1
|
Gong Y, Han H, Ma Z. Ultrasensitive self-powered biosensor with facile chemical signal amplification strategy using hydrogen peroxide-triggered silver oxidation reaction. Talanta 2024; 279:126570. [PMID: 39018949 DOI: 10.1016/j.talanta.2024.126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The amplification strategies used for self-powered biosensor based on biofuel cell (BFC-SPB) need to be further developed. Because the currently developed strategies utilized the complicated hybridization of DNA or poorly readable current signal of capacitors for amplification, which limits the practical application in public health emergencies. Here, we present a facile chemical amplification strategy for BFC-SPB. The 5-min amplification was triggered by simply adding H2O2 solution dropwise to the sensing cathode after the formation of the immune sandwich. The Ag NP of immunoprobe were oxidized to Ag(I), which can be served as the electron acceptor of the cathode. The amount of immunoprobe was positively correlated with that of the antigen, resulting in corresponding and high concentration of Ag(I) after the amplification, which enhanced the ability of the cathode as the electron acceptor. Meanwhile the glucose oxidation reaction (GOR) was performed on the bioanode modified with glucose oxidase (GOx). After assembling the bioanode and sensing cathode, the open circuit voltage of the BFC-SPB, measured by digital multimeter, distinctly rised with the elevated concentration of the antigen. To demonstrate the proof of concept, immunoglobulin G (IgG), selecting as a model analyte, was sensitively detected using this method. Result indicated that the limit of detection was 4.4 fg mL-1 (0.03 amol mL-1) in the linear range of 1 pg mL-1-10 μg mL-1. This work initiates a brand-new way of chemical amplification strategy for BFC-SPB, and offers a promising platform for practical applications.
Collapse
Affiliation(s)
- Yichen Gong
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Zhang M, Dong X, Ji G, Wang J, Wang T, Liu Q, Niu Q. Synergistic effect of 2D covalent organic frameworks confined 0D carbon quantum dots film: Toward molecularly imprinted cathodic photoelectrochemical platform for detection of tetracycline. Biosens Bioelectron 2024; 267:116870. [PMID: 39454365 DOI: 10.1016/j.bios.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The development of high photoactive cathode materials combined with the formation of a stable interface are considered important factors for the selective and sensitive photoelectrochemical (PEC) detection of tetracycline (TC). Along these lines, in this work, a novel type II heterostructure composed of two-dimensional (2D) covalent organic frameworks confined to zero-dimensional (0D) carbon quantum dots (CDs/COFs) film was successfully synthesized using the rapid in-situ polymerization method at room temperature. The PEC signal of CDs/COFs was significantly amplified by improving the light absorption and electron transfer capabilities. Furthermore, a cathodic molecularly imprinted PEC sensor (MIP-PEC) for the detection of TC was constructed through fast in-situ Ultraviolet (UV) photopolymerization on the electrode. Finally, a "turn-off" PEC cathodic signal was achieved based on the selective recognition of the imprinted cavity and the mechanism of steric hindrance increase. Under optimal conditions, the proposed sensor demonstrated a wide linear relationship with TC in the concentration range of 5.00 × 10-12-1.00 × 10-5 M, with a detection limit as low as 6.00 × 10-13 M. Meanwhile, excellent stability, selectivity, reproducibility, and applicability in real river samples was recorded. Our work provides an effective and rapid in situ construction method for fabricating highly photoactive cathode heterojunctions and uniform stable selective MIP-PEC sensing interfaces, yielding accurate antibiotics detection in the environment.
Collapse
Affiliation(s)
- Mengge Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiuxiu Dong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guanya Ji
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jing Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Tao Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qijian Niu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Agriculture Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Song J, Chen Y, Li L, Tan M, Su W. Recent Progress in Photoelectrochemical Sensing of Pesticides in Food and Environmental Samples: Photoactive Materials and Signaling Mechanisms. Molecules 2024; 29:560. [PMID: 38338305 PMCID: PMC10856573 DOI: 10.3390/molecules29030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Pesticides have become an integral part of modern agricultural practices, but their widespread use poses a significant threat to human health. As such, there is a pressing need to develop effective methods for detecting pesticides in food and environmental samples. Traditional chromatography methods and common rapid detection methods cannot satisfy accuracy, portability, long storage time, and solution stability at the same time. In recent years, photoelectrochemical (PEC) sensing technology has gained attention as a promising approach for detecting various pesticides due to its salient advantages, including high sensitivity, low cost, simple operation, fast response, and easy miniaturization, thus becoming a competitive candidate for real-time and on-site monitoring of pesticide levels. This review provides an overview of the recent advancements in PEC methods for pesticide detection and their applications in ensuring food and environmental safety, with a focus on the categories of photoactive materials, from single semiconductor to semiconductor-semiconductor heterojunction, and signaling mechanisms of PEC sensing platforms, including oxidation of pesticides, steric hindrance, generation/decrease in sacrificial agents, and introduction/release of photoactive materials. Additionally, this review will offer insights into future prospects and confrontations, thereby contributing novel perspectives to this evolving domain.
Collapse
Affiliation(s)
- Jie Song
- State Key Laboratory of Marine Food Processing & Safety Control, Qingdao 266400, China;
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Yuqi Chen
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Ling Li
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| | - Wentao Su
- State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.C.); (L.L.); (M.T.)
| |
Collapse
|
4
|
Wang K, Gao X, Chen J, Yang X. Label-free photoelectrochemical immunosensing of α-fetoprotein based on Eu-TiO 2 nanocomposites sensitized with dye-encapsulated HMA. ANAL SCI 2023:10.1007/s44211-023-00326-4. [PMID: 36961621 DOI: 10.1007/s44211-023-00326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
In this study, a sensitive photoelectrochemical immunosensor with dye-enhanced anodic photocurrent response was proposed for sensitive detection of α-fetoprotein (AFP). Specifically, europium-doped TiO2 (Eu-TiO2) was used as the photoelectrochemical functional material and coated onto indium tin oxide (ITO) electrode. Doxorubicin (DOX) as an excellent fluorescent dye was encapsulated in the hydrophobically modified alginate (HMA). Then the dye-loaded HMA was modified onto the surface of Eu-TiO2 to further sensitize the photocurrent response. The results showed that the photoelectrical signal was enhanced and stabilized due to the effect of sensitization of DOX on Eu-TiO2 material. The constructed PEC sensor revealed a good linear response to AFP antigen ranging from 0.5 to 100 ng/mL with a detection limit of 0.41 pg/mL. The clinical patient's serum test results obtained from the proposed PEC immunosensor were consistent with those obtained from the commercial electrochemilunescence assay. The proposed PEC sensing method could be a promising analytical tool for the detection of AFP in clinical analysis.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xue Gao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Jianfeng Chen
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
5
|
Wang K, Yang J, Yang X, Guo Q, Nie G. Photoelectrochemical nanoprobe for combined monitoring of Cu2+ and β-amyloid peptide. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Jin L, Wu Y, Zhang H, Wang Y. In‐situ Synthesis of the Thinnest In
2
Se
3
/In
2
S
3
/In
2
Se
3
Sandwich‐Like Heterojunction for Photoelectrocatalytic Water Splitting. Chemistry 2022; 28:e202104428. [DOI: 10.1002/chem.202104428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Lin Jin
- College of Chemistry and Chemical Engineering State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Yu Wu
- College of Chemistry and Chemical Engineering State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Huijuan Zhang
- College of Chemistry and Chemical Engineering State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| | - Yu Wang
- College of Chemistry and Chemical Engineering State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
- College of Electrical Engineering Chongqing University 174 Shazheng Street, Shapingba District Chongqing City 400044 P. R. China
| |
Collapse
|
7
|
Hammami A, Assaker IB, Chtourou R. Regenerative, low-cost and switchable photoelectrochemical sensor for detection of Cu2+ using MnO2-GO heterojunction. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05092-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Cao JT, Lv JL, Liao XJ, Ma SH, Liu YM. Photogenerated Hole-Induced Chemical-Chemical Redox Cycling Strategy on a Direct Z-Scheme Bi 2S 3/Bi 2MoO 6 Heterostructure Photoelectrode: Toward an Ultrasensitive Photoelectrochemical Immunoassay. Anal Chem 2021; 93:9920-9926. [PMID: 34213883 DOI: 10.1021/acs.analchem.1c02175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To achieve high sensitivity for biomolecule detection in photoelectrochemical (PEC) bioanalysis, the ideal photoelectrode and ingenious signaling mechanism play crucial roles. Herein, the feasibility of the photogenerated hole-induced chemical-chemical redox cycling amplification strategy on a Z-scheme heterostructure photoelectrode was validated, and the strategy toward enhanced multiple signal amplification for advanced PEC immunoassay application was developed. Specifically, a direct Z-scheme Bi2S3/Bi2MoO6 heterostructure was synthesized via a classic hydrothermal method and served as a photoelectrode for the signal response. Under the illumination, the PEC chemical-chemical redox cycling (PECCC) among 4-aminophenol generated by the enzymatic catalysis from a sandwich immunoassay, ferrocene as a mediator, and tris (2-carboxyethyl) phosphine as a reducing agent was run on the Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode. Exemplified by interleukin-6 (IL-6) as the target, the applicability of the strategy was studied in a PEC immunoassay. Thanks to the multiple signal amplification originating from the high efficiency of the PECCC redox cycling system, the enzymatic amplification, and the fine performance of the Z-scheme Bi2S3/Bi2MoO6 heterostructure photoelectrode, the assay for IL-6 exhibits a very low detection limit of 2.0 × 10-14 g/mL with a linear range from 5.0 × 10-14 to 1.0 × 10-8 g/mL. This work first validates the feasibility of the PECCC redox cycling on the Z-scheme heterostructure photoelectrode and the good performance of the strategy in PEC bioanalysis. We envision that it would provide a new prospective for highly sensitive PEC bioanalysis on the basis of a Z-scheme heterostructure.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Jing-Lu Lv
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Xiao-Jing Liao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Hui Ma
- Xinyang Central Hospital, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
9
|
Dong Y, Xu C, Zhang L. Construction of 3D Bi/ZnSnO 3 hollow microspheres for label-free highly selective photoelectrochemical recognition of norepinephrine. NANOSCALE 2021; 13:9270-9279. [PMID: 33982739 DOI: 10.1039/d1nr00792k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we reported a label-free and reliable photoelectrochemical (PEC) platform for highly selective monitoring of norepinephrine (NE) based on metallic Bi nanoparticles anchored on hollow porous ZnSnO3 microspheres (3D Bi/ZnSnO3) via a simple solvothermal strategy. The designed 3D Bi/ZnSnO3 Schottky junction exhibited a unique photoanodic response toward NE among other catechol derivatives, such as epinephrine (EP) and dopamine (DA), and effectively shielded the interference from thirteen coexisting biomolecules like uric acid (UA) and ascorbic acid (AA). High selectivity and excellent sensitivity could be correlated to the unique chelating coordination interaction between NE and Zn2+ at surface sites as well as the efficient carrier separation of Bi/ZnSnO3, thereby developing a novel "signal-on" label-free and selective strategy for NE detection. The proposed Bi/ZnSnO3-based PEC sensor achieved remarkable NE biosensing with a low detection limit of 0.68 nmol L-1 and a wide response ranging from 0.002 to 350.0 μmol L-1. The applicability of this biosensor was realized for the selective analysis of NE in human serum, human urine and injection samples, laying the foundation for the label-free PEC monitoring of NE in biological fluids.
Collapse
Affiliation(s)
- Yuanyuan Dong
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China. and College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, People's Republic of China
| | - Chenxing Xu
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
10
|
Chen J, Zhao GC, Wei Y, Feng D, Zhang H. Construction of a novel photoelectrochemical sensor for detecting trace amount of copper (II) ion. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Gao B, Zhao X, Liang Z, Wu Z, Wang W, Han D, Niu L. CdS/TiO 2 Nanocomposite-Based Photoelectrochemical Sensor for a Sensitive Determination of Nitrite in Principle of Etching Reaction. Anal Chem 2020; 93:820-827. [PMID: 33319981 DOI: 10.1021/acs.analchem.0c03315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CdS/TiO2 nanocomposite (NC) photoelectrochemical (PEC) sensor was constructed based on a new sensing strategy for nitrite assay. The CdS etching process caused by nitrite-in-acid solution was confirmed and applied to nitrite sensing. The CdS etching phenomenon occurring on the sensor led to an obvious reduction in the photocurrent response under visible-light irradiation, which responded to the nitrite concentration. The CdS/TiO2 NC-based PEC sensor exhibited excellent performance on nitrite detection. The linear range for nitrite determination was from 1-100 and 100-500 μM, and the sensitivity of the PEC sensor was 2.91 and 0.186 μA μM-1 cm-2, respectively. The detection limit of the sensor was 0.56 μM (S/N = 3). In addition, the PEC sensor was also equipped with advantages such as good selectivity, excellent stability, low background, and recyclability. Satisfying results were obtained for the nitrite assay in real samples by such a PEC sensor. In summary, this work contributed a fresh idea to precisely determinate nitrite through PEC sensing.
Collapse
Affiliation(s)
- Bowen Gao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xin Zhao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CAS Center for Excellence in Nanoscience, Changchun Institute of Applied Chemistry, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Zhishan Liang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhifang Wu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Wang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, CAS Center for Excellence in Nanoscience, Changchun Institute of Applied Chemistry, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
12
|
Yang H, Chen H, Cao L, Wang H, Deng W, Tan Y, Xie Q. An immunosensor for sensitive photoelectrochemical detection of Staphylococcus aureus using ZnS–Ag2S/polydopamine as photoelectric material and Cu2O as peroxidase mimic tag. Talanta 2020; 212:120797. [DOI: 10.1016/j.talanta.2020.120797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
|
13
|
A ternary CdS@Au-g-C3N4 heterojunction-based photoelectrochemical immunosensor for prostate specific antigen detection using graphene oxide-CuS as tags for signal amplification. Anal Chim Acta 2020; 1106:183-190. [DOI: 10.1016/j.aca.2020.01.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2019] [Accepted: 01/29/2020] [Indexed: 01/19/2023]
|
14
|
Dual-functional β-CD@CdS nanorod/WS2 nanosheet heterostructures coupled with strand displacement reaction-mediated photocurrent quenching for an ultrasensitive MicroRNA-21 assay. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Yang L, Zhang S, Liu X, Tang Y, Zhou Y, Wong DKY. Detection signal amplification strategies at nanomaterial-based photoelectrochemical biosensors. J Mater Chem B 2020; 8:7880-7893. [DOI: 10.1039/d0tb01191f] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focusses on unique material modification and signal amplification strategies reported in developing photoelectrochemical biosensors with utmost sensitivity and selectivity.
Collapse
Affiliation(s)
- Liwei Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Si Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yunfei Tang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Danny K. Y. Wong
- Department of Molecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
16
|
Zhu YC, Li Z, Liu XN, Fan GC, Han DM, Zhang PK, Zhao WW, Xu JJ, Chen HY. Three-dimensional CdS nanosheet-enwrapped carbon fiber framework: Towards split-type CuO-mediated photoelectrochemical immunoassay. Biosens Bioelectron 2019; 148:111836. [PMID: 31731074 DOI: 10.1016/j.bios.2019.111836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
This work reports a customized methodology for the fabrication of 3D CdS nanosheet (NS)-enwrapped carbon fiber framework (CFF) and its utilization for sensitive split-type CuO-mediated PEC immunoassay. Specifically, the 3D CdS NS-CFF was fabricated via a solvothermal process, while the sandwich immunocomplexing was allowed in a 96 well plate with CuO nanoparticles (NPs) as the signaling labels. The subsequent release of the Cu2+ ions was directed to interact with the CdS NS, generating trapping sites and thus inhibiting its photocurrent generation. In such a protocol, the 3D CdS NS-CFF photoelectrode could not only guarantee its sufficient contact with the Cu2+-containing solution but also supply plenty CdS surface for the Cu2+ ions. Because of the target-dependent release of the Cu2+ ions and its proper coupling with the 3D CdS NS-CFF photoelectrode, a sensitive split-type PEC immunoassay was achieved for the detection of brain natriuretic peptide (BNP). This proposed system exhibited good stability and selectivity, and its applicability for real sample analysis was also demonstrated via comparison with the commercial BNP enzyme-linked immunosorbent assay (ELISA) kit. We expect this work could stimulate more interest in the design and utilization of 3D photoelectrodes for novel PEC bioanalysis.
Collapse
Affiliation(s)
- Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiang-Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - De-Man Han
- Engineering Research Center of Recycling &Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Jiaojiang, 318000, China
| | - Pan-Ke Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Wang J, Pan Y, Jiang L, Liu M, Liu F, Jia M, Li J, Lai Y. Photoelectrochemical Determination of Cu 2+ Using a WO 3/CdS Heterojunction Photoanode. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37541-37549. [PMID: 31550119 DOI: 10.1021/acsami.9b10256] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Copper ions are not only physiologically essential for life but also hazardous materials causing a series of neurodegenerative diseases. Photoelectrochemical (PEC) detection has attracted a large amount of focus as a potential strategy to develop Cu2+ ion sensors. However, relatively low photocurrent signals with poor antidisturbance ability and the limited concentration range have prevented its practical applications. Here, we designed a WO3/CdS heterojunction photoanode for the PEC determination of Cu2+ in aqueous solution through a simple two-step chemical bath deposition method. The obtained WO3/CdS photoanode had a nanoplate morphology and showed an enhanced photoresponsivity with a photocurrent density of 1.5 mA/cm2 at 1.23 V versus RHE under illumination. Naturally, it exhibited a low detection limit (0.06 μM) and wider range (0.5 μM to 1 mM) for Cu2+ PEC detection first, suggesting that the WO3/CdS heterojunction photoanode is a promising tool to monitor copper pollution in natural environments.
Collapse
|
18
|
Hu M, Yang H, Li Z, Zhang L, Zhu P, Yan M, Yu J. Signal-switchable lab-on-paper photoelectrochemical aptasensing system integrated triple-helix molecular switch with charge separation and recombination regime of type-II CdTe@CdSe core-shell quantum dots. Biosens Bioelectron 2019; 147:111786. [PMID: 31654824 DOI: 10.1016/j.bios.2019.111786] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023]
Abstract
Herein, a new "on-off-on" signal switch system combined triple helix molecular switch with efficient charge separation and transfer between different sensitization units was designed for the ultrasensitive photoelectrochemical (PEC) determination of prostate-specific antigen (PSA). Concretely, the initial "signal-on" state was obtained via the cascaded sensitization structure consisting of type-II CdTe@CdSe core-shell quantum dots (QDs), CdS QDs, and ZnO nanotubes, which were assembled on Au nanoparticles modified paper fibers with the aid of signal transduction probe (STP). Thereinto, the type-II CdTe@CdSe QDs with hole-localizing core and electron-localizing shell could enable the ultrafast charge transfer and retard the charge recombination, magnifying the initial photocurrent response and preserving the high efficiency of signal-switchable PEC aptasensing system. Subsequently, the PSA aptamer (PSA-Apt) modified with gold nanoparticles (GNPs) was introduced by the hybridization of PSA-Apt with STP and the hairpin configuration of STP changed from closed to open state, forming a triple-helix structure. Hence, the CdTe@CdSe QDs labeled on the terminal of STP moved away from the electrode surface while the GNPs kept attached close to it. The proposed aptasensor turned to "signal-off" state because of the dual inhibition of vanished cosensitization effect and signal quenching effect of GNPs. Upon the target recognition, the triple-helix structure was perturbed with the formation of DNA-protein complex and the recovery of STP hairpin structure, resulting in the second "switch-on" state. Based on the target-induced photocurrent enhancement, the proposed PEC aptasensor was utilized for the determination of PSA with high sensitivity, persuasive selectivity, and excellent stability.
Collapse
Affiliation(s)
- Mengsu Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Zhenglin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
19
|
Yu S, Chen X, Huang C, Han D. A Cu 2+-doped two-dimensional material-based heterojunction photoelectrode: application for highly sensitive photoelectrochemical detection of hydrogen sulfide. RSC Adv 2019; 9:28276-28283. [PMID: 35530487 PMCID: PMC9071042 DOI: 10.1039/c9ra05385a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/04/2019] [Indexed: 11/22/2022] Open
Abstract
In this work, on the basis of a Cu2+-doped two-dimensional material-based heterojunction photoelectrode, a novel anodic photoelectrochemical (PEC) sensing platform was constructed for highly sensitive detection of endogenous H2S. Briefly, with g-C3N4 and TiO2 as representative materials, the sensor was fabricated by modifying g-C3N4/TiO2 nanorod arrays (NAs) onto the surface of fluorine-doped tin oxide (FTO) and then doping Cu2+ as a Cu x S (x = 1, 2) precursor. After the binding of S2- with surface-attached Cu2+, the signal was quenched owing to the in situ generation of Cu x S which offers trapping sites to hinder generation of photocurrent signals. Since the photocurrent inhibition was intimately associated with the concentration of S2-, a highly sensitive PEC biosensor was fabricated for H2S detection. More importantly, the proposed sensing platform showed the enormous potential of g-C3N4/TiO2 NAs for further development of PEC bioanalysis, which may serve as a common basis for other semiconductor applications and stimulates the exploration of numerous high-performance nanocomposites.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
- Department of Chemistry, Taizhou University Jiaojiang, 318000 China
| | - Xia Chen
- Department of Chemistry, Taizhou University Jiaojiang, 318000 China
| | - Chaobiao Huang
- College of Chemistry and Life Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Deman Han
- Department of Chemistry, Taizhou University Jiaojiang, 318000 China
| |
Collapse
|
20
|
Liu H, Luo J, Li Y, Zhu Q, Fang L, Huang H, Deng J, Zhang S, Huang J, Liang W, Zheng J. A novel photoelectrochemical strategy based on quenching effect of CdS quantum dots on PTB7 as photoelectroactive material for methylated DNA detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Zhang L, Luo Z, Zeng R, Zhou Q, Tang D. All-solid-state metal-mediated Z-scheme photoelectrochemical immunoassay with enhanced photoexcited charge-separation for monitoring of prostate-specific antigen. Biosens Bioelectron 2019; 134:1-7. [DOI: 10.1016/j.bios.2019.03.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
|
23
|
Luo Z, Qi Q, Zhang L, Zeng R, Su L, Tang D. Branched Polyethylenimine-Modified Upconversion Nanohybrid-Mediated Photoelectrochemical Immunoassay with Synergistic Effect of Dual-Purpose Copper Ions. Anal Chem 2019; 91:4149-4156. [DOI: 10.1021/acs.analchem.8b05959] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongbin Luo
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Qingan Qi
- Department of General Surgery, The Hospital of Eighty-Third Army, Xinxiang 453000, People's Republic of China
| | - Lijia Zhang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Ruijin Zeng
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Lingshan Su
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, People’s Republic of China
| |
Collapse
|
24
|
Xu R, Wei D, Du B, Cao W, Fan D, Zhang Y, wei Q, Ju H. A photoelectrochemical sensor for highly sensitive detection of amyloid beta based on sensitization of Mn:CdSe to Bi2WO6/CdS. Biosens Bioelectron 2018; 122:37-42. [DOI: 10.1016/j.bios.2018.09.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/04/2023]
|
25
|
Wang H, Zhang B, Zhao F, Zeng B. One-Pot Synthesis of N-Graphene Quantum Dot-Functionalized I-BiOCl Z-Scheme Cathodic Materials for "Signal-Off" Photoelectrochemical Sensing of Chlorpyrifos. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35281-35288. [PMID: 30239195 DOI: 10.1021/acsami.8b12979] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A Z-scheme I-BiOCl/N-GQD (i.e., nitrogen-doped graphene quantum dot) heterojunction was prepared by a one-pot precipitation method at room temperature. The doped iodine decreased the band gap of BiOCl, the introduced N-GQDs enhanced light harvesting and prolonged the photogenerated electron lifetime, and the resultant Z-scheme heterojunction promoted the spatial separation of interfacial charges. Thus, the composite showed high photoelectrochemical activity and a big cathodic photocurrent signal. On the basis of the coordination of chlorpyrifos with surface Bi(III) of the composite, a cathodic photoelectrochemical sensor was constructed for the selective detection of chlorpyrifos. In this case, chlorpyrifos decreased the lifetime of photogenerated electrons, so the photocurrent became small. Furthermore, the photocurrent changed and the logarithm of chlorpyrifos concentration presented a linear relationship. The linear range was 0.3-80 ng mL-1, and the limit of detection was estimated to be 0.01 ng mL-1 (defined as S/N = 3). The present strategy can also be used for the design and fabrication of other PEC sensors suitable for different analytes.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Bihong Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
26
|
Ultrasensitive cathode photoelectrochemical immunoassay based on TiO2 photoanode-enhanced 3D Cu2O nanowire array photocathode and signal amplification by biocatalytic precipitation. Anal Chim Acta 2018; 1027:33-40. [DOI: 10.1016/j.aca.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/09/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
|
27
|
Zhang Y, Xu R, Kang Q, Zhang Y, Wei Q, Wang Y, Ju H. Ultrasensitive Photoelectrochemical Biosensing Platform for Detecting N-Terminal Pro-brain Natriuretic Peptide Based on SnO 2/SnS 2/mpg-C 3N 4 Amplified by PbS/SiO 2. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31080-31087. [PMID: 30156399 DOI: 10.1021/acsami.8b11312] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A sandwich-type photoelectrochemical (PEC) immunosensor for detecting N-terminal pro-brain natriuretic peptide (NT-proBNP) was constructed on the basis of SnO2/SnS2/mpg-C3N4 nanocomposites and PbS/SiO2, with the former as a photoactive matrix and the latter as an efficient quencher. SnO2/SnS2/mpg-C3N4 was synthesized via in situ growth of SnO2 and SnS2 on mesoporous graphene like C3N4 nanocomposites (mpg-C3N4). Specifically, SnO2/SnS2/mpg-C3N4 exhibited intense PEC signal responses, which are tens of times stronger than its each single component. Because of its superior performance, SnO2/SnS2/mpg-C3N4 was applied as a photoactive matrix and signal indicator for fabricating PEC immunosensor. Interestingly, the excellent PEC signals from SnO2/SnS2/mpg-C3N4 could be reduced severely with the addition of PbS/SiO2. Hence, the secondary antibody bioconjugates (PbS/SiO2-Ab2) were prepared as an efficient quencher. The mechanism of the quench reaction was further discussed in detail. On the basis of the interaction between the matrix and the quencher, the NT-proBNP immunosensor was fabricated and a wide linear range of 0.1 pg·mL-1 to 50 ng·mL-1 was obtained with a low detection limit of 0.05 pg·mL-1. Additionally, the PEC immunosensor manifested good stability, reproducibility, and selectivity, which could underlie robust platforms for detecting multitudinous biomarkers or other targets of interest.
Collapse
|
28
|
Ye H, Wang H, Zhang B, Zhao F, Zeng B. Tremella-like ZnIn 2S 4/graphene composite based photoelectrochemical sensor for sensitive detection of dopamine. Talanta 2018; 186:459-466. [PMID: 29784388 DOI: 10.1016/j.talanta.2018.04.063] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 01/26/2023]
Abstract
Tremella-like ZnIn2S4 (ZISt) and flower-like microsphere ZnIn2S4 (ZISm) were synthesized via a straightforward hydrothermal method. It was found that the ZISt was superior to ZISm for photoelectrochemical (PEC) sensing because of its large surface area and high photocatalytic activity. A composite of ZISt and graphene (GR) was prepared and used for the PEC sensing of dopamine (DA). Here DA acted as an electron donor to scavenge the hole and inhibit the charge recombination. The GR enhanced visible light absorption and accelerated electron transfer, amplifying the photocurrent signal. The strong chelating coordination interaction between DA and Zn(II) in ZISt guaranteed the selective adsorption of target analyte. Thus the resulting ZISt/GR photoelectrode showed sensitive and selective PEC response to DA. Under the optimized conditions, the linear response range was from 0.01 to 20 μM, and the detection limit was down to 0.001 μM. Additionally, the sensor had good stability and reproducibility, and it could be used for the detection of DA in real samples.
Collapse
Affiliation(s)
- Huili Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Hao Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Bihong Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
29
|
Dong YX, Cao JT, Wang B, Ma SH, Liu YM. Spatial-Resolved Photoelectrochemical Biosensing Array Based on a CdS@g-C 3N 4 Heterojunction: A Universal Immunosensing Platform for Accurate Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3723-3731. [PMID: 29313657 DOI: 10.1021/acsami.7b13557] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The detection of biomarkers with high sensitivity and accuracy in real biosamples remains challenging. Herein, a universal spatial-resolved photoelectrochemical (PEC) ratiometry for biodetection of prostate-specific antigen (PSA) as model biomarker was designed for the first time based on a dual-electrode array modified by CdS@g-C3N4 heterojunction coupled with CuS quantum dots (QDs) as signal amplification tags. Specifically, a new kind of photoactive material, the CdS@g-C3N4 p-n heterojunction with high photoelectric conversion efficiency and good chemical stability, was synthesized and immobilized on two spatial-resolved electrodes (WE1 and WE2). After immobilizing gold nanoparticles and capturing PSA antibodies on the electrodes, WE1 incubated with various concentrations of PSA was taken as a working electrode, whereas WE2 with a fixed concentration of PSA was used as an internal reference electrode. Next, signal antibodies of PSA-labeled CuS QDs as PEC signal quenchers were immobilized on the electrodes to form a sandwich-type immunocomplex. With the aid of a multiplexed disjunctor, the PEC responses of the dual electrodes were recorded, and the PSA was quantified via the ratio values of photocurrent intensities from WE1 and WE2. Combining the fine PEC performance of the CdS@g-C3N4 heterojunction with the superior quenching effect of CuS QDs in the spatial-resolved platform, the ratiometric system exhibits a linear range from 1.0 × 10-11 to 5.0 × 10-8 g mL-1 with a limit of detection of 4.0 pg mL-1. The results demonstrated herein may provide a new pattern for biomarker detection with high accuracy and good specificity as well as satisfactory applicability in real biosamples.
Collapse
Affiliation(s)
| | | | | | - Shu-Hui Ma
- Xinyang Central Hospital , Xinyang 464000, China
| | | |
Collapse
|
30
|
Wang B, Cao JT, Dong YX, Liu FR, Fu XL, Ren SW, Ma SH, Liu YM. An in situ electron donor consumption strategy for photoelectrochemical biosensing of proteins based on ternary Bi2S3/Ag2S/TiO2 NT arrays. Chem Commun (Camb) 2018; 54:806-809. [DOI: 10.1039/c7cc08132d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ascorbic acid oxidase–ascorbic acid bioevent-based electron donor consumption mode is introduced into the PEC bioassay for the first time.
Collapse
Affiliation(s)
- Bing Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Yu-Xiang Dong
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Fu-Rao Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | - Xiao-Long Fu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| | | | - Shu-Hui Ma
- Xinyang Central Hospital
- Xinyang 464000
- China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
| |
Collapse
|
31
|
Chen J, Zhao GC. A novel signal-on photoelectrochemical immunosensor for detection of alpha-fetoprotein by in situ releasing electron donor. Biosens Bioelectron 2017; 98:155-160. [DOI: 10.1016/j.bios.2017.06.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/16/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022]
|
32
|
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
33
|
Aydın EB, Aydın M, Sezgintürk MK. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples. Biosens Bioelectron 2017; 97:169-176. [DOI: 10.1016/j.bios.2017.05.056] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
|
34
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
35
|
Hao N, Zhang Y, Zhong H, Zhou Z, Hua R, Qian J, Liu Q, Li H, Wang K. Design of a Dual Channel Self-Reference Photoelectrochemical Biosensor. Anal Chem 2017; 89:10133-10136. [PMID: 28929743 DOI: 10.1021/acs.analchem.7b03132] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoelectrochemical (PEC) biosensors are usually based on the single photocurrent change caused by biorecognition events between analytes and probes. However, the photocurrent may be influenced by other factors besides target analytes and bring a false result. To improve the accuracy and reliability of PEC detection, here we proposed the design of a dual channel self-reference PEC biosensors. CdTe and CdTe-graphene oxide (GO) were chosen as the two PEC active material and modified onto two adjacent areas on the ITO electrode. Then they were functionalized with Aflatoxin B1 (AFB1) aptamer through covalent binding or physical adsorption, respectively. The cathodic current from CdTe-GO and anodic current from CdTe can be well distinguished by adjusting the bias voltage. With the simultaneous application of "signal on" and "signal off" model, dual concentration information may be obtained in one detection and serve as a reference for each other. By comparing these two results, this sensor can clearly distinguish whether the signal change was caused by AFB1 or other interference factors. Compared to traditional PEC biosensors, this design can provide a better accuracy and reliability, which is promising in the future development of PEC detection.
Collapse
Affiliation(s)
- Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Ying Zhang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Hui Zhong
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Zhou Zhou
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Rong Hua
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Henan Li
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, PR China
| |
Collapse
|
36
|
An ultrasensitive label-free immunosensor based on CdS sensitized Fe–TiO2 with high visible-light photoelectrochemical activity. Biosens Bioelectron 2015; 74:843-8. [DOI: 10.1016/j.bios.2015.07.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023]
|
37
|
Fan D, Guo C, Ma H, Zhao D, Li Y, Wu D, Wei Q. Facile fabrication of an aptasensor for thrombin based on graphitic carbon nitride/TiO2 with high visible-light photoelectrochemical activity. Biosens Bioelectron 2015; 75:116-22. [PMID: 26301999 DOI: 10.1016/j.bios.2015.08.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
A novel aptasensor for thrombin with high visible-light activity was facilely fabricated based on graphitic carbon nitride/TiO2 (g-C3N4/TiO2) photoelectrochemical (PEC) composite. Crystallization of TiO2 nanoparticles (NPs) and their strong interaction with g-C3N4 sheet were confirmed by high-resolution transmission electron microscope (HR-TEM), both of which contributed to the high photocurrent intensity under visible-light irradiation. Carboxyl functionalized thrombin aptamers were first successfully bound to the g-C3N4/TiO2 modified electrode as proven by photoelectrochemical test and electrochemical impedance spectroscopy (EIS) analysis. Ascorbic acid was utilized as the electron donor for scavenging photo-generated holes and inhibiting light driven electron-hole pair recombination. The specific recognition between thrombin aptamer and thrombin led to the linear decrease of photocurrent with the increase of logarithm of thrombin concentration in the range of 5.0×10(-13)molL(-1) to 5.0×10(-9)molL(-1) with a detection limit of 1.2×10(-13)molL(-1). This proposed low-cost, convenient and sensitive aptasensor showed promising applications in biosensor and photoelectrochemical analysis.
Collapse
Affiliation(s)
- Dawei Fan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Cuijuan Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Di Zhao
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yina Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong (University of Jinan), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
38
|
Fu X, Feng J, Tan X, Lu Q, Yuan R, Chen S. Electrochemiluminescence sensor for dopamine with a dual molecular recognition strategy based on graphite-like carbon nitride nanosheets/3,4,9,10-perylenetetracarboxylic acid hybrids. RSC Adv 2015. [DOI: 10.1039/c5ra03154k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preparation of an ECL sensor and graphite-like carbon nitride nanosheets/3,4,9,10-perylenetetracarboxylic acid hybrids.
Collapse
Affiliation(s)
- Xiaomin Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jiahui Feng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Xingrong Tan
- Department of Endocrinology
- 9 th People's Hospital of Chongqing
- Chongqing 400700
- China
| | - Qiyi Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Shihong Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|