1
|
Thakur CK, Karthikeyan C, Ashby CR, Neupane R, Singh V, Babu RJ, Narayana Moorthy NSH, Tiwari AK. Ligand-conjugated multiwalled carbon nanotubes for cancer targeted drug delivery. Front Pharmacol 2024; 15:1417399. [PMID: 39119607 PMCID: PMC11306048 DOI: 10.3389/fphar.2024.1417399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
- Chhattrapati Shivaji Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY, United States
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
| | - Vishal Singh
- Department of Nutrition, State College, Pennsylvania State University, University Park, PA, United States
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - N. S. Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, India
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
2
|
Paglia EB, Baldin EKK, Freitas GP, Santiago TSA, Neto JBMR, Silva JVL, Carvalho HF, Beppu MM. Circulating Tumor Cells Adhesion: Application in Biosensors. BIOSENSORS 2023; 13:882. [PMID: 37754116 PMCID: PMC10526177 DOI: 10.3390/bios13090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
The early and non-invasive diagnosis of tumor diseases has been widely investigated by the scientific community focusing on the development of sensors/biomarkers that act as a way of recognizing the adhesion of circulating tumor cells (CTCs). As a challenge in this area, strategies for CTCs capture and enrichment currently require improvements in the sensors/biomarker's selectivity. This can be achieved by understanding the biological recognition factors for different cancer cell lines and also by understanding the interaction between surface parameters and the affinity between macromolecules and the cell surface. To overcome some of these concerns, electrochemical sensors have been used as precise, fast-response, and low-cost transduction platforms for application in cytosensors. Additionally, distinct materials, geometries, and technologies have been investigated to improve the sensitivity and specificity properties of the support electrode that will transform biochemical events into electrical signals. This review identifies novel approaches regarding the application of different specific biomarkers (CD44, Integrins, and EpCAm) for capturing CTCs. These biomarkers can be applied in electrochemical biosensors as a cytodetection strategy for diagnosis of cancerous diseases.
Collapse
Affiliation(s)
- Eduarda B. Paglia
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| | - Estela K. K. Baldin
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Gabriela P. Freitas
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Thalyta S. A. Santiago
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| | - João B. M. R. Neto
- Technology Center, Federal University of Alagoas, Maceió 57072-900, Brazil;
| | - Jorge V. L. Silva
- Renato Archer Information Technology Center, Campinas 13069-901, Brazil;
| | - Hernandes F. Carvalho
- Institute of Biology, Department of Structural and Functional Biology, University of Campinas, Campinas 13083-864, Brazil;
| | - Marisa M. Beppu
- School of Chemical Engineering, Department of Process and Product Development, University of Campinas, Campinas 13083-852, Brazil; (E.B.P.); (E.K.K.B.); (G.P.F.); (T.S.A.S.)
| |
Collapse
|
3
|
Zhou H, Huang R, Su T, Li B, Zhou H, Ren J, Li Z. A c-MWCNTs/AuNPs-based electrochemical cytosensor to evaluate the anticancer activity of pinoresinol from Cinnamomum camphora against HeLa cells. Bioelectrochemistry 2022; 146:108133. [DOI: 10.1016/j.bioelechem.2022.108133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/26/2022]
|
4
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
5
|
Electrochemical sensing technology for liquid biopsy of circulating tumor cells-a review. Bioelectrochemistry 2021; 140:107823. [PMID: 33915341 DOI: 10.1016/j.bioelechem.2021.107823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
In recent years, a lot of new detection techniques for circulating tumor cells (CTCs) have been developed. Among them, electrochemical sensing technology has gradually developed because of its advantages of good selectivity, high sensitivity, low cost and rapid detection. Especially in the latest decade, the field of electrochemical biosensing has witnessed great progress, thanks to the merging of biosensing research area with nanotechnology, immunotechnology, nucleic acid technology, and microfluidic technology. In this review, the recent progress for the detection of CTCs according to the principle of detection was summarized and how they can contribute to the enhanced performance of such biosensors was explained. The latest electrode construction strategies such as rolling circle amplification reaction, DNA walker and microfluidic technology and their advantages were also introduced emphatically. Moreover, the main reasonswhy the existing biosensors have not been widely used clinically and the next research points were clearly put forward.
Collapse
|
6
|
Hur W, Son SE, Kim SN, Seong GH. Cell-based electrochemical cytosensor for rapid and sensitive evaluation of the anticancer effects of saponin on human malignant melanoma cells. Bioelectrochemistry 2021; 140:107813. [PMID: 33848876 DOI: 10.1016/j.bioelechem.2021.107813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Discovering new anticancer agents and analyzing their activities is a vital part of drug development, but it requires a huge amount of time and resources, leading to the increasing demands for more-effective techniques. Herein, a novel and simple cell-based electrochemical biosensor, referred to as a cytosensor, was proposed to investigate the electrochemical behavior of human skin malignant melanoma (SK-MEL28) cells and the anticancer effect of saponin on cell viability. To enhance both electrocatalytic properties and biocompatibility, gold nanoparticles were electrochemically deposited onto a conductive substrate, and poly-L-lysine was further added to the electrode surface. Electric signals from SK-MEL28 cells on the electrodes were obtained from cyclic voltammetry and differential pulse voltammetry. The cathodic peak current was proportional to the cell viability and showed a detection range of 2,880-40,000 cells per device with an excellent linear cell number-intensity relationship (R2= 0.9952). Furthermore, the anticancer effect of saponin on SK-MEL28 cells was clearly established at concentrations higher than 20 μM, which was highly consistent with conventional assays. Moreover, the developed electrochemical cytosensor for evaluating anticancer effects enabled rapid (<2 min), sensitive (LOQ: 2,880cells/device), and non-invasive measurements, thus providing a new avenue for assessing the anticancer drugs in vitro.
Collapse
Affiliation(s)
- Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Nyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
7
|
Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2020; 138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials (CNs) offer some of the most valuable properties for electrochemical biosensing applications, such as good electrical conductivity, wide electrochemical stability, high specific surface area, and biocompatibility. Regardless the envisioned sensing application, endowing CNs with specific functions through controlled chemical functionalization is fundamental for promoting the specific binding of the analyte. As a versatile and straightforward method of surface functionalization, aryldiazonium chemistry have been successfully used to accommodate in a stable and reproducible way different functionalities, while the electrochemical route has become the favourite choice since the deposition conditions can be readily controlled and adapted to the substrate. In particular, the modification of CNs by electrochemical reduction of aryl diazonium salts is established as a powerful tool which allows tailoring the chemical and electronic properties of the sensing platform. By outlining the stimulating results disclosed in the last years, this article provides not only a comprehensively review, but also a rational assessment on contribution of aryldiazonium electrografting in developing CNs-based electrochemical biosensors. Furthermore, some of the emerging challenges to be surpassed to effectively implement this methodology for in vivo and point of care analysis are also highlighted.
Collapse
Affiliation(s)
- Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
8
|
Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020; 11:840-850. [PMID: 32101379 PMCID: PMC7113062 DOI: 10.1111/1759-7714.13353] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Conventional methods for detecting tumors, such as immunological methods and histopathological diagnostic techniques, often request high analytical costs, complex operation, long turnaround time, experienced personnel and high false-positive rates. In addition, these assays are difficult to obtain an early diagnosis and prognosis quickly for malignant tumors. Compared with traditional technology, electrochemical technology has realized the study of interface charge transfer behavior at the atomic and molecular levels, which has become an important analytical and detection tool in contemporary analytical science. Electrochemical technique has the advantages of rapid detection, high sensitivity (single cell) and specificity in the detection of tumor cells, which has not only been successful in differentiating tumor cells from normal cells, but has also achieved targeted detection of localized tumor cells and circulating tumor cells. Electrochemical biosensors provide powerful tools for early diagnosis, staging and prognosis of tumors in clinical medicine. Therefore, this review mainly discusses the development and application of electrochemical biosensors in tumor cell detection in recent years.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Qingchao Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Xin Du
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
9
|
Abstract
Nano-electrochemical cytosensors have attracted intensive attention and achieved huge progress in the biomedical field owing to their stability, rapidity, accuracy, and low-cost properties.
Collapse
Affiliation(s)
- Jie Xu
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| | - Yanxiang Hu
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| | - Shengnan Wang
- School of Material Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- China
| | - Xing Ma
- School of Material Science and Engineering
- Harbin Institute of Technology (Shenzhen)
- China
| | - Jinhong Guo
- School of Information and Communication Engineering
- University of Electronic Science and Technology of China
- China
| |
Collapse
|
10
|
Ma W, Xu S, Nie H, Hu B, Bai Y, Liu H. Bifunctional cleavable probes for in situ multiplexed glycan detection and imaging using mass spectrometry. Chem Sci 2019; 10:2320-2325. [PMID: 30881658 PMCID: PMC6385553 DOI: 10.1039/c8sc04642e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
In situ analysis of glycans is of great significance since they mediate a range of biological activities. Aberrant changes of glycosylation are closely related to cancer onset and progression. In this work, bifunctional laser cleavable mass probes (LCMPs) were developed for in situ glycan detection from both cells and tissues using laser desorption ionization mass spectrometry (LDI-MS). Specific recognition of glycans was achieved by lectins, and inherent signal amplification was achieved by the conversion of the detection of glycans to that of mass tags which overcame the low ionization efficiency and complicated mass spectra of glycans. Multiplexed glycan profiling was easy to implement due to the simple and generic synthetic route to LCMPs and serial alternative mass tags, which offers high sensitivity, low interference and in situ detection of glycans. Moreover, as an excellent inherent matrix, LCMPs facilitated direct glycan detection from the cell surface and tissue imaging using LDI-MS. Intrinsic and fine glycan distribution in human cancer and paracancerous tissues was strictly demonstrated by MS imaging to explore the correlation between glycosylation and various cancers. This approach presented a versatile LDI-MS based platform for fast and in situ multiplexed glycan engineering, thus providing a new perspective in glycobiology and clinical diagnosis.
Collapse
Affiliation(s)
- Wen Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China . ; Tel: +86 10 6275 8198
| | - Shuting Xu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China . ; Tel: +86 10 6275 8198
| | - Honggang Nie
- Analytical Instrumentation Center , Peking University , Beijing , 100871 , P. R. China
| | - Bingyang Hu
- Institute of Hepatobiliary Surgery , Hospital of Hepatobiliary Surgery , Chinese People's Liberation Army General Hospital , Beijing 100853 , P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China . ; Tel: +86 10 6275 8198
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education , College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , P. R. China . ; Tel: +86 10 6275 8198
| |
Collapse
|
11
|
Yang Y, Fu Y, Su H, Mao L, Chen M. Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens Bioelectron 2018; 122:175-182. [PMID: 30265967 DOI: 10.1016/j.bios.2018.09.062] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 01/23/2023]
Abstract
The simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. We developed a novel DNA-labeled sandwich electrochemical biosensor based on a glassy carbon electrode modified with 3D graphene and a hybrid of Au nanocages (Au NCs)/amino-functionalized multiwalled carbon nanotubes (MWCNT-NH2) for label-free and selective detection of MCF-7 breast cancer cells via differential pulse voltammetry. The layer-by-layer assembly and cell-detection performance of the Au NCs/MWCNTs-NH2-based biosensor were investigated using scanning electron microscopy and electrochemical methods including cyclic voltammetry and electrochemical impedance spectroscopy. Owing to the advantages of DNA-labeled antibodies and a nanomaterial-based signal amplification strategy, the fabricated cytosensor exhibited high specificity and sensitivity when detecting MCF-7 cells in the range of 1.0 × 102 to 1.0 × 106 cells mL-1 with a low detection limit of 80 cells mL-1 (3σ/slope). Furthermore, the biosensor exhibited high selectivity when detecting MCF-7 cells and showed considerable potential for practical applications. The proposed DNA-labeled sandwich electrochemical biosensor provides a stable, sensitive approach to detecting cancer cells and is promising in terms of potential applications to cancer diagnosis.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Biology Science And Technology, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling District, Chongqing 408100, PR China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Li Mao
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Mei Chen
- School of Biology Science And Technology, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| |
Collapse
|
12
|
Wu ZY, Chen JY, Zhu X, Fu FH, Lan RL, Liu MM, Lian X, Ye CL, Zhong GX, Lin JH, Liu AL. Sensitive electrochemical cytosensor for highly specific detection of osteosarcoma 143B cells based on graphene-3D gold nanocomposites. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Liu JX, Bao N, Luo X, Ding SN. Nonenzymatic Amperometric Aptamer Cytosensor for Ultrasensitive Detection of Circulating Tumor Cells and Dynamic Evaluation of Cell Surface N-Glycan Expression. ACS OMEGA 2018; 3:8595-8604. [PMID: 31458989 PMCID: PMC6644493 DOI: 10.1021/acsomega.8b01072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 05/26/2023]
Abstract
Dynamic assessment of glycan expression on the cell surface and accurate determination of circulating tumor cells are increasingly imperative for cancer diagnosis and therapeutics. Herein, a unique and versatile nonenzymatic sandwich-structured electrochemical cytosensor was developed. The cytosensor was constructed based on a cell-specific aptamer, the lectin-functionalized porous core-shell palladium gold nanoparticles (Pd@Au NPs). To establish the cytosensor, amine-modified-SYL3C aptamer was first attached to the surface of aminated Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2-NH2 NPs) through cross-linked reaction via glutaraldehyde. Besides, in terms of noncovalent assembly of concanavalin A on Pd@Au NPs, a lectin-functionalized nanoprobe was established. This nanoprobe had the capabilities of both the specific carbohydrate recognition and the current signal amplification in view of the Pd@Au NPs as the electrocatalyst for the reduction of hydrogen peroxide (H2O2). Herein, we used MCF-7 cells as a model target, and the constructed cytosensor showed a low detection limit (down to three cells), a wide linear detection ranging from 100 to 1 × 106 cells mL-1. The established method sensitively realized the detection of the amount of cell and exact evaluation of glycan expression on cell surface, demonstrating great application prospects.
Collapse
Affiliation(s)
- Jin-Xia Liu
- Jiangsu
Province Hi-Tech Key Laboratory for Bio-medical Research, School of
Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Ning Bao
- School
of Public Health, Nantong University, 226019 Nantong, Jiangsu, China
| | - Xiliang Luo
- Key
Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education,
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shou-Nian Ding
- Jiangsu
Province Hi-Tech Key Laboratory for Bio-medical Research, School of
Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| |
Collapse
|
14
|
Liu M, Xu Y, Huang C, Jia T, Zhang X, Yang DP, Jia N. Hyaluronic acid-grafted three-dimensional MWCNT array as biosensing interface for chronocoulometric detection and fluorometric imaging of CD44-overexpressing cancer cells. Mikrochim Acta 2018; 185:338. [DOI: 10.1007/s00604-018-2861-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022]
|
15
|
Yu T, Zhang H, Huang Z, Luo Z, Huang N, Ding S, Feng W. A Simple Electrochemical Aptamer Cytosensor for Direct Detection of Chronic Myelogenous Leukemia K562 Cells. ELECTROANAL 2016. [DOI: 10.1002/elan.201600505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tianxiao Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Hui Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Zhenglan Huang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Zhenhong Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Ningshu Huang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| | - Wenli Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine; Chongqing Medical University; Chongqing 400016 China
| |
Collapse
|
16
|
Zhang JJ, Cheng FF, Zheng TT, Zhu JJ. Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosens Bioelectron 2016; 89:937-945. [PMID: 27818049 DOI: 10.1016/j.bios.2016.09.087] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 12/21/2022]
Abstract
Quantifying the glycan expression status on cell surfaces is of vital importance for insight into the glycan function in biological processes and related diseases. Here we developed a versatile aptasensor for electrochemical quantification of cell surface glycan by taking advantage of the cell-specific aptamer, and the lectin-functionalized gold nanoparticles acting as both a glycan recognition unit and a signal amplification probe. To construct the aptasensor, amine-functionalized mucin 1 protein (MUC1) aptamer was first covalently conjugated to carboxylated-magnetic beads (MBs) using the succinimide coupling (EDC-NHS) method. On the basis of the specific recognition between aptamer and MUC1 protein that overexpressed on the surface of MCF-7 cells, the aptamer conjugated MBs showed a predominant capability for cell capture with high selectivity. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A (ConA) on gold nanoparticles (AuNPs). This nanoprobe incorporated the abilities of both the specific carbohydrate recognition and the signal amplification based on the gold-promoted reduction of silver ions. By coupling with electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of MCF-7 cells and quantification of cell surface glycan. More importantly, taking advantage of Con A-gold nanoprobe catalyzed silver enhancement, the proposed method was further used for naked-eye tracking glycolytic inhibition in living cells. This aptasensor holds great promise as a new point-of-care diagnostic tool for analyzing glycan expression on living cells and further helps cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fang-Fang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; School of Pharmacy, Nanjing University of Chinese Medicine, 210023, China
| | - Ting-Ting Zheng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
17
|
Meng F, Han K, Wang B, Liu T, Liu G, Li Y, Miao P. Nanoarchitectured Electrochemical Cytosensor for Selective Detection of Cancer Cells. ChemistrySelect 2016. [DOI: 10.1002/slct.201600193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fanyu Meng
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
| | - Kun Han
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Bidou Wang
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
| | - Tao Liu
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Guangxing Liu
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
| | - Yueran Li
- Patent Examination Cooperation Jiangsu Center of the Patent Office; State Intellectual Property Office; Suzhou 215163 P. R. China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics; Suzhou Institute of Biomedical Engineering and Technology; Chinese Academy of Sciences; Suzhou 215163 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
18
|
Han L, Liu P, Petrenko VA, Liu A. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Sci Rep 2016; 6:22199. [PMID: 26908277 PMCID: PMC4764921 DOI: 10.1038/srep22199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 11/09/2022] Open
Abstract
One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 10(2) - 2.0 × 10(8) cells mL(-1)), a low limit of detection (79 cells mL(-1), S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.
Collapse
Affiliation(s)
- Lei Han
- Institute for Biosensing &In-Vitro Diagnostics, and College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.,Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Pei Liu
- Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 269 Greene Hall, Auburn, Alabama 36849-5519, United States
| | - Aihua Liu
- Institute for Biosensing &In-Vitro Diagnostics, and College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.,Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| |
Collapse
|
19
|
Anik Ü, Timur S. Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv 2016. [DOI: 10.1039/c6ra23686c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, nanomaterial based electrochemical biosensors including electrochemical immunosensors and cytosensors towards cancer detection are covered.
Collapse
Affiliation(s)
- Ülkü Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- 48000 Mugla
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- İzmir
- Turkey
| |
Collapse
|