilized as a biomarker for cancer detection and differential diagnosis. Generally, one type of cancer is associated with several CpG methylation sites and detection of multiplexed CpG methylation can greatly improve the accuracy of cancer diagnosis. In this paper, we have developed a novel ligase chain reaction (LCR)-based method for multiplexed detection of CpG methylation in genomic DNA at single-base resolution. By rationally designing the two pairs of DNA probes for LCR, the bisulfite-treated methylated DNA target can be exponentially amplified by thermal cycling of the ligation reaction, in which one-base mismatch can be discriminated against, and thus high sensitivity and specificity for the detection of DNA methylation can be achieved. The LCR-based method can accurately determine as low as 10 aM methylated DNA fragment and 10 ng methylated genomic DNA. 0.1% methylated DNA can be detected in the presence of a large excess of unmethylated DNA. Moreover, by simply encoding one of the DNA probes in the LCR with a different length of poly(A) for detection of methylation at different CpG sites, the CpG methylation at different sites can produce LCR products with different lengths, and thus, can be simultaneously detected with one-tube LCR amplification and separation by capillary electrophoresis.
Collapse
Affiliation(s)
- Fengxia Su
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Limei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Yueying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| | - Xinrui Duan
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| | - Zhengping Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859.,Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| |
Collapse
|
14
|
Gribas AV, Zhao S, Sakharov IY. Improved method for chemiluminescent determination of peroxidase-mimicking DNAzyme activity. Anal Biochem 2014; 466:19-23. [DOI: 10.1016/j.ab.2014.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 12/20/2022]
|
15
|
Wang M, Zhang H, Zhang W, Zhao Y, Yasmeen A, Zhou L, Yu X, Tang Z. In vitro selection of DNA-cleaving deoxyribozyme with site-specific thymidine excision activity. Nucleic Acids Res 2014; 42:9262-9. [PMID: 25030901 PMCID: PMC4132718 DOI: 10.1093/nar/gku592] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-nucleotide polymorphisms, either inherited or due to spontaneous DNA damage, are associated with numerous diseases. Developing tools for site-specific nucleotide modification may one day provide a way to alter disease polymorphisms. Here, we describe the in vitro selection and characterization of a new deoxyribozyme called F-8, which catalyzes nucleotide excision specifically at thymidine. Cleavage by F-8 generates 3'- and 5'-phosphate ends recognized by DNA modifying enzymes, which repair the targeted deoxyribonucleotide while maintaining the integrity of the rest of the sequence. These results illustrate the potential of DNAzymes as tools for DNA manipulation.
Collapse
Affiliation(s)
- Mingqi Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China Department of Chemistry, Key Laboratory of Green Chemistry and Technology (Ministry of Education), Sichuan University, Chengdu 610064, P.R. China
| | - Huafan Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Wei Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Yongyun Zhao
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Afshan Yasmeen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Li Zhou
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| | - Xiaoqi Yu
- Department of Chemistry, Key Laboratory of Green Chemistry and Technology (Ministry of Education), Sichuan University, Chengdu 610064, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu 610041, P.R. China
| |
Collapse
|
16
|
Microdevices for detecting locus-specific DNA methylation at CpG resolution. Biosens Bioelectron 2014; 56:278-85. [DOI: 10.1016/j.bios.2014.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
|
17
|
Zou Z, Qing Z, He X, Wang K, He D, Shi H, Yang X, Qing T, Yang X. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Talanta 2014; 125:306-12. [PMID: 24840448 DOI: 10.1016/j.talanta.2014.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
Abstract
A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis.
Collapse
Affiliation(s)
- Zhen Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Zhihe Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China.
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Taiping Qing
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| | - Xiaoxiao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha 410082, PR China; College of Biology, Hunan University, Changsha 410082, PR China; Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha 410082, PR China
| |
Collapse
|
18
|
Ligase chain reaction amplification for sensitive electrochemiluminescent detection of single nucleotide polymorphisms. Anal Chim Acta 2013; 796:1-6. [DOI: 10.1016/j.aca.2013.07.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/22/2013] [Accepted: 07/25/2013] [Indexed: 11/18/2022]
|