1
|
Georges RN, Ballut L, Octobre G, Comte A, Hecquet L, Charmantray F, Doumèche B. Structural determination and kinetic analysis of the transketolase from Vibrio vulnificus reveal unexpected cooperative behavior. Protein Sci 2024; 33:e4884. [PMID: 38145310 PMCID: PMC10868444 DOI: 10.1002/pro.4884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Vibrio vulnificus (vv) is a multidrug-resistant human bacterial pathogen whose prevalence is expected to increase over the years. Transketolases (TK), transferases catalyzing two reactions of the nonoxidative branch of the pentose-phosphate pathway and therefore linked to several crucial metabolic pathways, are potential targets for new drugs against this pathogen. Here, the vvTK is crystallized and its structure is solved at 2.1 Å. A crown of 6 histidyl residues is observed in the active site and expected to participate in the thiamine pyrophosphate (cofactor) activation. Docking of fructose-6-phosphate and ferricyanide used in the activity assay, suggests that both substrates can bind vvTK simultaneously. This is confirmed by steady-state kinetics showing a sequential mechanism, on the contrary to the natural transferase reaction which follows a substituted mechanism. Inhibition by the I38-49 inhibitor (2-(4-ethoxyphenyl)-1-(pyrimidin-2-yl)-1H-pyrrolo[2,3-b]pyridine) reveals for the first time a cooperative behavior of a TK and docking experiments suggest a previously undescribed binding site at the interface between the pyrophosphate and pyridinium domains.
Collapse
Affiliation(s)
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, Lyon, France
| | | | - Arnaud Comte
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
| | - Bastien Doumèche
- Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
2
|
Wang YE, Yang D, Ma C, Hu S, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, and Herbicidal Activity of Naphthalimide-Aroyl Hybrids as Potent Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12819-12829. [PMID: 36173029 DOI: 10.1021/acs.jafc.2c04533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transketolase (TK) was identified as a new target for the development of novel herbicides. In this study, a series of naphthalimide-aroyl hybrids were designed and prepared based on TK as a new target and tested for their herbicidal activities. In vitro bioassay showed that compounds 4c and 4w exhibited stronger inhibitory effects against Digitaria sanguinalis (DS) and Amaranthus retroflexus (AR) with the inhibition over 90% at 200 mg/L and around 80% at 100 mg/L. Also, compounds 4c and 4w exhibited excellent postemergence herbicidal activity against DS and AR with the inhibition around 90% at 90 g [active ingredient (ai)]/ha and 80% at 50 g (ai)/ha in the greenhouse, which was comparable with the activity of mesotrione. The fluorescent quenching experiments of At TK revealed the occurrence of electron transfer from compound 4w to At TK and the formation of a strong exciplex between them. Molecular docking analyses further showed that compounds 4w exhibited profound affinity with At TK through the interaction with the amino acids in the active site, which results in its strong inhibitory activities against TK. These findings demonstrated that compound 4w is potentially a lead candidate for novel herbicides targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Chujian Ma
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
3
|
Aymard CMG, Halma M, Comte A, Mousty C, Prévot V, Hecquet L, Charmantray F, Blum LJ, Doumèche B. Innovative Electrochemical Screening Allows Transketolase Inhibitors to Be Identified. Anal Chem 2018; 90:9241-9248. [PMID: 29950093 DOI: 10.1021/acs.analchem.8b01752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transketolases (TKs) are ubiquitous thiamine pyrophosphate (TPP)-dependent enzymes of the nonoxidative branch of the pentose phosphate pathway. They are considered as interesting therapeutic targets in numerous diseases and infections (e.g., cancer, tuberculosis, malaria), for which it is important to find specific and efficient inhibitors. Current TK assays require important amounts of enzyme, are time-consuming, and are not specific. Here, we report a new high throughput electrochemical assay based on the oxidative trapping of the TK-TPP intermediate. After electrode characterization, the enzyme loading, electrochemical protocol, and substrate concentration were optimized. Finally, 96 electrochemical assays could be performed in parallel in only 7 min, which allows a rapid screening of TK inhibitors. Then, 1360 molecules of an in-house chemical library were screened and one early lead compound was identified to inhibit TK from E. coli with an IC50 of 63 μM and an inhibition constant ( KI) of 3.4 μM. The electrochemical assay was also used to propose an inhibition mechanism.
Collapse
Affiliation(s)
- Chloé M G Aymard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Matilte Halma
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Arnaud Comte
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Christine Mousty
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Vanessa Prévot
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Laurence Hecquet
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Franck Charmantray
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, ICCF UMR 6296 CNRS-UCA-Sigma, F-63000 Clermont-Ferrand , France
| | - Loïc J Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| | - Bastien Doumèche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246 CNRS, Université de Lyon, Université Lyon 1, CNRS, INSA Lyon, CPE Lyon, 43 bd du 11 Novembre 1918 , 69622 Villeurbanne Cedex , France
| |
Collapse
|
4
|
Halma M, Doumèche B, Hecquet L, Prévot V, Mousty C, Charmantray F. Thiamine biosensor based on oxidative trapping of enzyme-substrate intermediate. Biosens Bioelectron 2017; 87:850-857. [DOI: 10.1016/j.bios.2016.09.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
|
5
|
Aymard C, Bonaventura C, Henkens R, Mousty C, Hecquet L, Charmantray F, Blum LJ, Doumèche B. High-Throughput Electrochemical Screening Assay for Free and Immobilized Oxidases: Electrochemiluminescence and Intermittent Pulse Amperometry. ChemElectroChem 2016. [DOI: 10.1002/celc.201600647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chloé Aymard
- GEMBAS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246; Université Lyon 1, CNRS, INSA Lyon, CPE Lyon; 43 bd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| | | | - Robert Henkens
- Alderon Biosciences Inc.; 120 Turner Street Beaufort 28516 NC USA
| | - Christine Mousty
- Clermont Université, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, ICCF UMR-CNRS 6296; 63000 Clermont-Ferrand France
| | - Laurence Hecquet
- Clermont Université, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, ICCF UMR-CNRS 6296; 63000 Clermont-Ferrand France
| | - Franck Charmantray
- Clermont Université, Université Blaise Pascal; Institut de Chimie de Clermont-Ferrand, ICCF UMR-CNRS 6296; 63000 Clermont-Ferrand France
| | - Loïc J. Blum
- GEMBAS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246; Université Lyon 1, CNRS, INSA Lyon, CPE Lyon; 43 bd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| | - Bastien Doumèche
- GEMBAS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246; Université Lyon 1, CNRS, INSA Lyon, CPE Lyon; 43 bd du 11 Novembre 1918 69622 Villeurbanne Cedex France
| |
Collapse
|
6
|
Lv J, Wang J, Chang S, Liu M, Pang X. The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Acta Biochim Biophys Sin (Shanghai) 2016; 48:17-26. [PMID: 26487443 DOI: 10.1093/abbs/gmv102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/20/2015] [Indexed: 12/13/2022] Open
Abstract
RAS oncogene mutations are frequently detected in human cancers. Among RAS-mediated tumorigenesis, KRAS-driven cancers are the most frequently diagnosed and resistant to current therapies. Despite more than three decades of intensive efforts, there are still no specific therapies for mutant RAS proteins. While trying to block those well-established downstream pathways, such as the RAF-MAPK pathway and the PI3K-AKT pathway, attentions have been paid to potential effects of RAS on metabolic pathways and the feasibility for targeting these pathways. Recent studies have proved that RAS not only promotes aerobic glycolysis and glutamine metabolism reprograming to provide energy, but it also facilitates branched metabolism pathways, autophagy, and macropinocytosis. These alterations generate building blocks for tumor growth and strengthen antioxidant defense in tumor cells. All of these metabolic changes meet different demands of RAS-driven cancers, making them distinct from normal cells. Indeed, some achievements have been made to inhibit tumor growth through targeting specific metabolism rewiring in preclinical models. Although there is still a long way to elucidate the landscape of altered metabolism, we believe that specific metabolic enzymes or pathways could be therapeutically targeted for selective inhibition of RAS-driven cancers.
Collapse
Affiliation(s)
- Jing Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jieqiong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Siyu Chang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Charmantray F, Touisni N, Hecquet L, Noguer T, Mousty C. Galactose Oxidase/Prussian Blue Based Biosensors. ELECTROANAL 2015. [DOI: 10.1002/elan.201400720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Sonmez B, Sayin S, Yalcinkaya EE, Seleci DA, Yildiz HB, Demirkol DO, Timur S. Calixarene modified montmorillonite: a novel design for biosensing applications. RSC Adv 2014. [DOI: 10.1039/c4ra11818a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here we report the synthesis, characterization and application of calixarene (Calix) modified montmorillonite (Mt) as a platform for bio-applications such as biomolecule immobilization and biosensing technologies.
Collapse
Affiliation(s)
- Burak Sonmez
- Ege University Faculty of Science
- Biochemistry Department
- 35100 Bornova-Izmir, Turkey
| | - Serkan Sayin
- KTO Karatay University
- Department of Materials Science and Nanotechnology Engineering
- 42020 Konya, Turkey
| | | | - Didem Ag Seleci
- Ege University Faculty of Science
- Biochemistry Department
- 35100 Bornova-Izmir, Turkey
| | - Huseyin Bekir Yildiz
- KTO Karatay University
- Department of Materials Science and Nanotechnology Engineering
- 42020 Konya, Turkey
| | - Dilek Odaci Demirkol
- Ege University Faculty of Science
- Biochemistry Department
- 35100 Bornova-Izmir, Turkey
- Ege University
- Institute of Drug Abuse Toxicology &Pharmaceutical Sciences
| | - Suna Timur
- Ege University Faculty of Science
- Biochemistry Department
- 35100 Bornova-Izmir, Turkey
- Ege University
- Institute of Drug Abuse Toxicology &Pharmaceutical Sciences
| |
Collapse
|