1
|
Song H, Khan M, Yu L, Wang Y, Lin JM, Hu Q. Construction of Liquid Crystal-Based Sensors Using Enzyme-Linked Dual-Functional Nucleic Acid on Magnetic Beads. Anal Chem 2023; 95:13385-13390. [PMID: 37622311 DOI: 10.1021/acs.analchem.3c03163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The development of liquid crystal (LC)-based sensors with superior performances such as high portability, excellent stability, great convenience, and remarkable sensitivity is highly demanded. This work proposes a new strategy for constructing the LC-based sensor using enzyme-linked dual-functional nucleic acid (d-FNA) on magnetic beads (MBs). The detection of kanamycin (KA) is demonstrated as a model. Acetylcholinesterase (AChE) is assembled onto the KA aptamer-modified MBs with a d-FNA strand that consists of an AChE aptamer and the complementary sequence of a KA aptamer. As the specific recognition of KA by its aptamer triggers the release of AChE from the MBs, the myristoylcholine (Myr) solution after incubation with the MBs causes the black image of the LCs due to the formation of the Myr monolayer at the aqueous/LC interface. Otherwise, in the absence of KA, AChE is still decorated on the MBs and causes the hydrolysis of Myr. Therefore, a bright image of LCs is obtained. The detection of KA is successfully achieved with a lower detection limit of 48.1 pg/mL. In addition, a thin polydimethylsiloxane (PDMS) layer-coated glass and a portable optical device are used to improve the stability and portability of the LC-based sensor to advance potential commercial applications. Furthermore, the detection of KA in milk with a portable device is demonstrated, showing the potential of the proposed enzyme-linked LC-based sensor.
Collapse
Affiliation(s)
- Haoyang Song
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mashooq Khan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
2
|
N-Dodecyl-ethane-1,2-diamine as amphiphilic molecular probes in liquid crystal-based sensors for detecting aluminum ions. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Gangwar LK, Sharma V, Choudhary A, Sumana G, Pandey S, Tanaka H, Biradar AM, Rajesh. Optical and dielectric realisation of biomolecular detection using gold nanoparticles bio-conjugate with liquid crystal. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Lin L, Li W, Wang X, Xie Y, Li Y, Wu Z. Functional Liquid Crystal Core/Hydrogel Shell Microcapsules for Monitoring Live Cells in a 3D Microenvironment. Anal Chem 2023; 95:2750-2756. [PMID: 36599406 DOI: 10.1021/acs.analchem.2c03762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Three-dimensional (3D) cell culture, even as a simple microspheroid model, can be used to recapitulate the native biological microenvironment of cells. Examining the biochemical characteristics of cells in multicellular hydrogel microspheroids using microsensors is usually limited to monitoring the medium around the microspheroids. Here, functional liquid crystal (LC) core/hydrogel shell microcapsules loaded with cells were prepared using droplet microfluidic technology for monitoring live cells in a 3D microenvironment. These microcapsules have a distinctive core/shell structure; cells can be cultured in the hydrogel shell of this 3D model. The functional LC core responds to the acidic microenvironment of cells, showing an axial-to-bipolar transfiguration. 3D cell culture and visual monitoring of the cell microenvironment can be simultaneously achieved in a single microcapsule. Therefore, this novel method may enable a standard approach for monitoring multiple ions or molecules in a 3D model of the cell microenvironment.
Collapse
Affiliation(s)
- Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Xiaorui Wang
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yaoshuang Xie
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| | - Zengnan Wu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Rouhbakhsh Z, Huang JW, Ho TY, Chen CH. Liquid crystal-based chemical sensors and biosensors: From sensing mechanisms to the variety of analytical targets. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Zhan X, Liu Y, Yang KL, Luo D. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. BIOSENSORS 2022; 12:577. [PMID: 36004973 PMCID: PMC9406035 DOI: 10.3390/bios12080577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
As an emerging stimuli-responsive material, liquid crystal (LC) has attracted great attentions beyond display applications, especially in the area of biochemical sensors. Its high sensitivity and fast response to various biological or chemical analytes make it possible to fabricate a simple, real-time, label-free, and cost-effective LC-based detection platform. Advancements have been achieved in the development of LC-based sensors, both in fundamental research and practical applications. This paper briefly reviews the state-of-the-art research on LC sensors in the biochemical field, from basic properties of LC material to the detection mechanisms of LC sensors that are categorized into LC-solid, LC-aqueous, and LC droplet platforms. In addition, various analytes detected by LCs are presented as a proof of the application value, including metal ions, nucleic acids, proteins, glucose, and some toxic chemical substances. Furthermore, a machine-learning-assisted LC sensing platform is realized to provide a foundation for device intelligence and automatization. It is believed that a portable, convenient, and user-friendly LC-based biochemical sensing device will be achieved in the future.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| |
Collapse
|
7
|
Duong DST, Jang CH. Determination of chlorothalonil levels through inhibitory effect on papain activity at protein-decorated liquid crystal interfaces. Mikrochim Acta 2022; 189:292. [PMID: 35879491 PMCID: PMC9313939 DOI: 10.1007/s00604-022-05396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
A liquid crystal (LC)-based assay was developed to detect chlorothalonil (CHL). The detection principle is based on (i) the electrostatic interaction between the positively charged protein protamine (PRO) with the negatively charged phospholipid dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG) and (ii) the CHL-mediated inhibition of papain (PAP) activity. The aqueous/LC interface was decorated with a monolayer of DOPG and PRO that self-assembled via electrostatic interactions. PAP can hydrolyze PRO, resulting in the realignment of an LC by DOPG, inducing a shift in the LC response from bright to dark. The addition of CHL can inhibit the activity of PAP, leading to the attraction of PRO to DOPG and the consequent disruption of the LC orientation. The orientation change of the LC in the presence or absence of CHL can be observed from the changes in its optical appearance using a polarized light microscope. Under optimal conditions, the developed assay achieved a detection limit of 0.196 pg mL-1 within a range of determination of 0.65-200 pg mL-1. The selectivity of the assay was verified in the presence of carbendazim and imidacloprid. The practical application of the proposed assay was demonstrated by its use to determine the levels of CHL in food extracts and environmental samples, which yielded recoveries and relative standard deviations (RSD) in the ranges of 87.39-99.663% and 1.03-6.32%, respectively.
Collapse
Affiliation(s)
- Duong Song Thai Duong
- Department of Chemistry, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-City, Gyeonggi-Do, 461-701, South Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-City, Gyeonggi-Do, 461-701, South Korea.
| |
Collapse
|
8
|
Cheng S, Khan M, Yin F, Wu W, Sun T, Hu Q, Lin JM, Wang X. Liquid crystal-based sensitive and selective detection of uric acid and uricase in body fluids. Talanta 2022; 244:123455. [PMID: 35397324 DOI: 10.1016/j.talanta.2022.123455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
The abnormal levels of uric acid (UA) in body fluids are associated with gout, type (II) diabetes, leukemia, Lesch-Nyhan syndrome, uremia, kidney damage, and cardiovascular diseases. Also, the presence of uricase (UOx) symbolizes genetic disorders and corresponding complications. Therefore, the detection of UA and UOx in the body fluids is significant for clinical diagnosis. 4-Cyano-4'-pentylbiphenyl (5CB, a nematic liquid crystal (LC)) was doped with octadecyl trimethylammonium bromide (OTAB, a cationic surfactant), which formed a self-assembled monolayer at the aqueous/5CB interface. The UOx-catalyzed oxidation of UA yielded H2O2, releasing the single-strand deoxyribonucleic acid (ssDNA) from the nanoceria/ssDNA complex. The interaction of the released ssDNA with OTAB disrupted the monolayer at the aqueous/5CB interface, which resulted in a dark to bright change when observed through a polarized optical microscope. The LC-based sensor allowed the detection of UA with a linear range of 0.01-10 μM and a limit of detection (LOD) of 0.001 μM. The UA detection was also performed in human urine samples and the results were comparable to that of a standard commercial colorimetric method. Similarly, the detection of UOx was performed, with a noted linear range of 20-140 μg/mL. The LOD was as low as 0.34 μg/mL. The detection of UOx was also demonstrated in human serum samples with excellent performance. This method provides a robust sensing platform for the detection of UA and UOx and has potential for applications in clinical analysis.
Collapse
Affiliation(s)
- Supan Cheng
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Mashooq Khan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Fangchao Yin
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Wenli Wu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Tao Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiao Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
9
|
Rajesh R, Gangwar LK, Mishra SK, Choudhary A, Biradar AM, Sumana G. Technological Advancements in Bio‐recognition using Liquid Crystals: Techniques, Applications, and Performance. LUMINESCENCE 2022. [PMID: 35347826 DOI: 10.1002/bio.4242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/10/2022]
Abstract
The application of liquid crystal (LC) materials has undergone a modern-day renaissance from its classical use in electronics industry as display devices to new-fangled techniques for optically detecting biological and chemical analytes. This review article deals with the emergence of LC materials as invaluable material for their use as label-free sensing elements in the development of optical, electro-optical and electrochemical biosensors. The property of LC molecules to change their orientation on perturbation by any external stimuli or on interaction with bioanalytes or chemical species has been utilized by many researches for the fabrication of high sensitive LC-biosensors. In this review article we categorized LC-biosensor based on biomolecular reaction mechanism viz. enzymatic, nucleotides and immunoreaction in conjunction with operating principle at different LC interface namely LC-solid, LC-aqueous and LC-droplets. Based on bimolecular reaction mechanism, the application of LC has been delineated with recent progress made in designing of LC-interface for the detection of bio and chemical analytes of proteins, virus, bacteria, clinically relevant compounds, heavy metal ions and environmental pollutants. The review briefly describes the experimental set-ups, sensitivity, specificity, limit of detection and linear range of various viable and conspicuous LC-based biosensor platforms with associated advantages and disadvantages therein.
Collapse
Affiliation(s)
- Rajesh Rajesh
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Lokesh K. Gangwar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | | | - Amit Choudhary
- Physics Department Deshbandhu College (University of Delhi) Kalkaji New Delhi India
| | - Ashok M. Biradar
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| | - Gajjala Sumana
- CSIR‐National Physical Laboratory, Dr. K. S. Krishnan Marg New Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Gaziabad India
| |
Collapse
|
10
|
Nguyen DK, Jang CH. Simple and Label-Free Detection of Carboxylesterase and Its Inhibitors Using a Liquid Crystal Droplet Sensing Platform. MICROMACHINES 2022; 13:490. [PMID: 35334782 PMCID: PMC8954150 DOI: 10.3390/mi13030490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/26/2022]
Abstract
In this study, we developed a liquid crystal (LC) droplet-based sensing platform for the detection of carboxylesterase (CES) and its inhibitors. The LC droplet patterns in contact with myristoylcholine chloride (Myr) exhibited dark cross appearances, corresponding to homeotropic anchoring of the LCs at the aqueous/LC interface. However, in the presence of CES, Myr was hydrolyzed; therefore, the optical images of the LC patterns changed to bright fan-shaped textures, corresponding to a planar orientation of LCs at the interface. In contrast, the presence of CES inhibitors, such as benzil, inhibits the hydrolysis of Myr; as a result, the LC patterns exhibit dark cross textures. This principle led to the development of an LC droplet-based sensing method with a detection limit of 2.8 U/L and 10 μM, for CES detection and its inhibitor, respectively. The developed biosensor not only enables simple and label-free detection of CES but also shows high promise for the detection of CES inhibitors.
Collapse
Affiliation(s)
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea;
| |
Collapse
|
11
|
Development and Application of Liquid Crystals as Stimuli-Responsive Sensors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041453. [PMID: 35209239 PMCID: PMC8877457 DOI: 10.3390/molecules27041453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
Abstract
This focused review presents various approaches or formats in which liquid crystals (LCs) have been used as stimuli-responsive sensors. In these sensors, the LC molecules adopt some well-defined arrangement based on the sensor composition and the chemistry of the system. The sensor usually consists of a molecule or functionality in the system that engages in some form of specific interaction with the analyte of interest. The presence of analyte brings about the specific interaction, which then triggers an orientational transition of the LC molecules, which is optically discernible via a polarized optical image that shows up as dark or bright, depending on the orientation of the LC molecules in the system (usually a homeotropic or planar arrangement). The various applications of LCs as biosensors for glucose, protein and peptide detection, biomarkers, drug molecules and metabolites are extensively reviewed. The review also presents applications of LC-based sensors in the detection of heavy metals, anionic species, gases, volatile organic compounds (VOCs), toxic substances and in pH monitoring. Additionally discussed are the various ways in which LCs have been used in the field of material science. Specific attention has been given to the sensing mechanism of each sensor and it is important to note that in all cases, LC-based sensing involves some form of orientational transition of the LC molecules in the presence of a given analyte. Finally, the review concludes by giving future perspectives on LC-based sensors.
Collapse
|
12
|
Khan M, Liu S, Qi L, Ma C, Munir S, Yu L, Hu Q. Liquid crystal-based sensors for the detection of biomarkers at the aqueous/LC interface. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Yin F, Cheng S, Liu S, Ma C, Wang L, Zhao R, Lin JM, Hu Q. A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126601. [PMID: 34265652 DOI: 10.1016/j.jhazmat.2021.126601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
There is an increase in demand to develop simple, convenient, and low-cost approaches for rapid and label-free detection of antibiotics. Herein, we propose a new principle for the detection of kanamycin using the surface-anchored liquid crystal (LC) droplets. The optical images of the LC droplets uniformly change from four-clover, uniformly dark, and dark cross appearance gradually with the increase of surfactant concentration. The detection of kanamycin is fulfilled with the aid of a cationic surfactant cetyltrimethylammonium bromide (CTAB) and a kanamycin aptamer. The LC droplets show uniformly dark appearance and four-clover appearance in the presence of the aqueous solutions of CTAB and CTAB/aptamer complex, respectively. However, the specific binding of kanamycin to its aptamer can release the CTAB, which induces the uniformly dark appearance of the LC droplets. A portable device is built to measure the optical luminance of the LC droplets. This system can detect kanamycin with a concentration below 0.1 ng/mL (~0.17 nM) and also allows the detection of kanamycin in real samples such as milk and honey. Therefore, it is very promising in the development of new types of LC-based sensors by the surface-anchored LC droplets assisted with a portable optical device.
Collapse
Affiliation(s)
- Fangchao Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Supan Cheng
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Shuya Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Chunxia Ma
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Rusong Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China.
| |
Collapse
|
14
|
Tutunaru O, Mihailescu CM, Savin M, Tincu BC, Stoian MC, Muscalu GS, Firtat B, Dinulescu S, Craciun G, Moldovan CA, Ficai A, Ion AC. Acetylcholinesterase entrapment onto carboxyl-modified single-walled carbon nanotubes and poly (3,4-ethylenedioxythiophene) nanocomposite, film electrosynthesis characterization, and sensor application for dichlorvos detection in apple juice. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Jeon DY, Jang C. Simple and Label‐Free Liquid‐Crystal‐Based Detection of Acetylcholinesterase through Interactions between Liquid Crystals and Oil‐in‐Water Emulsion Droplets. ChemistrySelect 2021. [DOI: 10.1002/slct.202100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dong Yoon Jeon
- Department of Bionano Technology Gachon University Seongnam-daero 1342, Sujeong-gu Seongnam-si Gyeonggi-do 13120, Republic of Korea
| | - Chang‐Hyun Jang
- Department of Chemistry Gachon University Seongnam-daero 1342, Sujeong-gu Seongnam-si Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
16
|
Sun H, Yin F, Liu X, Jiang T, Ma Y, Gao G, Shi J, Hu Q. Development of a liquid crystal-based α-glucosidase assay to detect anti-diabetic drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Wang Z, Xu T, Noel A, Chen YC, Liu T. Applications of liquid crystals in biosensing. SOFT MATTER 2021; 17:4675-4702. [PMID: 33978639 DOI: 10.1039/d0sm02088e] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid crystals (LCs), as a promising branch of highly-sensitive, quick-response, and low-cost materials, are widely applied to the detection of weak external stimuli and have attracted significant attention. Over the past decade, many research groups have been devoted to developing LC-based biosensors due to their self-assembly potential and functional diversity. In this paper, recent investigations on the design and application of LC-based biosensors are reviewed, based on the phenomenon that the orientation of LCs can be directly influenced by the interactions between biomolecules and LC molecules. The sensing principle of LC-based biosensors, as well as their signal detection by probing interfacial interactions, is described to convert, amplify, and quantify the information from targets into optical and electrical parameters. Furthermore, commonly-used LC biosensing targets are introduced, including glucose, proteins, enzymes, nucleic acids, cells, microorganisms, ions, and other micromolecules that are critical to human health. Due to their self-assembly potential, chemical diversity, and high sensitivity, it has been reported that tunable stimuli-responsive LC biosensors show bright perspectives and high superiorities in biological applications. Finally, challenges and future prospects are discussed for the fabrication and application of LC biosensors to both enhance their performance and to realize their promise in the biosensing industry.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | |
Collapse
|
18
|
Wu W, Wang W, Qi L, Wang Q, Yu L, Lin JM, Hu Q. Screening of Xanthine Oxidase Inhibitors by Liquid Crystal-Based Assay Assisted with Enzyme Catalysis-Induced Aptamer Release. Anal Chem 2021; 93:6151-6157. [PMID: 33826305 DOI: 10.1021/acs.analchem.0c05456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small-molecule drugs play an important role in the treatment of various diseases. The screening of enzyme inhibitors is one of the most important means in developing therapeutic drugs. Herein, we demonstrate a liquid crystal (LC)-based screening assay assisted with enzyme catalysis-induced aptamer release for screening xanthine oxidase (XOD) inhibitors. The oxidation of xanthine by XOD prevents the specific binding of xanthine and its aptamer, which induces a bright image of LCs. However, when XOD is inhibited, xanthine specifically binds to the aptamer. Correspondingly, LCs display a dark image. Three compounds are identified as potent XOD inhibitors by screening a small library of triazole derivatives using this method. Molecular docking verifies the occupation of the active site by the inhibitor, which also exhibits excellent biocompatibility to HEK293 cells and HeLa cells. This strategy takes advantages of the unique aptamer-target binding, specific enzymatic reaction, and simple LC-based screening assay, which allows high-throughput and label-free screening of inhibitors with high sensitivity and remarkable accuracy. Overall, this study provides a competent and promising approach to facilitate the screening of enzyme inhibitors using the LC-based assay assisted with the enzyme catalysis-induced aptamer release.
Collapse
Affiliation(s)
- Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Weiguo Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, P. R. China
| | - Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
19
|
A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples. BIOSENSORS-BASEL 2021; 11:bios11030092. [PMID: 33806721 PMCID: PMC8004806 DOI: 10.3390/bios11030092] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
We report a liquid crystal (LC)-based aptasensor for the detection of malathion using a cationic surfactant-decorated LC interface. In this method, LCs displayed dark optical images when in contact with aqueous cetyltrimethylammonium bromide (CTAB) solution due to the formation of a self-assembled CTAB monolayer at the aqueous/LC interface, which induced the homeotropic orientation of LCs. With the addition of malathion aptamer, the homeotropic orientation of LCs changed to a planar one due to the interactions between CTAB and the aptamer, resulting in a bright optical image. In the presence of malathion, the formation of aptamer-malathion complexes caused a conformational change of the aptamers, thereby weakening the interactions between CTAB and the aptamers. Therefore, CTAB is free to induce a homeotropic ordering of the LCs, which corresponds to a dark optical image. The developed sensor exhibited high specificity for malathion determination and a low detection limit of 0.465 nM was achieved. Moreover, the proposed biosensor was successfully applied to detect malathion in tap water, river water, and apple samples. The proposed LC-based aptasensor is a simple, rapid, and convenient platform for label-free monitoring of malathion in environmental samples.
Collapse
|
20
|
Detection of bleomycin and its hydrolase by the cationic surfactant-doped liquid crystal-based sensing platform. Anal Chim Acta 2021; 1150:338247. [PMID: 33583545 DOI: 10.1016/j.aca.2021.338247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/07/2023]
Abstract
Bleomycin (BLM) is a broadly used antibiotic to treat different types of cancer. It can be hydrolyzed by bleomycin hydrolase (BLMH), which eventually influences the anti-tumor efficacy of BLM. Therefore, it is particularly important to detect BLM and BLMH. Herein, we demonstrated highly sensitive detection of BLM and BLMH by a simple and convenient liquid crystal (LC)-based sensing platform for the first time. 5CB (a nematic LC) doped with the cationic surfactant OTAB was working as the sensing platform. When the OTAB-laden 5CB interface was in contact with an aqueous solution of ssDNA, LCs displayed a bright image due to disruption of the arrangement of OTAB monolayers by ssDNA, indicating the planar orientation of LCs at the aqueous/LC interface. When BLM·Fe(II) and ssDNA were both present in the aqueous solution, ssDNA underwent irreversible cleavage, which prevented disruption of the arrangement of OTAB monolayers. Accordingly, LCs showed a dark image, suggesting the homeotropic orientation of LCs at the aqueous/LC interface. However, when BLM·Fe(II) was enzymatically hydrolyzed by BLMH, LCs remained the bright image. This approach showed high sensitivity for the detection of BLM and BLMH with the limits of detection of 0.2 nM and 0.3 ng/mL, respectively. Besides, the detection of BLM and BLMH was successfully achieved in human serum. This method has the advantages of high sensitivity, robust stability, simple operation, low cost, and easy detection through naked eyes, which makes it a potential candidate for applications in clinical analysis.
Collapse
|
21
|
ZHANG RH, HU QZ, KANG Q, QI LB, PANG YP, YU L. Research on Competitive Enzymatic Hydrolysis-Assisted Liquid Crystal-based Acetylcholine Sensor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60081-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
An acetylcholinesterase-based biosensor for the detection of pesticides using liquid crystals confined in microcapillaries. Colloids Surf B Biointerfaces 2021; 200:111587. [PMID: 33529929 DOI: 10.1016/j.colsurfb.2021.111587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022]
Abstract
Here, we demonstrate a capillary-sensing platform based on liquid crystals (LCs) confined in microcapillaries for simple and sensitive detection of acetylcholinesterase (AChE) and its inhibitors. LC droplets were formed through sequential injection of LCs and an aqueous solution into trichloro(octyl)silane (OTS)-treated microcapillaries. When the confined LC droplets make contact with a cationic surfactant solution, myristoylcholine chloride (Myr), the formation of a Myr monolayer at the aqueous/LC interface induces a horizontal orientation of the LCs at the interface along the microcapillary, producing an optical LC droplet texture of a four-petal shape. On the other hand, AChE can catalyze the hydrolysis of Myr into choline and myristic acid. The hydrolyzed Myr is unable to form a monolayer at the aqueous/LC interface, and therefore the confined LC droplets exhibit two bright-lined optical images when in contact with the pre-incubated mixture of Myr and AChE, corresponding to the homeotropic orientation of LCs at the interface. However, in the presence of AChE-inhibiting pesticides, such as fenobucarb and malathion, the activity of AChE is inhibited, and thus, the enzymatic hydrolysis of Myr cannot occur. As a result, the confined LC droplets present the four petal-shaped optical images when in contact with the pre-incubated mixture of Myr, AChE, and pesticides. Based on this principle, an LC-based microcapillary sensor was developed and utilized for the detection of pesticides. Using this sensing platform, fenobucarb and malathion were detected at limits of 5 pg/mL and 2.5 pg/mL, respectively. Moreover, the proposed biosensor was successfully applied to the determination of pesticides in real river water. Therefore, this LC-based microcapillary sensor is a promising platform for simple, rapid, and label-free detection of pesticides with very high sensitivity.
Collapse
|
23
|
Huang X, Ye Z, Shang Y, He Y, Meng H, Dong Y, Qu Z, Liu Y, Xu S, Liu H. Effect of Single/Mixed Surfactant Systems on Orientations of Liquid Crystals and Interaction of Proteins with Surfactants at Fluid Interfaces. Aust J Chem 2021. [DOI: 10.1071/ch21063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of single surfactant systems, i.e, quaternary ammonium-based gemini surfactants with different spacers and alkyl chain lengths (m-n-m; m=12, n=2, 3, 4, 6; n=3, m=12, 14, 16), halogen-free surface-active ionic liquid (HF-SAILs) with different symmetries ([Cnmim][C12H25SO4]; n=6, 8, 10, 12), and single-chain cationic surfactants including 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br) and dodecyltrimethylammonium bromide (DTAB), along with certain combinations of different surfactants (12-3-12/[C12mim]Br and 12-3-12/DTAB) were applied to an aqueous/liquid crystal interface (ALI). All the surfactants could induce an orientational transition of liquid crystals (LCs) from a planar to homeotropic state, which caused a bright-to-dark optical shift. It was proved that double-chain surfactants and the mixed surfactants inclined to adsorb at the ALI triggering the orientational transition. Inspiringly, a quicker and more sensitive dark-to-bright optical response was observed for mixed surfactant system-decorated interfaces in contact with proteins (such as bovine serum albumin (BSA), lysozyme, and trypsin) as opposed to the single surfactant systems. The ALI decorated by the 12-3-12/[C12mim]Br system was particularly efficient and exhibited the most sensitive optical response for BSA (0.01ngmL−1). The order parameters (SCD) of surfactants tails at the interface and the free energy of proteins with 12-3-12 and [C12mim]Br were calculated, respectively. The results explain that the 12-3-12/[C12mim]Br-laden ALI shows a quicker and more sensitive optical response for BSA. This work inspired us to study mixed surfactant systems-decorated LC interfaces and further provides new insights for different chemical and biological applications.
Collapse
|
24
|
Tang J, Li Z, Xie M, Zhang Y, Long W, Long S, Wen T, Fang Z, Zhu W, Zheng H, Luo Y, Guan H, Lu H, Zhang J, Yu J, Chen Z. Optical fiber bio-sensor for phospholipase using liquid crystal. Biosens Bioelectron 2020; 170:112547. [PMID: 33010707 DOI: 10.1016/j.bios.2020.112547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
A cost-effective and label-free optical fiber sensor was proposed to detect phospholipase A2 (PLA2) in nM concentration. The sensor is made of an alkoxysilane-modified side-polished fiber (SPF) coated with 4'-pentyl-4-cyanobiphenyl (5CB) and self-assembled phospholipid (L-DLPC). It is found that the relative transmission optical power (RTOP) of the fiber sensor decreases due to the 5CB realignment and redistribution induced by the PLA2 hydrolysis of L-DLPC. The response-time at 5 dB RTOP variation exhibits an exponential dependence on PLA2 concentration, allowing us to detect the PLA2 by the 5 dB-response time. This detection method can reduce the detection time. Compare with the traditional copper-grid sensor, the proposed novel fiber sensor has a lower detection limit (<1 nM). Furthermore, the sensor has good repeat-ability and specificity.The sensor's RTOP variation for PLA2 detection at 1 nM is ~21 times higher than that for five other enzymes (trypsin, amylase, thrombin, glucose oxidase, pepsin) at 1000 nM and lipase at 50 nM. This confirms the sensor's excellent PLA2 specificity. The fiber sensor provides a potential way to be incorporated into micro-flow chips to quantitatively detect biological molecules in a real-time and online manner.
Collapse
Affiliation(s)
- Jieyuan Tang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhibin Li
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Mengyuan Xie
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenjin Long
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Shun Long
- Department of Computer Science, Jinan University, Guangzhou, 510632, China
| | - Tianjin Wen
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Zhanxiong Fang
- Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Wenguo Zhu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huadan Zheng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yunhan Luo
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Heyuan Guan
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huihui Lu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jianhui Yu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou, 510632, China; Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
25
|
Zhou L, Su Q, Wu F, Wan Y, Xu P, Dong A, Li Q, Qian W. Using Reflectometric Interference Spectroscopy to Real-Time Monitor Amphiphile-Induced Orientational Responses of Liquid-Crystal-Loaded Silica Colloidal Crystal Films. Anal Chem 2020; 92:12071-12078. [DOI: 10.1021/acs.analchem.0c02749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lele Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qianqian Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feng Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ao Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Qi L, Wu W, Kang Q, Hu Q, Yu L. Detection of organophosphorus pesticides with liquid crystals supported on the surface deposited with polyoxometalate-based acetylcholinesterase-responsive supramolecular spheres. Food Chem 2020; 320:126683. [PMID: 32229401 DOI: 10.1016/j.foodchem.2020.126683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/30/2019] [Accepted: 03/22/2020] [Indexed: 02/08/2023]
Abstract
Here, we demonstrate use of acetylcholinesterase (AChE)-responsive polyoxometalate (POM)/surfactant supramolecular spheres to build a liquid crystal (LC)-based sensing platform for detection of organophosphorus pesticides. The self-assembled spheres are composed of hybrid materials of a POM, sodium dodecatungstophosphate (PW12), and a surfactant, myristoylcholine (Myr). It displays dark appearance when the aqueous solution is in contact with LCs supported on the octadecyltrichlorosilane-treated glass deposited with the supramolecular spheres, suggesting perpendicular orientation of LCs at the aqueous/LC interface. In contrast, LCs show bright appearance when the surface-deposited supramolecular spheres are enzymatically hydrolyzed by AChE, corresponding to planar orientation of LCs at the aqueous/LC interface. Detection of organophosphates are successfully achieved as they are potent inhibitors of AChE. The detection limit of the sensing platform reached 0.9 ng/mL for dimethoate. This method can avoid disturbance of external interference with excellent specificity and sensitivity, which makes it very promise in detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Lubin Qi
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, PR China; Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China.
| | - Wenli Wu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, PR China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
27
|
|
28
|
Ho T, Lan YH, Huang JW, Chang JJ, Chen CH. Using Diazotization Reaction to Develop Portable Liquid-Crystal-Based Sensors for Nitrite Detection. ACS OMEGA 2020; 5:11809-11816. [PMID: 32478272 PMCID: PMC7254784 DOI: 10.1021/acsomega.0c01233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 05/14/2023]
Abstract
A liquid-crystal (LC)-based sensor for detecting nitrite in aqueous solutions was developed using a diazotization reaction as the sensing mechanism. First, tetradecyl 4-aminobenzoate (14CBA) was synthesized and doped into a nematic LC, i.e., 4-cyano-4'-pentylbiphenyl (5CB). When the LC mixture was cast on a glass substrate and then immersed into an aqueous solution without nitrite, the orientation of LC was planar and the LC image was bright. In the presence of nitrite, it reacted with alkylanilines to give corresponding diazonium ions with a positive charge, which aligned at the LC/aqueous interface to cause homeotropic orientation of LC. As a result, a bright-to-dark transition of the LC image was observed. The limit of detection (LOD) of this system for nitrite is 25 μM with high selectivity. In addition, this system can work in environmental water samples such as tap water and pond water. Finally, we demonstrated that the optical signals of LC can be measured and recorded using a built-in digital camera of a smartphone, suggesting the portability of this system for on-site applications.
Collapse
|
29
|
Luan C, Luan H, Luo D. Application and Technique of Liquid Crystal-Based Biosensors. MICROMACHINES 2020; 11:E176. [PMID: 32046326 PMCID: PMC7074608 DOI: 10.3390/mi11020176] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/05/2022]
Abstract
Liquid crystal biosensors are based on changes in the orientation of liquid crystal molecules induced by specific bonding events of biomolecules. These biosensors are expected to serve as a promising system to detect biomolecules, biomolecular activity, and even small chemical molecules because they are inexpensive, sensitive, simple, effective, and portable. Herein, we introduce the principle and fabrication of liquid crystal biosensors and review the research progress in signal-amplified technology for liquid crystal sensing and its application in the detection of viruses, bacteria, proteins, nucleic acids, and small chemical molecules. In addition, the current theoretical and practical issues related to liquid crystal biosensors were investigated.
Collapse
Affiliation(s)
- Chonglin Luan
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Haipei Luan
- School of Dentistry, University of Detroit Mercy, Detroit, MI 48208, USA
| | - Dawei Luo
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
30
|
Liu Z, Xia X, Zhou G, Ge L, Li F. Acetylcholinesterase-catalyzed silver deposition for ultrasensitive electrochemical biosensing of organophosphorus pesticides. Analyst 2020; 145:2339-2344. [DOI: 10.1039/c9an02546d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports, for the first time, acetylcholinesterase-catalyzed silver deposition for sensitive electrochemical detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Zhenhui Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Xin Xia
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Guoxing Zhou
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| |
Collapse
|
31
|
Label-free, rapid, and sensitive detection of carboxylesterase using surfactant-doped liquid crystal sensor. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111921] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Qi L, Hu Q, Kang Q, Bi Y, Jiang Y, Yu L. Detection of Biomarkers in Blood Using Liquid Crystals Assisted with Aptamer-Target Recognition Triggered in Situ Rolling Circle Amplification on Magnetic Beads. Anal Chem 2019; 91:11653-11660. [PMID: 31430128 DOI: 10.1021/acs.analchem.9b02186] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of biomarkers in body fluids is critical to both diagnosing the life-threatening diseases and optimizing therapeutic interventions. We herein report use of liquid crystals (LCs) to detect biomarkers in blood with high sensitivity and specificity by employing in situ rolling circle amplification (RCA) on magnetic beads (MBs). Specific recognition of cancer biomarkers, such as platelet derived growth factor BB (PDGF-BB) and adenosine, by aptamers leads to formation of a nucleic acid circle on MBs preassembled with ligation DNA, linear padlock DNA, and aptamers, thereby triggering in situ RCA. LCs change from dark to bright appearance after the in situ RCA products being transferred onto the LC interface decorated with octadecy trimethylammonium bromide (OTAB), which is particularly sensitive to the amplified DNA on MBs. Overall, this label-free approach takes advantages of high specificity of aptamer-based assay, efficient enrichment of signaling molecules on MBs, remarkable DNA elongation performance of the RCA reaction, and high sensitivity of LC-based assay. It successfully eliminates the matrix interference on the LC-based sensors and thus achieves at least 4 orders of magnitude improvement in sensitivity for detection of biomarkers compared to other LC-based sensors. In addition, performance of the developed sensor is comparable to that of the commercial ones. Thus, this study provides a simple, powerful, and promising approach to facilitate highly sensitive, specific, and label-free detection of biomarkers in body fluids.
Collapse
Affiliation(s)
- Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Yanhui Bi
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Yifei Jiang
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| |
Collapse
|
33
|
Hu J, Fu D, Xia C, Long S, Lu C, Sun W, Liu Y. Fiber Mach-Zehnder-interferometer-based liquid crystal biosensor for detecting enzymatic reactions of penicillinase. APPLIED OPTICS 2019; 58:4806-4811. [PMID: 31251304 DOI: 10.1364/ao.58.004806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
A novel, to the best of our knowledge, liquid crystal (LC) biosensor, based on an optical fiber Mach-Zehnder interferometer (MZI), is proposed. The proposed optical fiber MZI consists of two single-mode fibers and a tapered photonic crystal fiber (PCF). The PCF is coated with 4'-pentyl-biphenyl-4-carboxylic acid (PBA)-doped 4-cyano-4'-pentylbiphenyl (5CB). Being a pH-sensitive material, PBA can manipulate LC molecules to different orientations according to their pH values. When the orientation of LC molecules changes with varying pH, the effective refractive index of the cladding modes also is accordingly affected. Enzymatic reactions of penicillinase can release H+, which causes the decrease of the pH. Therefore, the enzymatic reactions of penicillinase can be sensed by monitoring the peak shift in the interference spectrum. The effects of the tapered diameter on the sensitivity of the sensor were experimentally investigated as well.
Collapse
|
34
|
|
35
|
Zhou L, Hu Q, Kang Q, Fang M, Yu L. Construction of a Liquid Crystal-Based Sensing Platform for Sensitive and Selective Detection of l-Phenylalanine Based on Alkaline Phosphatase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:461-467. [PMID: 30576146 DOI: 10.1021/acs.langmuir.8b03682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The detection of l-phenylalanine (l-Phe) has become one of the most pressing issues concerning diagnosis and treatment of phenylketonuria in neonates; however, a simple and robust methodology is yet to be developed. Here, the application of novel liquid crystals (LCs)-sensing platform for sensitive, selective, and label-free detection of l-Phe was reported at the first time. We devised a strategy to fabricate the sodium monododecyl phosphate (SMP)-decorated LC sensing platform with the appearance of dark. Then, a dark to bright (D-B) optical images alteration of LCs was observed after transferring alkaline phosphatase (ALP) to the interface, owing to cleavage of SMP induced by ALP. LCs remained dark images after the SMP-decorated interface in contact with the pre-incubated ALP and l-Phe. Such optical appearance resulted from the inhibition of ALP by l-Phe, which was further verified by the isothermal titration calorimetry (ITC). The strategy was applied to sensing l-Phe, which have been proven to allow for sensitively and selectively differentiation of l-Phe from interfering compounds with similar aromatic groups, as well as seven other essential amino acids. More importantly, the detection limit of l-Phe reached 1 pg/mL in urine samples, further demonstrating its value in the practical applications. Results obtained in this study clearly demonstrated the superiority of LCs toward the l-Phe detection, which can pave a way for the development of high performance and robust probes for l-Phe detection in clinical applications.
Collapse
Affiliation(s)
- Lele Zhou
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| | - Qiongzheng Hu
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Ming Fang
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| |
Collapse
|
36
|
Ma H, Kang Q, Wang T, Yu L. A liquid crystals-based sensing platform for detection of α-amylase coupled with destruction of host-guest interaction. Colloids Surf B Biointerfaces 2019; 173:616-622. [DOI: 10.1016/j.colsurfb.2018.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
|
37
|
Ultrasensitive detection of glutathione based on liquid crystals in the presence of γ-glutamyl transpeptidase. Anal Chim Acta 2018; 1040:187-195. [DOI: 10.1016/j.aca.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
|
38
|
Wang Y, Zhou L, Kang Q, Yu L. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA. Talanta 2018; 183:223-227. [PMID: 29567168 DOI: 10.1016/j.talanta.2018.02.082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
Abstract
Trypsin plays a central role in catalyzing the hydrolysis of peptide bonds, so a technique with simple operation is needed to monitor the activity of trypsin. Here a simple and label-free senor based on liquid crystals (LCs) was developed by employing bovine serum albumin (BSA) as the enzyme substrate and dodecyl trimethyl ammonium bromide (DTAB) as the controller for the alignment of LC. It was found that DTAB could form a self-assembled monolayer at the aqueous/LC interface to produce the dark optical images of LCs. And the addition of BSA could disturb the monolayer, so that the optical signal of LCs turned bright from dark. But the hydrolysis of BSA by trypsin resulted in the dark appearance. The sensing platform allows detection as low as 1 U/mL under the polarized light microscope based on at least three measurements. Moreover, this method was successfully applied in the detection of trypsin in human urines, suggesting its potential applications in clinic diagnosis.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China
| | - Lele Zhou
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China; School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
39
|
Popov P, Mann EK, Jákli A. Thermotropic liquid crystal films for biosensors and beyond. J Mater Chem B 2017; 5:5061-5078. [DOI: 10.1039/c7tb00809k] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent results on structural properties and possible bio-sensing applications of planar liquid crystal films are reviewed.
Collapse
Affiliation(s)
- Piotr Popov
- Department of Physics
- Kent State University
- Kent
- USA
- Liquid Crystal Institute
| | | | - Antal Jákli
- Liquid Crystal Institute
- Kent State University
- Kent
- USA
- Complex Fluid Group
| |
Collapse
|
40
|
Tian T, Hu Q, Wang Y, Gao Y, Yu L. Effect of Imidazolium-Based Surface-Active Ionic Liquids on the Orientation of Liquid Crystals at Various Fluid/Liquid Crystal Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11745-11753. [PMID: 27783527 DOI: 10.1021/acs.langmuir.6b02756] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of imidazolium-based surface-active ionic liquids (IM-SAILs), viz., single-chained IM-SAILs, 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 12, 14, 16), 1-dodecyl-3-methylimidazolium salicylate ([C12mim]Sal), 1-dodecyl-3-methylimidazolium 3-hydroxy-2-naphthoate ([C12mim]HNC), 1-dodecyl-3-methylimidazolium cinnamate ([C12mim]CA), 1-dodecyl-3-methylimidazolium para-hydroxy-cinnamate ([C12mim]PCA), gemini IM-SAIL, and 1,2-bis(3-dodecylimidazolium-1-yl)ethane bromide ([C12-2-C12im]Br2), along with three short-chained ionic liquids (ILs) [ethylammonium nitrate (EAN), propylammonium nitrate (PAN), and butylammonium nitrate (BAN)] were synthesized and applied to nematic liquid crystal (LC)/fluid interfaces. First, we evaluated the influence of the length and number of aliphatic chains as well as the counterion in the IM-SAIL structures on the anchoring of LCs at the aqueous/LC interface. It was observed that the threshold concentration of [Cnmim]Br (n = 12, 14, 16) decreased with the increase in aliphatic chain length. And double-chained [C12-2-C12im]Br2 has a far lower threshold concentration than single-chained [C12mim]Br. But the alteration of counterions (e.g., Br- and aromatic counterions) scarcely affected the anchoring of LCs at the interface. Second, we investigated the alignment of LCs at the diverse IL/LC interfaces in the presence of IM-SAILs. It is found that the variations in both aliphatic chain length and number can remarkably change the trigger points of the orientational transition of LCs at the EAN/LC interface. Specifically, with a slight increase in the alkyl chain length of short-chained ILs, as the fluid medium, the orientation of LCs varied tremendously at the IL/LC interface. Therefore, the higher threshold concentration of IM-SAILs and the corresponding greater stability in the optical appearance of LCs at the EAN/LC interface compared to that of the aqueous/LC interface can be ascribed to the discrepancy in the microstructure of water and IL. Finally, we verified that the volume ratio of H2O to EAN could more dramatically affect the alignment of LCs than the change in IM-SAIL concentration in aqueous solution. This work first illustrated the impact of SAIL structure on the LCs orientation at the aqueous/LC, IL/LC, and H2O-IL mixture/LC interfaces, which will inspire us to obtain a stabilized molecular alignment of LCs at the IL/LC interfaces and to further design novel functionalized SAIL molecules for various chemical and biological applications.
Collapse
Affiliation(s)
- Tongtong Tian
- Key Laboratory of Colloid and Interface Chemistry, Shandong University , Ministry of Education, Jinan 250100, PR China
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, PR China
| | - Qiongzheng Hu
- Department of Chemistry, University of Houston , Houston, Texas 77204, United States
| | - Yi Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University , Ministry of Education, Jinan 250100, PR China
| | - Yan'an Gao
- China Ionic Liquid Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, PR China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University , Ministry of Education, Jinan 250100, PR China
- School of Chemistry and Chemical Engineering, Qufu Normal University , Qufu 273165, PR China
| |
Collapse
|
41
|
Wang Y, Hu Q, Tian T, Gao Y, Yu L. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine. Colloids Surf B Biointerfaces 2016; 147:100-105. [DOI: 10.1016/j.colsurfb.2016.07.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/31/2023]
|
42
|
Wang Y, Hu Q, Tian T, Gao Y, Yu L. A nonionic surfactant-decorated liquid crystal sensor for sensitive and selective detection of proteins. Anal Chim Acta 2016; 937:119-26. [DOI: 10.1016/j.aca.2016.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
|
43
|
Colorimetric determination of the activity of acetylcholinesterase and its inhibitors by exploiting the iodide-catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine by hydrogen peroxide. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1874-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Ye C, Zhong X, Wang MQ, Chai Y, Yuan R. Cyclovoltammetric acetylcholinesterase activity assay after inhibition and subsequent reactivation by using a glassy carbon electrode modified with palladium nanorods composited with functionalized C60 fullerene. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1888-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Popov P, Honaker LW, Kooijman EE, Mann EK, Jákli AI. A liquid crystal biosensor for specific detection of antigens. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2016.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
46
|
Hussain Z, Qazi F, Ahmed MI, Usman A, Riaz A, Abbasi AD. Liquid crystals based sensing platform-technological aspects. Biosens Bioelectron 2016; 85:110-127. [PMID: 27162142 DOI: 10.1016/j.bios.2016.04.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme.
Collapse
Affiliation(s)
- Zakir Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan.
| | - Farah Qazi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Muhammad Imran Ahmed
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Adil Usman
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Asim Riaz
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Amna Didar Abbasi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
47
|
Tian T, Hu Q, Wang Y, Gao Y, Yu L. Reversible Photoresponsive Molecular Alignment of Liquid Crystals at Fluid Interfaces with Persistent Stability. Chemistry 2016; 22:6340-4. [DOI: 10.1002/chem.201600095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Tongtong Tian
- Key Laboratory of Colloid and Interface Chemistry; Shandong University, Ministry of Education; No.27 Shanda Nanlu Jinan 250100 PR China)
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 PR China
| | - Qiongzheng Hu
- Department of Chemistry; University of Houston; Houston Texas 77204 United States
| | - Yi Wang
- Key Laboratory of Colloid and Interface Chemistry; Shandong University, Ministry of Education; No.27 Shanda Nanlu Jinan 250100 PR China)
| | - Yanan Gao
- China Ionic Liquid Laboratory; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 PR China
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry; Shandong University, Ministry of Education; No.27 Shanda Nanlu Jinan 250100 PR China)
- School of Chemistry and Chemical Engineering; Qufu Normal University; Qufu 273165 PR China
| |
Collapse
|
48
|
Zhong S, Jang CH. Nematic liquid crystals confined in microcapillaries for imaging phenomena at liquid-liquid interfaces. SOFT MATTER 2015; 11:6999-7004. [PMID: 26238313 DOI: 10.1039/c5sm01320h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here, we report the development of an experimental system based on liquid crystals (LCs) confined in microcapillaries for imaging interfacial phenomena. The inner surfaces of the microcapillaries were modified with octadecyltrichlorosilane to promote an escaped-radial configuration of LCs. We checked the optical appearance of the capillary-confined LCs under a crossed polarizing microscope and determined their arrangement based on side and top views. We then placed the capillary-confined LCs in contact with non-surfactant and surfactant solutions, producing characteristic textures of two bright lines and a four-petal shape, respectively. We also evaluated the sensitivity, stability, and reusability of the system. Our imaging system was more sensitive than previously reported LC thin film systems. The textures formed in microcapillaries were stable for more than 120 h and the capillaries could be reused at least 10 times. Finally, we successfully applied our system to image the interactions of phospholipids and bivalent metal ions. In summary, we developed a simple, small, portable, sensitive, stable, and reusable experimental system that can be broadly applied to monitor liquid-liquid interfacial phenomena. These results provide valuable information for designs using confined LCs as chemoresponsive materials in optical sensors.
Collapse
Affiliation(s)
- Shenghong Zhong
- Department of Chemistry, Gachon University, Seongnam-Si, Gyeonggi-Do 461-701, Korea.
| | | |
Collapse
|