1
|
Carrière M, Henrique M Buzzetti P, Gorgy K, Giroud F, Li H, Borsali R, Cosnier S. Nanostructured electrodes based on multiwalled carbon nanotube/glyconanoparticles for the specific immobilization of bilirubin oxidase: Application to the electrocatalytic O 2 reduction. Bioelectrochemistry 2023; 150:108328. [PMID: 36493673 DOI: 10.1016/j.bioelechem.2022.108328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Here we describe the design and the characterization of novel electrode materials consisting of multi-walled carbon nanotubes coated with glyconanoparticles (GNPs) functionalized with anthraquinone sulfonate. The resulting modified electrodes were characterized by scanning electron microscopy and cyclic voltammetry. Their electrochemical behavior reveals a stable pH-dependent redox signal characteristic of anthraquinone sulfonate. Immobilization of bilirubin oxidase on these three-dimensional electrodes leads to the electroenzymatic reduction of O2 to water with an onset potential of 0.5 V/SCE (saturated calomel electrode). A catalytic cathodic current of 174 µA (0.88 mA cm-2) at 0.1 V/SCE, demonstrates that glyconanoparticles modified by anthraquinone sulfonate were able to interact and orientate bilirubin oxidase by electrostatic interactions.
Collapse
Affiliation(s)
- Marie Carrière
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France; Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | | | - Karine Gorgy
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Fabien Giroud
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Hong Li
- Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | | | - Serge Cosnier
- Univ Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France.
| |
Collapse
|
2
|
Becker JM, Lielpetere A, Szczesny J, Bichon S, Gounel S, Mano N, Schuhmann W. Wiring of bilirubin oxidases with redox polymers on gas diffusion electrodes for increased stability of self-powered biofuel cells-based glucose sensing. Bioelectrochemistry 2023; 149:108314. [PMID: 36335789 DOI: 10.1016/j.bioelechem.2022.108314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
A new redox polymer/bilirubin oxidase (BOD)-based gas diffusion electrode was designed to be implemented as the non-current and non-stability limiting biocathode in a glucose/O2 biofuel cell that acts as a self-powered glucose biosensor. For the proof-of-concept, a bioanode comprising the Os-complex modified redox polymer P(VI-co-AA)-[Os(bpy)2Cl]Cl and FAD-dependent glucose dehydrogenase to oxidize the analyte was used. In order to develop an optimal O2-reducing biocathode for the biofuel cell Mv-BOD as well as Bp-BOD and Mo-BOD have been tested in gas diffusion electrodes in direct electron transfer as well as in mediated electron transfer immobilized in the Os-complex modified redox polymer P(VI-co-AA)-[Os(diCl-bpy)2]Cl2. The resulting biofuel cell exhibits a glucose-dependent current and power output in the concentration region between 1 and 10 mM. To create a more realistic test environment, the performance and long-term stability of the biofuel cell-based self-powered glucose biosensor has been investigated in a flow-through cell design.
Collapse
Affiliation(s)
- Jana M Becker
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Anna Lielpetere
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Julian Szczesny
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
| | - Sabrina Bichon
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux, Avenue Albert Schweitzer, 33600 Pessac, France
| | - Sébastien Gounel
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux, Avenue Albert Schweitzer, 33600 Pessac, France
| | - Nicolas Mano
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux, Avenue Albert Schweitzer, 33600 Pessac, France
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany.
| |
Collapse
|
3
|
Ashrafi M, Salimi A. Dandelion-like CoOx nanostructures decorated with CdS nanoparticles toward the photoelectrocatalytic enzymeless glucose oxidation and detection. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Rani A, Pan SY, Chang CT. Carboxylic acid f‐MWCNT/graphite and Safranin O/graphite based voltammetric sensors for Norfloxacin detection. ELECTROANAL 2022. [DOI: 10.1002/elan.202100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Stolarczyk K, Rogalski J, Bilewicz R. NAD(P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells. Bioelectrochemistry 2020; 135:107574. [PMID: 32498025 DOI: 10.1016/j.bioelechem.2020.107574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
This review discusses the physical and chemical properties of nicotinamide redox cofactor dependent glucose dehydrogenase (NAD(P) dependent GDH) and its extensive application in biosensors and bio-fuel cells. GDHs from different organisms show diverse biochemical properties (e.g., activity and stability) and preferences towards cofactors, such as nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+). The (NAD(P)+) play important roles in biological electron transfer, however, there are some difficulties related to their application in devices that originate from their chemical properties and labile binding to the GDH enzyme. This review discusses the electrode modifications aimed at immobilising NAD+ or NADP+ cofactors and GDH at electrodes. Binding of the enzyme was achieved by appropriate protein engineering techniques, including polymerisation, hydrophobisation or hydrophilisation processes. Various enzyme-modified electrodes applied in biosensors, enzymatic fuel cells, and biobatteries are compared. Importantly, GDH can operate alone or as part of an enzymatic cascade, which often improves the functional parameters of the biofuel cell or simply allows use of cheaper fuels. Overall, this review explores how NAD(P)-dependent GDH has recently demonstrated high potential for use in various systems to generate electricity from biological sources for applications in implantable biomedical devices, wireless sensors, and portable electronic devices.
Collapse
Affiliation(s)
- Krzysztof Stolarczyk
- Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka Str. 19, 20-031 Lublin, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura St. 1, 02-093 Warsaw, Poland.
| |
Collapse
|
6
|
Gholami F, Navaee A, Salimi A, Ahmadi R, Korani A, Hallaj R. Direct Enzymatic Glucose/O 2 Biofuel Cell based on Poly-Thiophene Carboxylic Acid alongside Gold Nanostructures Substrates Derived through Bipolar Electrochemistry. Sci Rep 2018; 8:15103. [PMID: 30305656 PMCID: PMC6180125 DOI: 10.1038/s41598-018-32893-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Bipolar electrochemistry (BPE) has been lately explored as a simple, reliable and novel electrochemical technique for the adjustment of various conductive substrates. Herein, BPE is performed to derive both of cathode and anode electrodes for the development of mediatorless/membraneless biofuel cell (BFC). On one hand, a preferable substrate for immobilization of bilirubin oxidase enzyme is prepared based on the electropolymerization of thiophene-3-carboxcylic acid (TCA) on an Au microfilm as a bipolar electrode. The resulted biocathode as novel bioelectrocatalyst offers a high electrocatalytic activity toward direct oxygen reduction reaction (ORR) with onset potential and current density of 0.55 V (vs. Ag/AgCl) and 867 μA cm-2, respectively. On the other hand, another analogous Au bipolar electrode is electroplated through BPE to derive Au nanostructures (AuNSs). This modified Au electrode is utilized as an anodic platform for immobilization of flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) enzyme aimed at electrocatalytic glucose oxidation. The prepared bioanode displays a current density of 2.7 mA cm-2 with onset potential of -0.03 V. Finally, the proposed bioanode and biocacthode in an assembled membraneless glucose/O2 BFC offers a power output of 146 μW cm-2 with open circuit voltage of 0.54 V. This novel BPE method provides disposable electrochemical platforms for design of novel sensors, biosensors or other devices.
Collapse
Affiliation(s)
- Fereshte Gholami
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Aso Navaee
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran. .,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Rezgar Ahmadi
- Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Azam Korani
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Vice chancellor for Food and Drug, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran.,Research Centre for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran
| |
Collapse
|
7
|
Zhong Z, Qian L, Tan Y, Wang G, Yang L, Hou C, Liu A. A high-performance glucose/oxygen biofuel cell based on multi-walled carbon nanotube films with electrophoretic deposition. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Navaee A, Salimi A. FAD-based glucose dehydrogenase immobilized on thionine/AuNPs frameworks grafted on amino-CNTs: Development of high power glucose biofuel cell and biosensor. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Streptavidin-hydrogel prepared by sortase A-assisted click chemistry for enzyme immobilization on an electrode. Biosens Bioelectron 2018; 99:56-61. [DOI: 10.1016/j.bios.2017.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/08/2023]
|
10
|
Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal Chim Acta 2017; 1000:273-282. [PMID: 29289320 DOI: 10.1016/j.aca.2017.11.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
The development of a novel flexible and ultrasensitive aptasensor based on carboxylated multiwalled carbon nanotubes (MWCNTs)/ reduced graphene oxide-based field effect transistor (FET) has been reported for label-free detection of the ovarian cancer antigen (CA125). The fabricated sensor has a straightforward design based on the noncovalent attachment of MWCNTs/aptamer conjugated onto few layers reduced graphene oxide nanosheets and its integration with poly-methyl methacrylate (PMMA) as a suitable platform for designing flexible field-effect transistors. The surface properties of the aptasensor were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Under optimal conditions, the proposed aptasensor exhibited a wide linear dynamic range for CA125 (1.0 × 10-9-1.0 U/mL) with a low detection limit of 5.0 × 10-10 U/mL. The proposed aptasensor was also successfully applied to detect CA125 in real human serum samples. Furthermore, sensor flexibility is also a challenging area in chemical and biological sensors, especially for portable, wearable, or even implantable sensors, so, the reduced graphene oxide-based FET-type aptasensor showed bendable flexibility on the PMMA substrate. In addition, the aptasensor exhibited high sensitivity, selectivity, stability and reproducibility which offers great promise as a high performance and flexible FET-type aptasensor to detect CA125 and other cancer biomarkers in clinical samples and biological fluids.
Collapse
|
11
|
Pakapongpan S, Tuantranont A, Poo-Arporn RP. Magnetic Nanoparticle-Reduced Graphene Oxide Nanocomposite as a Novel Bioelectrode for Mediatorless-Membraneless Glucose Enzymatic Biofuel Cells. Sci Rep 2017; 7:12882. [PMID: 29018210 PMCID: PMC5635112 DOI: 10.1038/s41598-017-12417-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
In this work, an enzymatic biofuel cell (EBC) based on a membraneless and mediatorless glucose enzymatic fuel cell system was constructed for operation in physiological conditions (pH 7.0 and temperature 37 °C). The new platform EBC made of nanocomposite, including magnetic nanoparticles (Fe3O4 NPs) and reduced graphene oxide (RGO), was used for the immobilization of glucose oxidase (GOD) as bioanode and bilirubin oxidase (BOD) as biocathode. The EBC bioelectrodes were fabricated without binder or adhesive agents for immobilized enzyme and the first EBC using superparamagnetic properties with Fe3O4 NPs has been reported. The performance of the EBC was evaluated with promising results. In EBC tests, the maximum power density of the EBC was 73.7 μW cm−2 and an open circuit voltage (OCV) as +0.63 V with 5 mM of glucose concentration for the physiological condition of humans. The Fe3O4-RGO nanocomposite offers remarkable enhancement in large surface areas, is a favorable environment for enzyme immobilization, and facilitates electron transfer between enzymes and electrode surfaces. Fe3O4 and RGO have been implied as new promising composite nanomaterials for immobilizing enzymes and efficient platforms due to their superparamagnetism properties. Thus, glucose EBCs could potentially be used as self-powered biosensors or electric power sources for biomedical device applications.
Collapse
Affiliation(s)
- Saithip Pakapongpan
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.,Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, NSTDA, Pathum Thani, 12120, Thailand
| | - Adisorn Tuantranont
- Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, NSTDA, Pathum Thani, 12120, Thailand
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
12
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
13
|
Korani A, Salimi A, Karimi B. Guanine/Ionic Liquid Derived Ordered Mesoporous Carbon Decorated with AuNPs as Efficient NADH Biosensor and Suitable Platform for Enzymes Immobilization and Biofuel Cell Design. ELECTROANAL 2017. [DOI: 10.1002/elan.201700466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aazam Korani
- Department of Chemistry; University of Kurdistan; 66177-15175 Sanandaj Iran
- Vice chancellor for Food and Drug; Kurdistan University of Medical Sciences; Sanandaj Iran
| | - Abdollah Salimi
- Department of Chemistry; University of Kurdistan; 66177-15175 Sanandaj Iran
- Research Center for Nanotechnology; University of Kurdistan; 66177-15175 Sanandaj Iran
| | - Babak Karimi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences; 45137-66731 Zanjan-Iran
| |
Collapse
|
14
|
Jiang K, Zhang X, Huang J, Wang S, Chen J. Porous hollow tubular carbon materials based on zeolitic imidazolate framework-8 derived from ZnO nanorods as new enzyme immobilizing matrix for high-performance bioanode of glucose/O 2 biofuel cells. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
5,5-Dithiobis(2-nitrobenzoic acid) pyrene derivative-carbon nanotube electrodes for NADH electrooxidation and oriented immobilization of multicopper oxidases for the development of glucose/O 2 biofuel cells. Biosens Bioelectron 2016; 87:957-963. [PMID: 27665518 DOI: 10.1016/j.bios.2016.09.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/21/2022]
Abstract
We report the functionalization of multi-walled carbon nanotubes (MWCNTs) electrodes by a bifunctional nitroaromatic molecule accomplished via π-π interactions of a pyrene derivative. DTNB (5,5'-dithiobis(2-nitrobenzoic acid)) has the particularity to possess both electroactivable nitro groups and negatively charged carboxylic groups. The integration of the DTNB-modified MWCNTs was evaluated for different bioelectrocatalytic systems. The immobilized DTNB-based electrodes showed electrocatalytic activity toward the oxidation of the reduced form of nicotinamide adenine dinucleotide (NADH) with low overpotential of -0.09V vs Ag/AgCl at neutral pH. Glucose dehydrogenase was successfully immobilized at the surface of DTNB-based electrodes and, in the presence of NAD+, the resulting bioelectrode achieved efficient glucose oxidation with high current densities of 2.03mAcm-2. On the other hand, the aromatic structure and the negatively charged nature of the DTNB provoked orientation of both laccase and bilirubin oxidase onto the electrode, which enhanced their ability to undergo a direct electron transfer for oxygen reduction. Due to the proper orientation, low overpotentials were obtained (ca. 0.6V vs Ag/AgCl) and high electrocatalytic currents of about 3.5mAcm-2 were recorded at neutral pH in O2 saturated conditions for bilirubin oxidase electrodes. The combination of these bioanodes and bilirubin oxidase biocathodes provided glucose/O2 enzymatic biofuel cells (EBFC) exhibiting an open-circuit potential of 0.640V, with an associated maximum current density of 2.10mAcm-2. Moreover, the fuel cell delivered a maximum power density of 0.50mWcm-2 at 0.36 V.
Collapse
|
16
|
Ratautas D, Laurynėnas A, Dagys M, Marcinkevičienė L, Meškys R, Kulys J. High current, low redox potential mediatorless bioanode based on gold nanoparticles and glucose dehydrogenase from Ewingella americana. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Inamuddin, Haque SU, Naushad M. Electrochemical studies of biocatalytic anode of sulfonated graphene/ferritin/glucose oxidase layer-by-layer biocomposite films for mediated electron transfer. Enzyme Microb Technol 2016; 87-88:29-36. [PMID: 27178792 DOI: 10.1016/j.enzmictec.2016.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
In this study, a bioanode was developed by using layer-by-layer (LBL) assembly of sulfonated graphene (SG)/ferritin (Frt)/glucose oxidase (GOx). The SG/Frt biocomposite was used as an electron transfer elevator and mediator, respectively. Glucose oxidase (GOx) from Aspergillus niger was applied as a glucose oxidation biocatalyst. The electrocatalytic oxidation of glucose using GOx modified electrode increases with an increase in the concentration of glucose in the range of 10-50mM. The electrochemical measurements of the electrode was carried out by using cyclic voltammetry (CV) at different scan rates (20-100mVs(-1)) in 30mM of glucose solution prepared in 0.3M potassium ferrocyanide (K4Fe(CN)6) and linear sweep voltammetry (LSV). A saturation current density of 50±2mAcm(-2) at a scan rate of 100mVs(-1) for the oxidation of 30Mm glucose is achieved.
Collapse
Affiliation(s)
- Inamuddin
- Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India.
| | - Sufia Ul Haque
- Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Mu Naushad
- Department of Chemistry, College of Science, Building #5, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Korani A, Salimi A. High performance glucose/O2 compartment-less biofuel cell using DNA/CNTs as platform for immobilizing bilirubin oxidase as novel biocathode and integrated NH2-CNTs/dendrimer/glucose dehydrogenase/nile blue as bioanode. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Dai M, Sun L, Chao L, Tan Y, Fu Y, Chen C, Xie Q. Immobilization of Enzymes by Electrochemical and Chemical Oxidative Polymerization of L-DOPA to Fabricate Amperometric Biosensors and Biofuel Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10843-10852. [PMID: 25938891 DOI: 10.1021/acsami.5b01865] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electrochemical/chemical oxidative synthesis and biosensing/biofuel cell applications of poly(L-DOPA) (PD) are studied versus polydopamine (PDA) as a recent hotspot biomaterial. The enzyme electrode developed by coelectrodeposition of PD and glucose oxidase (GOx), uricase, or tyrosinase shows biosensing performance superior to that of the corresponding PDA-based enzyme electrode. The chemical oxidative polymerization of L-DOPA (PDC) by NaAuCl4 in GOx-containing neutral aqueous solution is used to immobilize GOx and gold nanoparticles (AuNPs). The thus-prepared chitosan (CS)/GOx-PDC-AuNPs/Au(plate)/Au electrode working in the first-generation biosensing mode responds linearly to glucose concentration with a sensitivity of 152 μA mM(-1) cm(-2), which is larger than those of the CS/GOx-PDAC-AuNPs/Au(plate)/Au electrode, the CS/GOx-poly(3-anilineboronic acid) (PABA)-AuNPs/Au(plate)/Au electrode, and the most reported GOx-based enzyme electrodes. This PDC-based enzyme electrode also works well in the second-generation biosensing mode and as an excellent bioanode in biofuel cell construction, probably because PD as an amino acid polymer has the higher biocompatibility and the more favorable affinity to the enzyme than PDA. The PD material of great convenience in synthesis, outstanding biocompatibility for preparing high-performance bionanocomposites, and strong capability of multifunctional coatings on many surfaces may find wide applications in diversified fields including biotechnology and surface-coating.
Collapse
|
20
|
Navaee A, Salimi A, Jafari F. Electrochemical Pretreatment of Amino-Carbon Nanotubes on Graphene Support as a Novel Platform for Bilirubin Oxidase with Improved Bioelectrocatalytic Activity towards Oxygen Reduction. Chemistry 2015; 21:4949-53. [DOI: 10.1002/chem.201405200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Indexed: 11/11/2022]
|
21
|
Jafari F, Salimi A, Navaee A. Electrochemical and Photoelectrochemical Sensing of Dihydronicotinamide Adenine Dinucleotide and Glucose Based on Noncovalently Functionalized Reduced Graphene Oxide-Cadmium Sulfide Quantum Dots/Poly-Nile Blue Nanocomposite. ELECTROANAL 2014. [DOI: 10.1002/elan.201400164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Shin H, Kang C. Enhanced performance of the wired-bilirubin oxidase oxygen cathode with incorporation of carboxylated single-walled carbon nanotubes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.10.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|