1
|
Nair MP, Teo AJT, Li KHH. Acoustic Biosensors and Microfluidic Devices in the Decennium: Principles and Applications. MICROMACHINES 2021; 13:24. [PMID: 35056189 PMCID: PMC8779171 DOI: 10.3390/mi13010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Lab-on-a-chip (LOC) technology has gained primary attention in the past decade, where label-free biosensors and microfluidic actuation platforms are integrated to realize such LOC devices. Among the multitude of technologies that enables the successful integration of these two features, the piezoelectric acoustic wave method is best suited for handling biological samples due to biocompatibility, label-free and non-invasive properties. In this review paper, we present a study on the use of acoustic waves generated by piezoelectric materials in the area of label-free biosensors and microfluidic actuation towards the realization of LOC and POC devices. The categorization of acoustic wave technology into the bulk acoustic wave and surface acoustic wave has been considered with the inclusion of biological sample sensing and manipulation applications. This paper presents an approach with a comprehensive study on the fundamental operating principles of acoustic waves in biosensing and microfluidic actuation, acoustic wave modes suitable for sensing and actuation, piezoelectric materials used for acoustic wave generation, fabrication methods, and challenges in the use of acoustic wave modes in biosensing. Recent developments in the past decade, in various sensing potentialities of acoustic waves in a myriad of applications, including sensing of proteins, disease biomarkers, DNA, pathogenic microorganisms, acoustofluidic manipulation, and the sorting of biological samples such as cells, have been given primary focus. An insight into the future perspectives of real-time, label-free, and portable LOC devices utilizing acoustic waves is also presented. The developments in the field of thin-film piezoelectric materials, with the possibility of integrating sensing and actuation on a single platform utilizing the reversible property of smart piezoelectric materials, provide a step forward in the realization of monolithic integrated LOC and POC devices. Finally, the present paper highlights the key benefits and challenges in terms of commercialization, in the field of acoustic wave-based biosensors and actuation platforms.
Collapse
Affiliation(s)
| | | | - King Ho Holden Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; (M.P.N.); (A.J.T.T.)
| |
Collapse
|
2
|
Agostini M, Amato F, Vieri ML, Greco G, Tonazzini I, Baroncelli L, Caleo M, Vannini E, Santi M, Signore G, Cecchini M. Glial-fibrillary-acidic-protein (GFAP) biomarker detection in serum-matrix: Functionalization strategies and detection by an ultra-high-frequency surface-acoustic-wave (UHF-SAW) lab-on-chip. Biosens Bioelectron 2020; 172:112774. [PMID: 33160234 DOI: 10.1016/j.bios.2020.112774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/27/2020] [Indexed: 01/16/2023]
Abstract
Glial-fibrillary-acidic-protein (GFAP) has recently drawn significant attention from the clinical environment as a promising biomarker. The pathologies which can be linked to the presence of GFAP in blood severely affect the human central nervous system. These pathologies are glioblastoma multiforme (GBM), traumatic brain injuries (TBIs), multiple sclerosis (MS), intracerebral hemorrhage (ICH), and neuromyelitis optica (NMO). Here, we develop three different detection strategies for GFAP, among the most popular in the biosensing field and never examined side by side within the experimental frame. We compare their capability of detecting GFAP in a clean-buffer and serum-matrix by using gold-coated quartz-crystal-microbalance (QCM) sensors. All the three detection strategies are based on antibodies, and each of them focuses on a key aspect of the biosensing process. The first is based on a polyethylene glycol (PEG) chain for antifouling, the second on a protein-G linker for controlling antibody-orientation, and the third on antibody-splitting and direct surface immobilization for high-surface coverage. Then, we select the best-performing protocol and validate its detection performance with an ultra-high-frequency (UHF) surface-acoustic-wave (SAW) based lab-on-chip (LoC). GFAP successful detection is demonstrated in a clean-buffer and serum-matrix at a concentration of 35 pM. This GFAP level is compatible with clinical diagnostics. This result suggests the use of our technology for the realization of a point-of-care biosensing platform for the detection of multiple brain-pathology biomarkers.
Collapse
Affiliation(s)
- M Agostini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, 56122, Pisa, Italy
| | - F Amato
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - M L Vieri
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - G Greco
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - I Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - L Baroncelli
- Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, viale del Tirreno 331, 56128, Pisa, Italy
| | - M Caleo
- Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy; Department of Biomedical Sciences, University of Padua, via G. Colombo 3, 35121, Padua, Italy
| | - E Vannini
- Institute of Neuroscience, National Research Council (CNR), via G. Moruzzi 1, 56124, Pisa, Italy
| | - M Santi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - G Signore
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, Pisa, Italy
| | - M Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy; INTA srl, Intelligent Acoustics Systems, Via Nino Pisano 14, 56122, Pisa, Italy.
| |
Collapse
|
3
|
Greco G, Agostini M, Shilton R, Travagliati M, Signore G, Cecchini M. Surface Acoustic Wave (SAW)-Enhanced Chemical Functionalization of Gold Films. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2452. [PMID: 29072590 PMCID: PMC5713185 DOI: 10.3390/s17112452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022]
Abstract
Surface chemical and biochemical functionalization is a fundamental process that is widely applied in many fields to add new functions, features, or capabilities to a material's surface. Here, we demonstrate that surface acoustic waves (SAWs) can enhance the chemical functionalization of gold films. This is shown by using an integrated biochip composed by a microfluidic channel coupled to a surface plasmon resonance (SPR) readout system and by monitoring the adhesion of biotin-thiol on the gold SPR areas in different conditions. In the case of SAW-induced streaming, the functionalization efficiency is improved ≈ 5 times with respect to the case without SAWs. The technology here proposed can be easily applied to a wide variety of biological systems (e.g., proteins, nucleic acids) and devices (e.g., sensors, devices for cell cultures).
Collapse
Affiliation(s)
- Gina Greco
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Matteo Agostini
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Richie Shilton
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Marco Travagliati
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Giovanni Signore
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Marco Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| |
Collapse
|
4
|
Wang T, Guo HC, Chen XY, Lu M. Low-temperature thermal reduction of suspended graphene oxide film for electrical sensing of DNA-hybridization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:62-68. [DOI: 10.1016/j.msec.2016.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023]
|
5
|
Kumar M, Ghosh S, Nayak S, Das A. Recent advances in biosensor based diagnosis of urinary tract infection. Biosens Bioelectron 2016; 80:497-510. [DOI: 10.1016/j.bios.2016.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
|
6
|
Sonato A, Agostini M, Ruffato G, Gazzola E, Liuni D, Greco G, Travagliati M, Cecchini M, Romanato F. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. LAB ON A CHIP 2016; 16:1224-1233. [PMID: 26932784 DOI: 10.1039/c6lc00057f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A surface acoustic wave (SAW)-enhanced, surface plasmon resonance (SPR) microfluidic biosensor in which SAW-induced mixing and phase-interrogation grating-coupling SPR are combined in a single lithium niobate lab-on-a-chip is demonstrated. Thiol-polyethylene glycol adsorption and avidin/biotin binding kinetics were monitored by exploiting the high sensitivity of grating-coupling SPR under azimuthal control. A time saturation binding kinetics reduction of 82% and 24% for polyethylene and avidin adsorption was obtained, respectively, due to the fluid mixing enhancement by means of the SAW-generated chaotic advection. These results represent the first implementation of a nanostructured SAW-SPR microfluidic biochip capable of significantly improving the molecule binding kinetics on a single, portable device. In addition, the biochip here proposed is suitable for a great variety of biosensing applications.
Collapse
Affiliation(s)
- A Sonato
- CNR-IOM, Area Science Park, S.S. 14, km 163.5, 34149, Basovizza (TS), Italy
| | - M Agostini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy. and Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - G Ruffato
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35131 Padova, Italy
| | - E Gazzola
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35131 Padova, Italy
| | - D Liuni
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35131 Padova, Italy
| | - G Greco
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - M Travagliati
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy. and Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - M Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - F Romanato
- CNR-IOM, Area Science Park, S.S. 14, km 163.5, 34149, Basovizza (TS), Italy and Department of Physics and Astronomy, University of Padova, Via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|