1
|
Liu L, Ma X, Chang Y, Guo H, Wang W. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels. BIOSENSORS 2023; 13:785. [PMID: 37622871 PMCID: PMC10452607 DOI: 10.3390/bios13080785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
It is of great importance to have sensitive and accurate detection of cis-diol-containing biologically related substances because of their important functions in the research fields of metabolomics, glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have been used as synthetic receptors for the specific recognition and detection of cis-diol-containing species. This review critically summarizes the recent advances with boronic acid-based materials as recognition elements and signal labels for the detection of cis-diol-containing biological species, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also address the challenges and future perspectives for developing versatile boronic acid-based materials with various promising applications.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu 476000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenqing Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
2
|
Gangwar R, Rao KT, Khatun S, Rengan AK, Subrahmanyam C, Krishna Vanjari SR. Label-free miniaturized electrochemical nanobiosensor triaging platform for swift identification of the bacterial type. Anal Chim Acta 2022; 1233:340482. [DOI: 10.1016/j.aca.2022.340482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 11/01/2022]
|
3
|
Albaqami MD, Alothman AA, Nafady A, Medany SS, Shah AA, Aftab U, Ibupoto MH, Mallah AB, Tahira A, Tonezzer M, Vigolo B, Ibupoto ZH. Utilization of polyvinyl amine hydrolysis product in enhancing the catalytic properties of Co3O4 nanowires: toward potentiometric glucose bio-sensing application. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2022; 33:11555-11568. [DOI: 10.1007/s10854-022-08128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/18/2022] [Indexed: 07/11/2023]
|
4
|
Wu P, Xue F, Zuo W, Yang J, Liu X, Jiang H, Dai J, Ju Y. A Universal Bacterial Catcher Au-PMBA-Nanocrab-Based Lateral Flow Immunoassay for Rapid Pathogens Detection. Anal Chem 2022; 94:4277-4285. [PMID: 35244383 DOI: 10.1021/acs.analchem.1c04909] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In traditional lateral flow immunoassays (LFIA) for pathogens detection, capture antibody (CA) is necessary and usually conjugated to Au nanoparticles (NPs) in order to label the target analyte. However, the acquisition process of the Au-CA nanoprobe is relatively complicated and costly, which will limit the application of LFIA. Herein, p-mercaptophenylboronic acid-modified Au NPs (namely Au-PMBA nanocrabs), were synthesized and applied for a new CA-independent LFIA method. The stable Au-PMBA nanocrabs showed outstanding capability to capture both Gram-negative bacteria and Gram-positive bacteria through covalent bonding. The acquired Au-PMBA-bacteria complexes were dropped onto the strip, and then captured by the detection antibody on the test line (T-line). Take Escherichia coli O157:H7 as an example, the gray value of T-line was proportional to the bacteria concentration and the linear range was 103-107 cfu·mL-1. This CA-independent strategy exhibited higher sensitivity than the traditional CA-dependent double antibody sandwich method, because detection limit of the former one was 103 cfu·mL-1 only by visual observation, which was reduced by 3 orders of magnitude. Besides, this platform successfully screened E. coli O157:H7 in four food samples with recoveries ranging from 90.25% to 107.25%. This CA-independent LFIA showed great advantages and satisfactory potential for rapid foodborne pathogens detection in real samples.
Collapse
Affiliation(s)
- Pengcheng Wu
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchao Zuo
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Xinmei Liu
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS NANO 2021; 15:18708-18741. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.
Collapse
Affiliation(s)
- Junbo Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Weixing Song
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| |
Collapse
|
6
|
Gangwar R, Subrahmanyam C, Vanjari SRK. Facile, Label‐Free, Non‐Enzymatic Electrochemical Nanobiosensor Platform as a Significant Step towards Continuous Glucose Monitoring. ChemistrySelect 2021. [DOI: 10.1002/slct.202102727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rahul Gangwar
- Department of Electrical Engineering Indian Institute of Technology Hyderabad India
| | | | | |
Collapse
|
7
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
8
|
Kwon K, Yoon T, Gwak H, Lee K, Hyun KA, Jung HI. Fully Automated System for Rapid Enrichment and Precise Detection of Enterobacteria Using Magneto-Electrochemical Impedance Measurements. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00024-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Tsai TY, Shen KH, Chang CW, Jovanska L, Wang R, Yeh YC. In situ formation of nanocomposite double-network hydrogels with shear-thinning and self-healing properties. Biomater Sci 2021; 9:985-999. [PMID: 33300914 DOI: 10.1039/d0bm01528h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanocomposite double-network hydrogels (ncDN hydrogels) are recently introduced to address the limitations of traditional DN hydrogels, such as the lack of diversity in the network structure and the restricted functionalities. However, two challenges remain, including the time-consuming preparation and the lack of shear-thinning and self-healing properties. Here, our approach to developing versatile ncDN hydrogels is through the use of multiple interfacial crosslinking chemistries (i.e., noncovalent interactions of electrostatic interaction and hydrogen bonds as well as dynamic covalent interactions of imine bonds and boronate ester bonds) and surface functionalized nanomaterials (i.e. phenylboronic acid modified reduced graphene oxide (PBA-rGO)). PBA-rGO was used as a multivalent gelator to further crosslink the two polymer chains (i.e. triethylene glycol-grafted chitosan (TEG-CS) and polydextran aldehyde (PDA)) in DN hydrogels, forming the TEG-CS/PDA/PBA-rGO ncDN hydrogels in seconds. The microstructures (i.e. pore size) and properties (i.e. rheological, mechanical, and swelling properties) of the ncDN hydrogels can be simply modulated by changing the amount of PBA-rGO. The dynamic bonds in the polymeric network provided the shear-thinning and self-healing properties to the ncDN hydrogels, allowing the hydrogels to be injected and molded into varied shapes as well as self-repair the damaged structure. Besides, the designed TEG-CS/PDA/PBA-rGO ncDN hydrogels were cytocompatible and also exhibited antibacterial activity. Taken together, we hereby provide a nanomaterial approach to fabricate a new class of ncDN hydrogels with tailorable networks and favorite properties for specific applications.
Collapse
Affiliation(s)
- Tsan-Yu Tsai
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ke-Han Shen
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chun-Wei Chang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Lavernchy Jovanska
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Moreira LFPP, Buffon E, de Sá AC, Stradiotto NR. Fructose determination in fruit juices using an electrosynthesized molecularly imprinted polymer on reduced graphene oxide modified electrode. Food Chem 2021; 352:129430. [PMID: 33691211 DOI: 10.1016/j.foodchem.2021.129430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 01/10/2023]
Abstract
The present work reports the development of a novel electrochemical sensor for the selective detection of fructose. The sensor was developed through electropolymerization of a molecularly imprinted polymer film on a reduced graphene oxide modified electrode. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, atomic force microscopy and RAMAN spectroscopy. Through the application of the modified electrode, the recognition of fructose molecules occurred in a concentration range of 1.0 × 10-14 to 1.0 × 10-11 mol L-1, under a Langmuir adsorption isothermal model. The sensitivity and limits of detection and quantification obtained for the sensor were 9.9 × 107 A L mol-1, 3.2 × 10-15 mol L-1 and 1.1 × 10-14 mol L-1, respectively. The analytical method used for the detection of fructose presented good reproducibility, stability and accuracy, and was successfully applied for the quantification of this sugar in orange, apple and grape juices.
Collapse
Affiliation(s)
- Luiz Felipe Pompeu Prado Moreira
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| | - Edervaldo Buffon
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil.
| | - Acelino Cardoso de Sá
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; São Carlos Institute of Physics, University of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Nelson Ramos Stradiotto
- Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil; Bioenergy Research Institute, São Paulo State University (UNESP), 14800-060 Araraquara, São Paulo, Brazil
| |
Collapse
|
11
|
Chen M, Cao X, Chang K, Xiang H, Wang R. A novel electrochemical non-enzymatic glucose sensor based on Au nanoparticle-modified indium tin oxide electrode and boronate affinity. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137603] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Casulli MA, Taurino I, Hashimoto T, Carrara S, Hayashita T. Electrochemical Assay for Extremely Selective Recognition of Fructose Based on 4-Ferrocene-Phenylboronic Acid Probe and β-Cyclodextrins Supramolecular Complex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003359. [PMID: 33035400 DOI: 10.1002/smll.202003359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present paper is to highlight a novel electrochemical assay for an extremely-selective detection of fructose thanks to the use of a supramolecular complex between β-cyclodextrins (β-CDs) and a chemically modified ferrocene with boronic acid named 4-Fc-PB/natural-β-CDs. Another kind of β-CDs, the 4-Fc-PB/3-phenylboronic-β-CDs, is proposed for the detection of glucose. The novel electrochemical probe is fully characterized by 1 H nuclear magnetic resonance, mass spectroscopy, and elemental analysis, while the superior electrochemical performance is assessed in terms of sensitivity and detection limit. The novelty of the present work consists in the role of CDs that for the first time are employed in electrochemistry with a unique detection mechanism based on specific chemical interactions with the target molecule by the introduction of proper binding groups. A highly selective detection of fructose is obtained and it is believed that the proposed mechanism of detection represents a new way to electrochemically sense other molecules by varying the combination of specific groups of the supramolecular complex. The findings are of impactful importance since a quick, easy, cheap, and extremely selective detection of fructose is not yet available in the market, here achieved by using electrochemical methods which are a very growing field.
Collapse
Affiliation(s)
- Maria Antonietta Casulli
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Irene Taurino
- Integrated System Laboratory (LSI), INF 338 (Bâtiment INF), Station 14, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Takeshi Hashimoto
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Sandro Carrara
- Integrated System Laboratory (LSI), INF 338 (Bâtiment INF), Station 14, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Takashi Hayashita
- Department of Materials and Life Sciences, Sophia University Yotsuya Campus, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| |
Collapse
|
13
|
Tran TPN, Nguyen TN, Taniike T, Nishimura S. Tailoring Graphene Oxide Framework with N- and S- Containing Organic Ligands for the Confinement of Pd Nanoparticles Towards Recyclable Catalyst Systems. Catal Letters 2020. [DOI: 10.1007/s10562-020-03284-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
A solid-state sensor based on poly(2,4,6-triaminopyrimidine) grafted with electrochemically reduced graphene oxide: Fabrication, characterization, kinetics and potential analysis on ephedrine. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Thiruppathi M, Lin PY, Chou YT, Ho HY, Wu LC, Ho JAA. Simple aminophenol-based electrochemical probes for non-enzymatic, dual amperometric detection of NADH and hydrogen peroxide. Talanta 2019; 200:450-457. [PMID: 31036208 DOI: 10.1016/j.talanta.2019.03.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
Non enzymatic detection of NADH and H2O2 is of practical significance for both environmental and biological prospective. However, there is no simple, straight forward electrochemical sensor available for sensing of them in real samples. Addressing this challenge, we report a simple stimuli responsive aminophenol, pre-anodized screen printed carbon electrode (SPCE*/AP) based electrochemical probes for dual detection of NADH and H2O2. Aminophenol prepared and adsorbed on the electrode from aminophenylboronic acid via boronic acid deprotection with H2O2. The SPCE*/AP fabricated with this process was characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), Raman spectroscopy, UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). Amperometric detection results showed that SPCE*/AP electrodes exhibited linearity from 50 µM to 500 µM and from 200 µM to 2 mM with a detection limit (S/N = 3) of 4.2 µM and 28.9 µM for NADH and H2O2, respectively. Excellent reproducibility and selectivity for NADH and H2O2 were observed for this electrochemical platform. In addition, the matrix effect was investigated further using the same technique to analyze NADH and H2O2 in human urine samples, human serum samples, cell culture medium (containing 10% fetal bovine serum, FBS), and environmental water samples (tap water and rain water). Also, the present sensor demonstrated promising outcomes with living cells (normal cells and cancer cells).
Collapse
Affiliation(s)
- Murugan Thiruppathi
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Ying Lin
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Te Chou
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Yu Ho
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan
| | - Li-Chen Wu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
16
|
Fang G, Wang H, Bian Z, Sun J, Liu A, Fang H, Liu B, Yao Q, Wu Z. Recent development of boronic acid-based fluorescent sensors. RSC Adv 2018; 8:29400-29427. [PMID: 35548017 PMCID: PMC9084483 DOI: 10.1039/c8ra04503h] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/08/2018] [Indexed: 11/21/2022] Open
Abstract
As Lewis acids, boronic acids can bind with 1,2- or 1,3-diols in aqueous solution reversibly and covalently to form five or six cyclic esters, thus resulting in significant fluorescence changes. Based on this phenomenon, boronic acid compounds have been well developed as sensors to recognize carbohydrates or other substances. Several reviews in this area have been reported before, however, novel boronic acid-based fluorescent sensors have emerged in large numbers in recent years. This paper reviews new boron-based sensors from the last five years that can detect carbohydrates such as glucose, ribose and sialyl Lewis A/X, and other substances including catecholamines, reactive oxygen species, and ionic compounds. And emerging electrochemically related fluorescent sensors and functionalized boronic acid as new materials including nanoparticles, smart polymer gels, and quantum dots were also involved. By summarizing and discussing these newly developed sensors, we expect new inspiration in the design of boronic acid-based fluorescent sensors.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Jie Sun
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Aiqin Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Fang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan Shandong 250012 China
| | - Bo Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhongyu Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
17
|
Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. Electrochemical Methodologies for the Detection of Pathogens. ACS Sens 2018; 3:1069-1086. [PMID: 29756447 DOI: 10.1021/acssensors.8b00239] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens such as culturing the microorganism on agar plates and the polymer chain reaction (PCR) method, able to identify the DNA of the microorganism. Recent breakthroughs will be highlighted, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device. We will conclude with some perspectives and outlooks to better understand shortcomings. Indeed, there is currently no adequate solution that allows the selective and sensitive binding to a specific microorganism, that is fast in detection and screening, cheap to implement, and able to be conceptualized for a wide range of biologically relevant targets.
Collapse
Affiliation(s)
- Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hamed Jafari
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
18
|
Recent advances in electrochemical non-enzymatic glucose sensors - A review. Anal Chim Acta 2018; 1033:1-34. [PMID: 30172314 DOI: 10.1016/j.aca.2018.05.051] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
This review encompasses the mechanisms of electrochemical glucose detection and recent advances in non-enzymatic glucose sensors based on a variety of materials ranging from platinum, gold, metal alloys/adatom, non-precious transition metal/metal oxides to glucose-specific organic materials. It shows that the discovery of new materials based on unique nanostructures have not only provided the detailed insight into non-enzymatic glucose oxidation, but also demonstrated the possibility of direct detection in whole blood or interstitial fluids. We critically evaluate various aspects of non-enzymatic electrochemical glucose sensors in terms of significance as well as performance. Beyond laboratory tests, the prospect of commercialization of non-enzymatic glucose sensors is discussed.
Collapse
|
19
|
Ji D, Liu L, Li S, Chen C, Lu Y, Wu J, Liu Q. Smartphone-based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron 2017; 98:449-456. [DOI: 10.1016/j.bios.2017.07.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
|
20
|
Varyambath A, Tran CH, Song WL, Kim I. Hyper-Cross-Linked Polypyrene Spheres Functionalized with 3-Aminophenylboronic Acid for the Electrochemical Detection of Diols. ACS OMEGA 2017; 2:7506-7514. [PMID: 31457312 PMCID: PMC6645325 DOI: 10.1021/acsomega.7b01107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/26/2017] [Indexed: 05/04/2023]
Abstract
A sensor for the determination of diols using 3-aminophenylboronic acid (APBA)-functionalized hyper-cross-linked polypyrene (PPy) (APBA@PPy) is presented. The uniform (∼1 μm in diameter) and highly porous (628 m2 g-1 in specific surface area) PPy spheres are fabricated via a one-pot protocol that consists of ZnBr2-catalyzed alkylation of pyrene, a subsequent cross-linking reaction, and concomitant self-assembly. The PPy spheres formed within a few minutes at mild conditions are featured by an excellent structural integrity and inertness to organic solvents. Thus, the APBA@PPy composites (∼1 μm in diameter; 458 m2 g-1 in specific surface area) are prepared simply by substituting unreacted bromomethyl groups on the surface of PPy spheres for APBA. The APBA@PPy composites are successfully applied for the electrochemical sensing of d-glucose and dopamine. A dye displacement assay is also performed using alizarin red dye conjugated to boronic acid in glucose buffer solution.
Collapse
Affiliation(s)
- Anuraj Varyambath
- Department Polymer Science
and Engineering, BK21 PLUS Center for Advanced Chemical Technology, Pusan National University, Busan 609-735, Republic of Korea
| | - Chinh Hoang Tran
- Department Polymer Science
and Engineering, BK21 PLUS Center for Advanced Chemical Technology, Pusan National University, Busan 609-735, Republic of Korea
| | - Wen Liang Song
- Department Polymer Science
and Engineering, BK21 PLUS Center for Advanced Chemical Technology, Pusan National University, Busan 609-735, Republic of Korea
| | - Il Kim
- Department Polymer Science
and Engineering, BK21 PLUS Center for Advanced Chemical Technology, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
21
|
Kahlouche K, Jijie R, Hosu I, Barras A, Gharbi T, Yahiaoui R, Herlem G, Ferhat M, Szunerits S, Boukherroub R. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta 2017; 178:432-440. [PMID: 29136845 DOI: 10.1016/j.talanta.2017.09.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
Abstract
Microsystems play an important role in many biological and environmental applications. The integration of electrical interfaces into such miniaturized systems provides new opportunities for electrochemical sensing where high sensitivity and selectivity towards the analyte are requested. This can be only achieved upon controlled functionalization of the working electrode, a challenge for compact microsystems. In this work, we demonstrate the benefit of electrophoretic deposition (EPD) of reduced graphene oxide/polyethylenimine (rGO/PEI) for the selective modification of a gold (Au) microelectrode in a microsystem comprising a Pt counter and a Ag/AgCl reference electrode. The functionalized microsystem was successfully applied for the sensing of dopamine with a detection limit of 50nM. Additionally, the microsystem exhibited good performance for the detection of dopamine levels in meat samples.
Collapse
Affiliation(s)
- Karima Kahlouche
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France; Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Centre for Development of Advanced Technologies (CDTA), Baba Hassen, Algeria; Semiconductors and Functional Materials Laboratory, University of Laghouat, Algeria
| | - Roxana Jijie
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Ioana Hosu
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Tijani Gharbi
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Reda Yahiaoui
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Guillaume Herlem
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Marhoun Ferhat
- Semiconductors and Functional Materials Laboratory, University of Laghouat, Algeria
| | - Sabine Szunerits
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
22
|
A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2440-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Electrogenerated chemiluminescence biosensing method for highly sensitive detection of DNA hydroxymethylation: Combining glycosylation with Ru(phen) 3 2+ -assembled graphene oxide. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Daikuzono CM, Delaney C, Tesfay H, Florea L, Oliveira ON, Morrin A, Diamond D. Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes. Analyst 2017; 142:1133-1139. [DOI: 10.1039/c6an02571d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel paper-based impedance sensor for saccharide sensing in the sub-mM range.
Collapse
Affiliation(s)
- C. M. Daikuzono
- Insight Centre for Data Analytics
- National Centre for Sensor Research
- School of Chemical Sciences
- Dublin City University
- Ireland
| | - C. Delaney
- Insight Centre for Data Analytics
- National Centre for Sensor Research
- School of Chemical Sciences
- Dublin City University
- Ireland
| | - H. Tesfay
- Insight Centre for Data Analytics
- National Centre for Sensor Research
- School of Chemical Sciences
- Dublin City University
- Ireland
| | - L. Florea
- Insight Centre for Data Analytics
- National Centre for Sensor Research
- School of Chemical Sciences
- Dublin City University
- Ireland
| | - O. N. Oliveira
- Instituto de Física de São Carlos
- Universidade de São Paulo
- Brazil
| | - A. Morrin
- Insight Centre for Data Analytics
- National Centre for Sensor Research
- School of Chemical Sciences
- Dublin City University
- Ireland
| | - D. Diamond
- Insight Centre for Data Analytics
- National Centre for Sensor Research
- School of Chemical Sciences
- Dublin City University
- Ireland
| |
Collapse
|
25
|
Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2007-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Pięk M, Piech R, Paczosa-Bator B. All-solid-state nitrate selective electrode with graphene/tetrathiafulvalene nanocomposite as high redox and double layer capacitance solid contact. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.05.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Sridevi S, Vasu KS, Sampath S, Asokan S, Sood AK. Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide. JOURNAL OF BIOPHOTONICS 2016; 9:760-9. [PMID: 26266873 DOI: 10.1002/jbio.201580156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 05/05/2023]
Abstract
An enhanced optical detection of D-glucose and glycated hemoglobin (HbA1c ) has been established in this study using etched fiber Bragg gratings (eFBG) coated with aminophenylboronic acid (APBA)-functionalized reduced graphene oxide (RGO). The read out, namely the shift in Bragg wavelength (ΔλB ) is highly sensitive to changes that occur due to the adsorption of glucose (or HbA1c ) molecules on the eFBG sensor coated with APBA-RGO complex through a five-membered cyclic ester bond formation between glucose and APBA molecules. A limit of detection of 1 nM is achieved with a linear range of detection from 1 nM to 10 mM in the case of D-glucose detection experiments. For HbA1c , a linear range of detection varying from 86 nM to 0.23 mM is achieved. The observation of only 4 pm (picometer) change in ΔλB even for the 10 mM lactose solution confirms the specificity of the APBA-RGO complex coated eFBG sensors to glucose molecules.
Collapse
Affiliation(s)
- S Sridevi
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - K S Vasu
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - S Sampath
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - S Asokan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
- Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, 560012, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
28
|
Anzai JI. Recent progress in electrochemical biosensors based on phenylboronic acid and derivatives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:737-746. [PMID: 27287174 DOI: 10.1016/j.msec.2016.05.079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
This review provides an overview of recent progress made in the development of electrochemical biosensors based on phenylboronic acid (PBA) and its derivatives. PBAs are known to selectively bind 1,2- and 1,3-diols to form negatively charged boronate esters in neutral aqueous media and have been used to construct electrochemical glucose sensors because of this selective binding. PBA-modified metal and carbon electrodes have been widely studied as voltammetric and potentiometric glucose sensors. In some cases, ferroceneboronic acid or ferrocene-modified phenylboronic acids are used as sugar-selective redox compounds. Another option for sensors using PBA-modified electrodes is potentiometric detection, in which the changes in surface potential of the electrodes are detected as an output signal. An ion-sensitive field effect transistor (FET) has been used as a signal transducer in potentiometric sensors. Glycoproteins, such as glycated hemoglobin (HbA1c), avidin, and serum albumin can also be detected by PBA-modified electrodes because they contain hydrocarbon chains on the surface. HbA1c sensors are promising alternatives to enzyme-based glucose sensors for monitoring blood glucose levels over the preceding 2-3months. In addition, PBA-modified electrodes can be used to detect a variety of compounds including hydroxy acids and fluoride (F(-)) ions. PBA-based F(-) ion sensors may be useful if reagentless sensors can be developed.
Collapse
Affiliation(s)
- Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
29
|
Barras A, Pagneux Q, Sane F, Wang Q, Boukherroub R, Hober D, Szunerits S. High Efficiency of Functional Carbon Nanodots as Entry Inhibitors of Herpes Simplex Virus Type 1. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9004-13. [PMID: 27015417 DOI: 10.1021/acsami.6b01681] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanostructures have been lately identified as an efficient therapeutic strategy to modulate viral attachment and entry. The high concentrations of ligands present on nanostructures can considerably enhance affinities toward biological receptors. We demonstrate here the potential of carbon nanodots (C-dots) surface-functionalized with boronic acid or amine functions to interfere with the entry of herpes simplex virus type 1 (HSV-1). C-dots formed from 4-aminophenylboronic acid hydrochloride (4-AB/C-dots) using a modified hydrothermal carbonization are shown to prevent HSV-1 infection in the nanograms per milliliter concentration range (EC50 = 80 and 145 ng mL(-1) on Vero and A549 cells, respectively), whereas the corresponding C-dots formed from phenylboronic acid (B/C-dots) have no effects even at high concentrations. Some of the presented results also suggest that C-dots are specifically acting on the early stage of virus entry through an interaction with the virus and probably the cells at the same time.
Collapse
Affiliation(s)
- Alexandre Barras
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| | - Quentin Pagneux
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| | - Famara Sane
- Laboratoire de Virologie EA3610, Université Lille 2 et CHU Lille, Batiment P Boulanger Hôpital A Calmette CHRU de Lille , Boulevard du Professeur Jules Leclerc, 59037 Lille, France
| | - Qi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University , Jinan 250061, P. R. China
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| | - Didier Hober
- Laboratoire de Virologie EA3610, Université Lille 2 et CHU Lille, Batiment P Boulanger Hôpital A Calmette CHRU de Lille , Boulevard du Professeur Jules Leclerc, 59037 Lille, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
30
|
Pablos JL, Vallejos S, Ibeas S, Muñoz A, Serna F, García FC, García JM. Acrylic Polymers with Pendant Phenylboronic Acid Moieties as "Turn-Off" and "Turn-On" Fluorescence Solid Sensors for Detection of Dopamine, Glucose, and Fructose in Water. ACS Macro Lett 2015; 4:979-983. [PMID: 35596468 DOI: 10.1021/acsmacrolett.5b00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein a fluorescence polymer membrane as a film-shaped solid sensory kit for the detection and quantification in water of saccharides, namely, fructose and glucose, and dopamine. The sensory motifs are phenylboronic acids, which are chemically incorporated in the polymer network in the radically initiated bulk polymerization process. The sensory membrane is fluorescent. The interaction of the sensory motifs with dopamine "turn-off" the fluorescence due to a dynamic quenching, while stable complexes are formed with saccharides giving rise to a fluorescence "turn-on". The variation of the fluorescence intensity and the wavelength of the maxima permitted the titration of the species with a detection limit of 3-4 × 10-4 M. The hydrophilic membrane allowed for the detection in water in spite of the lack of solubility in this medium of the sensory phenylboronic acid derivative monomer.
Collapse
Affiliation(s)
- Jesús L. Pablos
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos
s/n, 09001 Burgos, Spain
| | - Saúl Vallejos
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos
s/n, 09001 Burgos, Spain
| | - Saturnino Ibeas
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos
s/n, 09001 Burgos, Spain
| | - Asunción Muñoz
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos
s/n, 09001 Burgos, Spain
| | - Felipe Serna
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos
s/n, 09001 Burgos, Spain
| | - Félix C. García
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos
s/n, 09001 Burgos, Spain
| | - José M. García
- Departamento de Química,
Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos
s/n, 09001 Burgos, Spain
| |
Collapse
|
31
|
Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:103-9. [PMID: 26478292 DOI: 10.1016/j.msec.2015.07.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/04/2015] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO-PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV-visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH7.4.
Collapse
|
32
|
Li J, Wang P, Zhang N, Yang Y, Zheng J. Enhanced detection of saccharide using redox capacitor as an electrochemical indicator via a redox-cycling and its molecular logic behavior. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Turcheniuk K, Hage CH, Heliot L, Railian S, Zaitsev V, Spadavecchia J, Boukherroub R, Szunerits S. Infrared Photothermal Therapy with Water Soluble Reduced Graphene Oxide: Shape, Size and Reduction Degree Effects. ACTA ACUST UNITED AC 2015. [DOI: 10.1142/s1793984415400024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, we investigate the effects of lateral size and reduction level of polyethylene glycol (PEG)-modified graphene oxide (GO) nanosheets on the photothermal properties. PEG-modified GO (GO–PEG) and reduced graphene oxide (rGO–PEG) matrices were synthesized through amide bond formation between the carboxyl groups of carboxylated GO and rGO and the amine groups of a PEG linker. We found that the reaction temperature has an important influence on the morphology and size of the pegylated nanostructures. While rGO–PEG formed at 80°C is of nanometer size, the GO–PEG, prepared at room temperature, has needle-like shape with micrometric dimensions. The rGO–PEG matrix was found to be highly soluble under physiological conditions with no aggregation observed even after 6 months of storage. The cytotoxicity of both matrices as well as their photothermal properties to ablate cervical HeLa cancer cells and MDA-MB-231 human breast carcinoma cells were studied. There was no sign of acute toxicity of rGO–PEG for HeLa and MDA-MB-31 cancer cells over a wide concentration range. A complete destruction of the tumor cells could be achieved with a laser power of 6 W cm-2 and a concentration of 60 μg mL-1 of rGO–PEG.
Collapse
Affiliation(s)
- Kostiantyn Turcheniuk
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France
| | - Charle-Henri Hage
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France
| | - Laurent Heliot
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France
| | - Svetlana Railian
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France
- Department of Analytical Chemistry, Taras Shevchenko University, 60 Vladimirskaya Str., Kiev, Ukraine
| | - Vladimir Zaitsev
- Department of Analytical Chemistry, Taras Shevchenko University, 60 Vladimirskaya Str., Kiev, Ukraine
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de Sao Vicente, 225-Gavea, Rio de Janeiro, 22451-900, Brazil
| | - Jolanda Spadavecchia
- Laboratoire de Réactivité de Surfaces, UMR CNRS 7197, Université Pierre & Marie Curie – Paris VI, Site d’Ivry – Le Raphaël, 94200 Ivry-sur-Seine, France
| | - Rabah Boukherroub
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France
| | - Sabine Szunerits
- Institut de Recherche Interdisciplinaire (IRI, USR 3078), Université Lille1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq, France
| |
Collapse
|
34
|
Khanal M, Barras A, Vausselin T, Fénéant L, Boukherroub R, Siriwardena A, Dubuisson J, Szunerits S. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry. NANOSCALE 2015; 7:1392-1402. [PMID: 25502878 DOI: 10.1039/c4nr03875d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The search for viral entry inhibitors that selectively target viral envelope glycoproteins has attracted increasing interest in recent years. Amongst the handful of molecules reported to show activity as hepatitis C virus (HCV) entry inhibitors are a variety of glycan-binding proteins including the lectins, cyanovirin-N (CV-N) and griffithsin. We recently demonstrated that boronic acid-modified nanoparticles are able to reduce HCV entry through a similar mechanism to that of lectins. A major obstacle to any further development of these nanostructures as viral entry inhibitors is their only moderate maximal inhibition potential. In the present study, we report that lipid nanocapsules (LNCs), surface-functionalized with amphiphilic boronic acid (BA) through their post-insertion into the semi-rigid shell of the LNCs, are indeed far superior as HCV entry inhibitors when compared with previously reported nanostructures. These 2(nd) generation particles (BA-LNCs) are shown to prevent HCV infection in the micromolar range (IC50 = 5.4 μM of BA moieties), whereas the corresponding BA monomers show no significant effects even at the highest analyzed concentration (20 μM). The new BA-LNCs are the most promising boronolectin-based HCV entry inhibitors reported to date and are thus observed to show great promise in the development of a pseudolectin-based therapeutic agent.
Collapse
Affiliation(s)
- Manakamana Khanal
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078), Université Lille 1, Parc de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Q, Wang Q, Li M, Szunerits S, Boukherroub R. Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: application for nonenzymatic glucose sensing. RSC Adv 2015. [DOI: 10.1039/c4ra14132f] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The paper reports on the simultaneous reduction/deposition of thin films of rGO/Cu NPs from an ethanol solution of GO and CuSO4 using EPD technique. The electrocatalytic properties of the electrode were exploited for non-enzymatic glucose sensing.
Collapse
Affiliation(s)
- Qian Wang
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078)
- Université Lille 1
- 59658 Villeneuve d'Ascq
- France
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
| | - Qi Wang
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Shandong University
- Jinan 250061
- China
| | - Musen Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Shandong University
- Jinan 250061
- China
| | - Sabine Szunerits
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078)
- Université Lille 1
- 59658 Villeneuve d'Ascq
- France
| | - Rabah Boukherroub
- Institut de Recherche Interdisciplinaire (IRI, USR CNRS 3078)
- Université Lille 1
- 59658 Villeneuve d'Ascq
- France
| |
Collapse
|
36
|
Abstract
XPS represents a powerful tool for investigation of chemistry involved in chemical sensors, as analytes and recognition elements interact at a device surface, the region analyzed by the spectroscopic technique.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratorio di Chimica Analitica
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.)
- Università del Salento
- 73100 Lecce
- Italy
| | - Simona Rella
- Laboratorio di Chimica Analitica
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.)
- Università del Salento
- 73100 Lecce
- Italy
| | - Antonio Turco
- Laboratorio di Chimica Analitica
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.)
- Università del Salento
- 73100 Lecce
- Italy
| | - Cosimino Malitesta
- Laboratorio di Chimica Analitica
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (Di.S.Te.B.A.)
- Università del Salento
- 73100 Lecce
- Italy
| |
Collapse
|
37
|
Li M, Zhu W, Marken F, James TD. Electrochemical sensing using boronic acids. Chem Commun (Camb) 2015; 51:14562-73. [DOI: 10.1039/c5cc04976h] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Boronic acids can bind with 1,2- or 1,3-diols to form five or six-membered cyclic complexes and also can interact with Lewis bases to generate boronate anions, making them suitable for the electrochemical sensing of these species
Collapse
Affiliation(s)
- Meng Li
- Department of Chemistry
- University of Bath
- Claverton Down
- Bath
- UK
| | - Weihong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- East China University of Science & Technology
- P. R. China
| | - Frank Marken
- Department of Chemistry
- University of Bath
- Claverton Down
- Bath
- UK
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Claverton Down
- Bath
- UK
| |
Collapse
|
38
|
A glucose-responsive pH-switchable bioelectrocatalytic sensor based on phenylboronic acid-diol specificity. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Hosu IS, Wang Q, Vasilescu A, Peteu SF, Raditoiu V, Railian S, Zaitsev V, Turcheniuk K, Wang Q, Li M, Boukherroub R, Szunerits S. Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: a sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide. RSC Adv 2015. [DOI: 10.1039/c4ra09781e] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrocatalytic properties of cobalt phthalocyanine modified reduced graphene oxide for peroxynitrite and hydrogen peroxide are investigated.
Collapse
|
40
|
Lacina K, Skládal P, James TD. Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chem Cent J 2014; 8:60. [PMID: 25371705 PMCID: PMC4218984 DOI: 10.1186/s13065-014-0060-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Boronic acids are increasingly utilised in diverse areas of research. Including the interactions of boronic acids with diols and strong Lewis bases as fluoride or cyanide anions, which leads to their utility in various sensing applications. The sensing applications can be homogeneous assays or heterogeneous detection. Detection can be at the interface of the sensing material or within the bulk sample. Furthermore, the key interaction of boronic acids with diols allows utilisation in various areas ranging from biological labelling, protein manipulation and modification, separation and the development of therapeutics. All the above uses and applications are covered by this mini-review of papers published during 2013.
Collapse
Affiliation(s)
- Karel Lacina
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Petr Skládal
- />CEITEC, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- />Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tony D James
- />Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK
| |
Collapse
|
41
|
Tlili C, Badhulika S, Tran TT, Lee I, Mulchandani A. Affinity chemiresistor sensor for sugars. Talanta 2014; 128:473-9. [DOI: 10.1016/j.talanta.2014.05.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022]
|
42
|
Li C, Liu W, Gu Y, Hao S, Yan X, Zhang Z, Yang M. Simultaneous determination of catechol and hydroquinone based on poly(sulfosalicylic acid)/functionalized graphene modified electrode. J APPL ELECTROCHEM 2014. [DOI: 10.1007/s10800-014-0713-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
A graphene oxide functionalized with 3-aminophenylboronic acid for the selective enrichment of nucleosides, and their separation by capillary electrophoresis. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1316-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Tabrizi MA, Zand Z. A Facile One-Step Method for the Synthesis of Reduced Graphene Oxide Nanocomposites by NADH as Reducing Agent and Its Application in NADH Sensing. ELECTROANAL 2013. [DOI: 10.1002/elan.201300370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Wang Q, Subramanian P, Li M, Yeap WS, Haenen K, Coffinier Y, Boukherroub R, Szunerits S. Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|