1
|
Jin H, Yang M, Gui R. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. NANOSCALE 2023; 15:859-906. [PMID: 36533436 DOI: 10.1039/d2nr05721b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In terms of the combined advantages of upconversion luminescence (UCL) properties and dual-signal ratiometric outputs toward specific targets, the ratiometric UCL nanoprobes exhibit significant applications. This review summarizes and discusses the recent advances in ratiometric UCL nanoprobes, mainly including the construction of nanoprobe systems for sensing, imaging, and phototherapeutics. First, the construction strategies are introduced, involving different types of nanoprobe systems, construction methods, and ratiometric dual-signal modes. Then, the sensing applications are summarized, involving types of targets, sensing mechanisms, sensing targets, and naked-eye visual detection of UCL colors. Afterward, the phototherapeutic applications are discussed, including bio-toxicity, bio-distribution, biosensing, and bioimaging at the level of living cells and small animals, and biomedicine therapy. Particularly, each section is commented on by discussing the state-of-the-art relevant studies on ratiometric UCL nanoprobe systems. Moreover, the current status, challenges, and perspectives in the forthcoming studies are discussed. This review facilitates the exploration of functionally luminescent nanoprobes for excellent sensing, imaging, biomedicine, and multiple applications in significant fields.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Meng Yang
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong 266071, P. R. China.
| |
Collapse
|
2
|
Samanta SK, Maiti K, Halder S, Guria UN, Mandal D, Jana K, Mahapatra AK. A 'double locked' ratiometric fluorescent probe for detection of cysteine in a viscous system and its application in cancer cells. Org Biomol Chem 2023; 21:575-584. [PMID: 36541660 DOI: 10.1039/d2ob01813f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracellular viscosity is a physicochemical property that regulates the consequences of several biological progressions. Cysteine (Cys) is an important signaling molecule that commands many cellular activities, such as antioxidant generation. Predicting that both may be interconnected with a diversity of pathological processes, their contemporaneous measurement would be valuable for studying the pathological ailment of cells. Herein, we have synthesized a 'double locked' probe, acrylic acid 6-[4-(2-benzothiazol-2-yl-2-cyano-vinyl)-phenyl]-naphthalen-2-yl ester (ABN) for the detection of Cys in a viscous medium and explored its application to living cells that were exposed to dexamethasone to regulate the intracellular viscosity level. ABN displayed a satisfactory ratiometric (blue to orange) fluorescence response in solution and in living cells when Cys and viscosity coexisted. A turn-on fluorescence signal was visualized when the probe was individually treated with Cys and glycerol (a standard viscosity source). Therefore, we propose that ABN is a fluorescent probe that permits the monitoring of variations in intracellular viscosity and Cys levels in a biological environment, and it can be utilized in innumerable cellular damage models.
Collapse
Affiliation(s)
- Sandip Kumar Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India.
| | - Kalipada Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India.
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India.
| |
Collapse
|
3
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. BIOSENSORS 2022; 12:1036. [PMID: 36421153 PMCID: PMC9688752 DOI: 10.3390/bios12111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared-excited upconversion nanoparticles (UCNPs) have multicolor emissions, a low auto-fluorescence background, a high chemical stability, and a long fluorescence lifetime. The fluorescent probes based on UCNPs have achieved great success in the analysis of different samples. Here, we presented the research results of UCNPs probes utilized in analytical applications including environment, biology, food and medicine in the last five years; we also introduced the design and construction of upconversion optical sensing platforms. Future trends and challenges of the UCNPs used in the analytical field have also been discussed with particular emphasis.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoshuang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
5
|
Wang W, Peng Z, Ji M, Chen J, Wang P. Highly selective fluorescent probe based on AIE for identifying cysteine/homocysteine. Bioorg Chem 2022; 126:105902. [DOI: 10.1016/j.bioorg.2022.105902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022]
|
6
|
Song IH, Yeom GS, Kuwar A, Nimse SB. Elimination Reaction-Based Benzimidazole Probe for Cysteine Detection and Its Application in Serum Sample Analysis. BIOSENSORS 2022; 12:bios12040224. [PMID: 35448284 PMCID: PMC9031725 DOI: 10.3390/bios12040224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/05/2023]
Abstract
Benzimidazole-based compound 2-(p-tolyl)-1H-benzo[d]imidazole (3) and its derivative probe A-B have been synthesized for the highly selective detection and quantification of Cys in human serum. The photophysical properties of A-B and compound 3 were evaluated by UV-vis absorption and fluorescence spectroscopy. A-B showed high selectivity and sensitivity for Cys among tested analytes, including amino acids, anions, and cations. A-B selectively reacts with Cys and results in compound 3 with fluorescence turn-on effect. A-B did not show any interference from the components in the serum matrix for Cys detection in the human serum sample. A-B detects Cys in serum samples with 2.3-5.4-fold better LOD than reported methods. The detection limit of 86 nM and 43 nM in HEPES buffer using UV-visible and fluorescence spectroscopy, respectively, makes A-B an excellent chemosensor for Cys detection.
Collapse
Affiliation(s)
- In-Ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Korea
| | - Gyu Seong Yeom
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Korea
| | - Anil Kuwar
- School of Chemical Sciences, KBC-North Maharashtra University, Jalgaon 425001, India
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
7
|
Liu Y, Yin X, Zhao H, Shu W, Xin F, Wang H, Luo X, Gong N, Xue X, Pang Q, Xing M, Tian Y. Near-infrared-emitting upconverting BiVO 4 nanoprobes for in vivo fluorescent imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120811. [PMID: 35016063 DOI: 10.1016/j.saa.2021.120811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) emitting BiVO4:Yb3+,Tm3+ nanoparticles are synthesized by a new solvothermal strategy using solvents of oleic acid and methanol. The obtained BiVO4:Yb3+,Tm3+ samples show an average particle size of ≈164 nm and exhibit an asymmetry monoclinic crystal structure of BiVO4. At NIR excitation of 980 nm, the BiVO4:Yb3+,Tm3+ sample exhibits a nearly single NIR emission at ≈796 nm with extremely weak blue emissions from Tm3+ ions. These high-energy visible emissions are absorbed by the semiconducting host of BiVO4 that possesses a bandgap of ≈2.2 eV. Therefore, the NIR excitation to a single intense NIR emission fluorescent BiVO4 materials could be a potential ideal probe for deep-tissue high-resolution bioimaging. To validate the ability of BiVO4 materials for bio-applications, we conduct the cytotoxicity experiments. The results show that the cytotoxicity of HeLa cells is negligible at a concentration of 0.2 mg/ml of BiVO4:Yb3+,Tm3+ , and the cell viability approaches 90% at a high dosage of 0.5 mg/ml. The Daphnia magna and Zebrafish treated with nanoparticles (0.5 mg/ml) display bright NIR emission without any background, indicating the excellent in vivo fluorescent imaging capacity of BiVO4:Yb3+,Tm3+ nanoparticles. Our findings offer an environment-friendly strategy to synthesize BiVO4 UCL nanophosphors and provide a promising new class of fluorescent probes for biological applications.
Collapse
Affiliation(s)
- Yuwei Liu
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Xiumei Yin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Hengzhi Zhao
- Beijing Key Laboratory of Photo-electronic/Electro-Photonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Fangyun Xin
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China.
| | - Hong Wang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Xixian Luo
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China; Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, PR China
| | - Ning Gong
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaohong Xue
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Qiang Pang
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China
| | - Mingming Xing
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China.
| | - Ying Tian
- School of Science, Dalian Maritime University, Dalian, Liaoning 116026, PR China.
| |
Collapse
|
8
|
Fei Y, Wu K, Liu L. Up-Converting Nanocrystals Modified With Fluorescent Markers for the Detection of Amino Acids: Preparation, Characterization, and Sensing Performance. Front Chem 2022; 10:859963. [PMID: 35386845 PMCID: PMC8978546 DOI: 10.3389/fchem.2022.859963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The present work was devoted to developing rhodamine-like chemosensing systems for cysteine (Cys) optical recognition. Aiming at low background light and minimal photobleaching effect, up-converting nanocrystals were firstly synthesized and latterly coated by α-cyclodextrin, and finally used as an exciting host. An energy transfer procedure from these nanocrystals and rhodamine sensors was established via their spectroscopic analysis and emissive decay dynamics comparison. The binding dynamics of our chemosensors for Cys were revealed to have uncomplicated recognition with a stoichiometric ratio of 1 vs. 1. The addition of cysteine increased the emission intensity of the chemosensors. As a consequence, the luminescence off-on effect with sensing selectivity and linear sensing behavior for Cys was demonstrated. Sulfur modification on our chemosensors was shown to be effective in improving their selectivity and photostability.
Collapse
Affiliation(s)
- YuLang Fei
- Medical College, Xijing University, Xi’an, China
| | - Kun Wu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Kun Wu,
| | - Liang Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
9
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
11
|
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem Rev 2022; 122:5519-5603. [PMID: 34989556 DOI: 10.1021/acs.chemrev.1c00644] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Impurity doping is a promising method to impart new properties to various materials. Due to their unique optical, magnetic, and electrical properties, rare-earth ions have been extensively explored as active dopants in inorganic crystal lattices since the 18th century. Rare-earth doping can alter the crystallographic phase, morphology, and size, leading to tunable optical responses of doped nanomaterials. Moreover, rare-earth doping can control the ultimate electronic and catalytic performance of doped nanomaterials in a tunable and scalable manner, enabling significant improvements in energy harvesting and conversion. A better understanding of the critical role of rare-earth doping is a prerequisite for the development of an extensive repertoire of functional nanomaterials for practical applications. In this review, we highlight recent advances in rare-earth doping in inorganic nanomaterials and the associated applications in many fields. This review covers the key criteria for rare-earth doping, including basic electronic structures, lattice environments, and doping strategies, as well as fundamental design principles that enhance the electrical, optical, catalytic, and magnetic properties of the material. We also discuss future research directions and challenges in controlling rare-earth doping for new applications.
Collapse
Affiliation(s)
- Bingzhu Zheng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingyue Fan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
12
|
Zhao Y, Liu X, Jiang Y, Mao L, Wang H, Liu L. A shining proposal for the detection of dissolved O 2 in aqueous medium: Self-calibrated optical sensing via a covalent hybrid structure of carbon-dots&Ru. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120003. [PMID: 34090096 DOI: 10.1016/j.saa.2021.120003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
O2 is a life-supporting gas and has been widely recognized as an important analyte in life science, medical care and environmental science. Optical sensing for gaseous oxygen has been widely reported owing to the simple, cost-effective and easy-to-go procedure. On the other hand, optical sensors for dissolved oxygen in aqueous media have been rarely reported, since most of them are incompatible with water, leading to poor sensitivity and linearity. In this effort, we tried the combination of Ru(II)-bpy complex and carbon dots (CDs) via covalent bonds, where bpy = bipyridine. A hybrid structure, named as Ru@CD, was constructed for the detection of dissolved oxygen, using Ru(II)-bpy as sensing probe and CDs as water-compatible supporting matrix. Ru@CD was carefully characterized to confirm its hybrid structure. Detailed analysis suggested that its emission showed self-calibrated sensing signals for dissolved oxygen. A good linearity of 99.1% was realized. Its sensitivity (3.18) was higher than most literature values for dissolved oxygen detection. Its working equation was confirmed as a corrected Stern-Volmer equation (Lehrer mode). Good selectivity and signal stability were observed.
Collapse
Affiliation(s)
- Yanping Zhao
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Xuelian Liu
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Yuanyuan Jiang
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Li Mao
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China
| | - Hongjun Wang
- Beijing Tide Pharmaceutical Co., Ltd., No. 8 Rongjing East Street, Beijing Economic Technological Development Area, Beijing 100176, China.
| | - Liang Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. NANOSCALE ADVANCES 2021; 3:5135-5165. [PMID: 36132634 PMCID: PMC9417030 DOI: 10.1039/d1na00327e] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 05/04/2023]
Abstract
Upconversion nanoparticles (UCNPs) have emerged as promising luminescent nanomaterials due to their unique features that allow the overcoming of several problems associated with conventional fluorescent probes. Although UCNPs have been used in a broad range of applications, it is probably in the field of sensing where they best evidence their potential. UCNP-based sensors have been designed with high sensitivity and selectivity, for detection and quantification of multiple analytes ranging from metal ions to biomolecules. In this review, we deeply explore the use of UCNPs in sensing systems emphasizing the most relevant and recent studies on the topic and explaining how these platforms are constructed. Before diving into UCNP-based sensing platforms it is important to understand the unique characteristics of these nanoparticles, why they are attracting so much attention, and the most significant interactions occurring between UCNPs and additional probes. These points are covered over the first two sections of the article and then we explore the types of fluorescent responses, the possible analytes, and the UCNPs' integration with various material types such as gold nanostructures, quantum dots and dyes. All the topics are supported by analysis of recently reported sensors, focusing on how they are built, the materials' interactions, the involved synthesis and functionalization mechanisms, and the conjugation strategies. Finally, we explore the use of UCNPs in paper-based sensors and how these platforms are paving the way for the development of new point-of-care devices.
Collapse
Affiliation(s)
- Marylyn S Arai
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| | - Andrea S S de Camargo
- São Carlos Institute of Physics, University of São Paulo Av. Trabalhador Sãocarlense 400 13566-590 São Carlos Brazil
| |
Collapse
|
14
|
Phan LMT, Vo TAT, Hoang TX, Selvam SP, Pham HL, Kim JY, Cho S. Trending Technology of Glucose Monitoring during COVID-19 Pandemic: Challenges in Personalized Healthcare. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100020. [PMID: 34179343 PMCID: PMC8212092 DOI: 10.1002/admt.202100020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Indexed: 05/11/2023]
Abstract
The COVID-19 pandemic has continued to spread rapidly, and patients with diabetes are at risk of experiencing rapid progression and poor prognosis for appropriate treatment. Continuous glucose monitoring (CGM), which includes accurately tracking fluctuations in glucose levels without raising the risk of coronavirus exposure, becomes an important strategy for the self-management of diabetes during this pandemic, efficiently contributing to the diabetes care and the fight against COVID-19. Despite being less accurate than direct blood glucose monitoring, wearable noninvasive systems can encourage patient adherence by guaranteeing reliable results through high correlation between blood glucose levels and glucose concentrations in various other biofluids. This review highlights the trending technologies of glucose sensors during the ongoing COVID-19 pandemic (2019-2020) that have been developed to make a significant contribution to effective management of diabetes and prevention of coronavirus spread, from off-body systems to wearable on-body CGM devices, including nanostructure and sensor performance in various biofluids. The advantages and disadvantages of various human biofluids for use in glucose sensors are also discussed. Furthermore, the challenges faced by wearable CGM sensors with respect to personalized healthcare during and after the pandemic are deliberated to emphasize the potential future directions of CGM devices for diabetes management.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- School of Medicine and PharmacyThe University of DanangDanang550000Vietnam
| | - Thuy Anh Thu Vo
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Thi Xoan Hoang
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sathish Panneer Selvam
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Hoang Lan Pham
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Jae Young Kim
- Department of Life ScienceGachon UniversitySeongnam‐siGyeonggi‐do461‐701Republic of Korea
| | - Sungbo Cho
- Department of Electronic EngineeringGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
- Department of Health Sciences and TechnologyGAIHSTGachon UniversityIncheon21999Republic of Korea
| |
Collapse
|
15
|
Li CJ, Ye MA, Su PP, Yao C, Zhou Y. Cyanine-modified near-infrared upconversion nanoprobe for ratiometric sensing of N 2H 4 in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119153. [PMID: 33188975 DOI: 10.1016/j.saa.2020.119153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Although being as an important chemical material in industry, hydrazine (N2H4) is highly toxic to the humans and animals. The development of sensitive methods for the detection of hydrazine is meaningful. Herein, we develop a new organic-inorganic hybrid nanoprobe for the detection of N2H4 based on luminescent resonance energy transfer (LRET) process. The nanoprobe contains N2H4-responsive NIR cyanine dye (CQM1) and α-cyclodextrin (CD) anchored on the surface of lanthanide-doped upconversion nanophosphors (UCNPs). In the presence of hydrazine, the hybrid materials (CQM1-UCNPs) showed the a large ratiometric luminescent signal change with high sensitivity and selectivity. More importantly, by taking advantage of ratiometric Upconversion luminescent (UCL) signal and the features of NIR emission/excitation, the nanoprobe was successfully applied for visualization of hydrazine in living cells for the first time.
Collapse
Affiliation(s)
- Chuan-Jian Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Min-An Ye
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Pei-Pei Su
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yi Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
16
|
Jouyban A, Rahimpour E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta 2020; 220:121383. [PMID: 32928407 DOI: 10.1016/j.talanta.2020.121383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/05/2023]
Abstract
Upconversion materials have been the focus of a large body of research in analytical and clinical fields in the last two decades owing to their ability to convert light between various spectral regions and their particular photophysical features. They emit efficient and sharp ultraviolet (UV) or visible luminescence after excitation with near-infrared (NIR) light. These features overcome some of the disadvantages reported for conventional fluorescent materials and provide opportunities for high sensitivity chemo-and bio-sensing. Here, we review studies that used upconversion materials as sensors for the determination of pharmaceuticals and biomolecules in the last two decades. The articles included in this review were retrieved from the SCOPUS database using the search phrases: "upconversion nanoparticles for determination of pharmaceutical compounds", and "upconversion nanoparticles for determination of biomolecules". Details of each developed upconversion nanoparticles based sensor along with their relevant analytical parameters are reported and carefully explained.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, 1411713135, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
17
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020; 208:120157. [DOI: 10.1016/j.talanta.2019.120157] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 11/21/2022]
|
19
|
Highly selective and sensitive optosensing of glutathione based on fluorescence resonance energy transfer of upconversion nanoparticles coated with a Rhodamine B derivative. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
20
|
Fei Z, Chen F, Zhong M, Qiu J, Li W. Synthesis, characterization and performance of an emissive-magnetic composite structure for metal ion recognition and removal. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Himmelstoß SF, Hirsch T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl Fluoresc 2019; 7:022002. [PMID: 30822759 DOI: 10.1088/2050-6120/ab0bfa] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The right choice of a fluorescent probe is essential for successful luminescence imaging and sensing and especially concerning in vivo and in vitro applications, the development of new classes have gained more and more attention in the last years. One of the most promising class are upconversion nanoparticles (UCNPs)-inorganic nanocrystals capable to convert near-infrared light in high energy radiation. In this review we will compare UCNPs with other fluorescent probes in terms of (a) the optical properties of the probes, such as their brightness, photostability and excitation wavelength; (b) their chemical properties such as the dispersibility, stability under experimental or physiological conditions, availability of chemical modification strategies for labelling; and (c) the potential toxicity and biocompatibility of the probe. Thereby we want to provide a better understanding of the advantages and drawbacks of UCNPs and address future challenges in the design of the nanocrystals.
Collapse
Affiliation(s)
- Sandy F Himmelstoß
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
22
|
Sari E, Üzek R, Merkoçi A. Paper Based Photoluminescent Sensing Platform with Recognition Sites for Tributyltin. ACS Sens 2019; 4:645-653. [PMID: 30724556 DOI: 10.1021/acssensors.8b01396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, a novel photoluminescence material for the detection of tributyltin (TBT) was developed by using a paper-based nanocomposite system. For this purpose, molecularly imprinted polymeric nanoparticles (MIN) were synthesized with mini-emulsion polymerization technique. Graphene quantum dots obtained by the hydrothermal pyrolysis were immobilized to the nanoparticle surface via EDC-NHS coupling. The fabrication of sensing platform for TBT can be divided into two steps that are the preparation of nanocomposite and the applying the nanocomposite onto nitrocellulose membrane. The selectivity constant and association kinetics were calculated to analyze the interaction of TBT with immobilized MINs. The results proved that the developed nanosensor is promising for the determination of TBT with high selectivity and sensitivity reaching a detection limit of 0.23 ppt in seawater. This novel photoluminescent nanosensor has the potential to pave the way for further studies and applications.
Collapse
Affiliation(s)
- Esma Sari
- Ankara Hacı Bayram Veli University, Polatlı Faculty of Science and Art, Department of Chemistry, 06900, Ankara, Turkey
| | - Recep Üzek
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Hacettepe University, Faculty of Science, Department of Chemistry, 06800, Ankara, Turkey
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona 08193, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
23
|
Li X, Ma H, Qian J, Cao T, Teng Z, Iqbal K, Qin W, Guo H. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells. Talanta 2019; 194:717-722. [DOI: 10.1016/j.talanta.2018.10.095] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 11/26/2022]
|
24
|
Huang Y, Lin T, Hou L, Ye F, Zhao S. Colorimetric detection of thioglycolic acid based on the enhanced Fe3+ ions Fenton reaction. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Liang MY, Zhao B, Xiong Y, Chen WX, Huo JZ, Zhang F, Wang L, Li Y. A “turn-on” sensor based on MnO2coated UCNPs for detection of alkaline phosphatase and ascorbic acid. Dalton Trans 2019; 48:16199-16210. [DOI: 10.1039/c9dt02971k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A “turn-on” sensor was designed to detect ALP and AA based on the redox reaction between AA and MnO2coated UCNPs.
Collapse
Affiliation(s)
- Mei-yu Liang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Bing Zhao
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Wen-xin Chen
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Jian-zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Fei Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Lu Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University)
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule
- College of Chemistry
- Tianjin Normal University
| |
Collapse
|
26
|
Gai F, Li L, Yu Y, Han Z, Jin L, Ao Y, Liu Y, Huo Q. Multiple dye-doped silica cross-linked micellar nanoparticles for colour-tuneable sensing of cysteine in an aqueous media and living cells. J Colloid Interface Sci 2018; 529:531-537. [DOI: 10.1016/j.jcis.2018.06.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/08/2023]
|
27
|
Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal Chem 2018; 91:548-568. [DOI: 10.1021/acs.analchem.8b04049] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhiming Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Jing Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, 200444, Shanghai, China
| | - Qingsong Mei
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
28
|
Yan F, Sun X, Zu F, Bai Z, Jiang Y, Fan K, Wang J. Fluorescent probes for detecting cysteine. Methods Appl Fluoresc 2018; 6:042001. [PMID: 30039804 DOI: 10.1088/2050-6120/aad580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cysteine plays a crucial role in physiological processes. Therefore, it is necessary to develop a method for detecting cysteine. Fluorimetry has the advantages of convenient detection, short response time, high sensitivity and good selectivity. In this review, fluorescent probes that detect cysteine over the past three years are summarized based on structural features of fluorophores such as coumarin, BODIPY, rhodamine, fluorescein, CDs, QDs, etc and reaction groups including acrylate, aldehyde, halogen, 7-nitrobenzofurazan, etc. Then, effects of different combinations between fluorophores and response groups on probe properties and detection performances are discussed.
Collapse
|
29
|
Kaur N, Chopra S, Singh G, Raj P, Bhasin A, Sahoo SK, Kuwar A, Singh N. Chemosensors for biogenic amines and biothiols. J Mater Chem B 2018; 6:4872-4902. [PMID: 32255063 DOI: 10.1039/c8tb00732b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is burgeoning interest among supramolecular chemists to develop novel molecular systems to detect biogenic amines and bio-thiols in aqueous and non-aqueous media due to their potential role in biological processes. Biogenic amines are biologically important targets because of their involvement in the energy metabolism of human biological systems and their requirement is met through food and nutrition. However, the increasing instances of serious health problems due to food toxicity have raised the quality of food nowadays. Biogenic amines have been frequently considered as the markers or primary quality parameters of foods like antioxidant properties, freshness and spoilage. For instance, these amines such as spermine, spermidine, cadavarine, etc. may originate during microbial decarboxylation of amino acids of fermented foods/beverages. These amines may also react with nitrite available in certain meat products and concomitantly produce carcinogenic nitrosamine compounds. On the other hand, it is also well established that biothiols, particularly, thiol amino acids, provide the basic characteristics to food including flavor, color and texture that determine its acceptability. For instance, the reduction of thiol groups produces hydrogen sulfide which reduces flavour as in rotten eggs and spoiled fish, and the presence of hydrogen sulfide in fish is indicative of spoilage. Thus, biogenic amines and bio-thiols have attracted the profound interest of researchers as analytical tools for their quantification. Much scientific and technological information is issued every year, where the establishment of precise interactions of biogenic amines and bio-thiols with other molecules is sought in aqueous and non-aqueous media. This review summarizes the optical chemosensors developed for the selective detection of biogenic amines and bio-thiols.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Panjab University (PU), Chandigarh-160014, India.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sun L, Wei R, Feng J, Zhang H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X. Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 2018; 47:2873-2920. [PMID: 29568836 PMCID: PMC5926823 DOI: 10.1039/c7cs00612h] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exploring and understanding biological and pathological changes are of great significance for early diagnosis and therapy of diseases. Optical sensing and imaging approaches have experienced major progress in this field. Particularly, an emergence of various functional optical nanoprobes has provided enhanced sensitivity, specificity, targeting ability, as well as multiplexing and multimodal capabilities due to improvements in their intrinsic physicochemical and optical properties. However, one of the biggest challenges of conventional optical nanoprobes is their absolute intensity-dependent signal readout, which causes inaccurate sensing and imaging results due to the presence of various analyte-independent factors that can cause fluctuations in their absolute signal intensity. Ratiometric measurements provide built-in self-calibration for signal correction, enabling more sensitive and reliable detection. Optimizing nanoprobe designs with ratiometric strategies can surmount many of the limitations encountered by traditional optical nanoprobes. This review first elaborates upon existing optical nanoprobes that exploit ratiometric measurements for improved sensing and imaging, including fluorescence, surface enhanced Raman scattering (SERS), and photoacoustic nanoprobes. Next, a thorough discussion is provided on design strategies for these nanoprobes, and their potential biomedical applications for targeting specific biomolecule populations (e.g. cancer biomarkers and small molecules with physiological relevance), for imaging the tumor microenvironment (e.g. pH, reactive oxygen species, hypoxia, enzyme and metal ions), as well as for intraoperative image guidance of tumor-resection procedures.
Collapse
Affiliation(s)
- Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA. and MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaohua Huang
- Department of Chemistry, University of Memphis, 213 Smith Chemistry Bldg., Memphis, TN 38152, USA
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
32
|
Zhang S, Lin B, Yu Y, Cao Y, Guo M, Shui L. A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:230-235. [PMID: 29414583 DOI: 10.1016/j.saa.2018.01.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Ratiometric fluorescent probes could eliminate the influence from experimental factors and improve the detection accuracy. In this article, a ratiometric nanoprobe was constructed based on silver nanoclusters (AgNCs) with nitrogen-doped carbon dots (NCDs) and used for the detection of biothiols. The fluorescence peak of AgNCs was observed at 650nm with excitation wavelength at 370nm. In order to construct the ratiometric fluorescent probe, NCDs with the excitation and emission wavelengths at 370nm and 450nm were selected. After adding AgNCs, the fluorescence of NCDs was quenched. The mechanism of the fluorescence quenching was studied by fluorescence, UV-Vis absorption and the fluorescence lifetime spectra. The results indicated that the quenching could be ascribed to the inner filter effect (IFE). With the addition of biothiols, the fluorescence of AgNCs at 650nm decreased due to the breakdown of AgNCs, and the fluorescence of NCDs at 450nm recovered accordingly. Thus, the relationship between the ratio of the fluorescence intensities (I450/I650) and biothiol concentration was used to establish the determination method for biothiols. Cysteine (Cys) was taken as the model of biothiols, and the working curve for Cys was I450/I650=0.60CCys-1.86 (CCys: μmol/L) with the detection limit of 0.14μmol/L (S/N=3). Then, the method was used for the detection of Cys in human urine and serum samples with satisfactory accuracy and recovery ratios. Furthermore, the probe could be applied for the visual semi-quantitative determination of Cys by naked eyes.
Collapse
Affiliation(s)
- Shuming Zhang
- Key Laboratory of Analytical Chemistry for Biomedicine (Guangzhou), School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Bixia Lin
- Key Laboratory of Analytical Chemistry for Biomedicine (Guangzhou), School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Ying Yu
- Key Laboratory of Analytical Chemistry for Biomedicine (Guangzhou), School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China.
| | - Yujuan Cao
- Key Laboratory of Analytical Chemistry for Biomedicine (Guangzhou), School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Manli Guo
- Key Laboratory of Analytical Chemistry for Biomedicine (Guangzhou), School of Chemistry and Environment, South China Normal University, Guangzhou, Guangdong 510006, PR China
| | - Lingling Shui
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
33
|
Gu B, Zhang Q. Recent Advances on Functionalized Upconversion Nanoparticles for Detection of Small Molecules and Ions in Biosystems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700609. [PMID: 29593963 PMCID: PMC5867034 DOI: 10.1002/advs.201700609] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/17/2017] [Indexed: 05/19/2023]
Abstract
Significant progress on upconversion-nanoparticle (UCNP)-based probes is witnessed in recent years. Compared with traditional fluorescent probes (e.g., organic dyes, metal complexes, or inorganic quantum dots), UCNPs have many advantages such as non-autofluorescence, high chemical stability, large light-penetration depth, long lifetime, and less damage to samples. This article focuses on recent achievements in the usage of lanthanide-doped UCNPs as efficient probes for biodetection since 2014. The mechanisms of upconversion as well as the luminescence resonance energy transfer process is introduced first, followed by a detailed summary on the recent researches of UCNP-based biodetections including the detection of inorganic ions, gas molecules, reactive oxygen species, and thiols and hydrogen sulfide.
Collapse
Affiliation(s)
- Bin Gu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
34
|
Zhao B, Li Y. Facile synthesis of near-infrared-excited NaYF4:Yb3+, Tm3+ nanoparticles for label-free detection of dopamine in biological fluids. Talanta 2018; 179:478-484. [DOI: 10.1016/j.talanta.2017.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022]
|
35
|
Yuqing Z, Yi X, Lihua L, Juanjuan M. Characterization and cysteine sensing performance of nanocomposites based on up-conversion excitation host and rhodamine-derived probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:134-142. [PMID: 29028505 DOI: 10.1016/j.saa.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Optical sensing for cysteine (Cys) recognition is an interesting topic due to Cys biological participation. In this paper, two rhodamine-based chemosensors were designed for Cys optical sensing. For chemosensor photostability improvement, up-conversion nanocrystals were synthesized and used as excitation host. These nanocrystals were modified with a phase transfer reagent α-cyclodextrin (α-CD) to improve their compatibility with chemosensors. An efficient energy transfer from these nanocrystals to chemosensors under 980nm radiation was observed and confirmed by spectral match analysis, energy transfer radius calculation and emission decay lifetime comparison. A direct bonding mechanism between Cys and chemosensors with bonding stoichiometry of 1:1 was established by Job's plot experiment. Given the presence of Cys, chemosensor emission was increased, showing emission turn on effect. These two chemosensors showed good selectivity, improved photostability and linear sensing response towards Cys.
Collapse
Affiliation(s)
- Zhao Yuqing
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China.
| | - Xing Yi
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China
| | - Li Lihua
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China
| | - Ma Juanjuan
- School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, Henan, China
| |
Collapse
|
36
|
|
37
|
Shen CL, Su LX, Zang JH, Li XJ, Lou Q, Shan CX. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide. NANOSCALE RESEARCH LETTERS 2017; 12:447. [PMID: 28687039 PMCID: PMC5500605 DOI: 10.1186/s11671-017-2214-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/26/2017] [Indexed: 05/07/2023]
Abstract
Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.
Collapse
Affiliation(s)
- Cheng-Long Shen
- School of Physics and Engineering, Zhengzhou University, No. 75 Daxue Road, Zhengzhou, 450052 China
| | - Li-Xia Su
- School of Physics and Engineering, Zhengzhou University, No. 75 Daxue Road, Zhengzhou, 450052 China
| | - Jin-Hao Zang
- School of Physics and Engineering, Zhengzhou University, No. 75 Daxue Road, Zhengzhou, 450052 China
| | - Xin-Jian Li
- School of Physics and Engineering, Zhengzhou University, No. 75 Daxue Road, Zhengzhou, 450052 China
| | - Qing Lou
- School of Physics and Engineering, Zhengzhou University, No. 75 Daxue Road, Zhengzhou, 450052 China
| | - Chong-Xin Shan
- School of Physics and Engineering, Zhengzhou University, No. 75 Daxue Road, Zhengzhou, 450052 China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dong Nanhu Road, Changchun, 130033 China
| |
Collapse
|
38
|
Xue Z, Wang X, Rao H, Liu X, Lu X. A colorimetric sensor of cysteine based on self-assembly nanostructures of Fe 3+-H 2O 2/Tetramethylbenzidine system with "On-Off" switching function. Anal Biochem 2017; 534:1-9. [PMID: 28693991 DOI: 10.1016/j.ab.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 10/19/2022]
Abstract
Many strategies have been explored for selectively and sensitively detecting cysteine in different samples. Here, a novel colorimetric sensor based on self-assembly nanostructures of Fe3+-H2O2/Tetramethylbenzidine system with dual-level logic gate function and colorimetric determination of cysteine were firstly explored. The proposed Fe3+-H2O2-TMB system provides a sensitive optical signal due to the selectively reductive ability of cysteine to the oxidized TMB and thus could be successfully applied to the construction of instant on-site visual detection method with a paper based test strip for cysteine determination in a sample solution as well as for a dual-level logic gate fabrication.
Collapse
Affiliation(s)
- Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaofen Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Honghong Rao
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
39
|
Wang F, Feng C, Lu L, Xu Z, Zhang W. A ratiometric fluorescent probe for rapid and sensitive detection of biothiols in fetal bovine serum. Talanta 2017; 169:149-155. [DOI: 10.1016/j.talanta.2017.03.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/15/2017] [Accepted: 03/26/2017] [Indexed: 01/25/2023]
|
40
|
Mi H, Guan M, Liu J, Shan H, Fei Q, Huan Y, Feng G. Conjugated polymer with carboxylate groups-Hg 2+ system as a turn-on fluorescence probe for label-free detection of cysteine-containing compounds. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 176:168-173. [PMID: 28092827 DOI: 10.1016/j.saa.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 12/22/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
In this work, a turn on fluorescent sensor, based on Hg2+ coordination conjugated polymer, was developed to detect cysteine-containing compounds. The fluorescence of conjugated polymer (poly(2,5-bis (sodium 4-oxybutyrate) -1,4 - phenylethynylene-alt-1,4-phenyleneethynylene; PPE-OBS) would be quenched by Hg2+ because of the coordination-induced aggregation and electron transfers of PPE-OBS toward Hg2+. When there were some cysteine-containing compounds in PPE-OBS-Hg2+ system, the fluorescence of PPE-OBS would be recovered. It indicated that the PPE-OBS-Hg2+ system could be used to detect cysteine-containing compounds. Under the optimized conditions, the experiment results showed that there were particularly linear range, high sensitivity and selectivity over other amino acids. The limit of detection (LOD) of cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) were 0.725μmolL-1, 0.982μmolL-1 and 1.21μmolL-1 by using this sensor. In addition, Cys standard recovery in several green tea drink and honey samples was also demonstrated. The recovery of Cys was range from 96.3 to 105.0% and RSD was less than 3.25%. The satisfactory results demonstrated that the proposed method could be as a potential fluorescent method for determining cysteine-containing compounds in real samples.
Collapse
Affiliation(s)
- Hongyu Mi
- College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Mingming Guan
- College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Jilin Liu
- College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Hongyan Shan
- College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Qiang Fei
- College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yanfu Huan
- College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Guodong Feng
- College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130021, China.
| |
Collapse
|
41
|
Lin C, Zhigang F. Cysteine optical sensing with an up-conversion host and two chemosensors derived from rhodamine: Construction, characterization and performance. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:195-202. [PMID: 27912179 DOI: 10.1016/j.saa.2016.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
This paper focused on two rhodamine chemosensors for cysteine optical sensing. To minimize their photobleaching caused by excitation light, up-conversion NaYF4:Yb3+/Er3+ nanocrystals were prepared and used as excitation host. Photophysical measurement on this host and the two chemosensors suggested that chemosensor absorption matched well with host emission. An efficient energy transfer between them was discussed and confirmed by their spectral analysis and emission lifetime comparison. Job's plot suggested that our chemosensors followed a simple recognition mechanism towards cysteine with binding stoichiometry of 1:1. Both chemosensors showed emission "off-on" effect triggered by cysteine and good photostability. Linear working curves with maximum sensitivity of 2.61 were obtained. S substituent was positive to improve selectivity.
Collapse
Affiliation(s)
- Chen Lin
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Fang Zhigang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
42
|
Thao CTB, Huy BT, Sharipov M, Kim JI, Dao VD, Moon JY, Lee YI. Yb 3+,Er 3+,Eu 3+-codoped YVO 4 material for bioimaging with dual mode excitation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:990-997. [PMID: 28415555 DOI: 10.1016/j.msec.2017.02.169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/27/2016] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
Abstract
We propose an efficient bioimaging strategy using Yb3+,Er3+,Eu3+-triplet doped YVO4 nanoparticles which were synthesized with polymer as a template. The obtained particles possess nanoscale, uniform, and flexible excitation. The effect of Eu3+ ions on the luminescence properties of YVO4:Yb3+,Er3+,Eu3+ was investigated. The upconversion mechanism of the prepared material was also discussed. The structure and optical properties of the prepared material were characterized by using X-ray diffraction (XRD), Fourier-transform IR spectroscopy (FTIR), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) upconversion and photoluminescence spectra. The Commission International de I'Eclairage (CIE) chromaticity coordinates was investigated to confirm the performance of color luminescent emission. The prepared YVO4:Yb3+,Er3+,Eu3+ nanoparticles could be easily dispersed in water by surface modification with cysteine (Cys) and glutathione (GSH). The aqueous dispersion of the modified YVO4:Yb3+,Er3+,Eu3+ exhibits bright upconversion and downconversion luminescence and has been applied for bioimaging of HeLa cells. Our developed material with dual excitation offers a promising advance in bioimaging.
Collapse
Affiliation(s)
- Chu Thi Bich Thao
- Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea
| | - Bui The Huy
- Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea; Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Da Nang, Vietnam
| | - Mirkomil Sharipov
- Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea
| | - Jin-Ik Kim
- Department of Biochemistry and Health Science, Changwon National University, Changwon 641-773, Republic of Korea
| | - Van-Duong Dao
- Department of Chemical Engineering & Applied Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Ja-Young Moon
- Department of Biochemistry and Health Science, Changwon National University, Changwon 641-773, Republic of Korea
| | - Yong-Ill Lee
- Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea.
| |
Collapse
|
43
|
Hooshyar Z, Bardajee GR. Fluorescence enhancement of glutathione capped CdTe/ZnS quantum dots by embedding into cationic starch for sensitive detection of rifampicin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:144-150. [PMID: 27639201 DOI: 10.1016/j.saa.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/14/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In this study, we describe the synthesis of a new quantum dots (QDs) by embedding glutathione capped CdTe/ZnS QDs into cationic starch biopolymer (CS-GSH-CdTe/ZnS QDs). The fluorescence intensity of prepared QDs was significantly enhanced. When QDs interacted with rifampicin, the fluorescence intensity of the CS-GSH-CdTe/ZnS QDs was highly quenched compared with GSH-CdTe/ZnS QDs. Based on the above, a new fluorescent nanosensor for simple, sensitive and selective detection of rifampicin was developed. The fluorescence quenching was well described by the typical Stern-Volmer equation. After optimization, the linear range of the as-prepared QDs fluorescence intensity versus the concentration of rifampicin was F0/F=0.0422Q+1.109 (R2=0.99). The detection limit was 0.06×10-6mol/L. The proposed method with satisfactory results was used to detect rifampicin in commercial capsules and tablets.
Collapse
Affiliation(s)
- Zari Hooshyar
- Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| | | |
Collapse
|
44
|
Liu F, Li S, Hu R, Shao N. Core-shell structured CdTe/CdS@SiO2
@CdTe@SiO2
composite fluorescent spheres: Synthesis and application for Cd2
+
detection. LUMINESCENCE 2016; 32:723-729. [DOI: 10.1002/bio.3242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Fang Liu
- College of Chemistry; Beijing Normal University; Beijing People's Republic of China
| | - Shujia Li
- College of Chemistry; Beijing Normal University; Beijing People's Republic of China
| | - Ruoxin Hu
- College of Chemistry; Beijing Normal University; Beijing People's Republic of China
| | - Na Shao
- College of Chemistry; Beijing Normal University; Beijing People's Republic of China
| |
Collapse
|
45
|
Zhang Y, Li B, Ma H, Zhang L, Zheng Y. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework. Biosens Bioelectron 2016; 85:287-293. [DOI: 10.1016/j.bios.2016.05.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
|
46
|
Ferdinandus, Arai S, Takeoka S, Ishiwata S, Suzuki M, Sato H. Facilely Fabricated Luminescent Nanoparticle Thermosensor for Real-Time Microthermography in Living Animals. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ferdinandus
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Satoshi Arai
- Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore
- Comprehensive
Research Organization, Waseda University, Shinjuku, Tokyo 162-0041, Japan
| | - Shinji Takeoka
- Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore
- Comprehensive
Research Organization, Waseda University, Shinjuku, Tokyo 162-0041, Japan
- Department
of Life Science and Medical Bioscience, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| | - Shin’ichi Ishiwata
- Department
of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore
- Comprehensive
Research Organization, Waseda University, Shinjuku, Tokyo 162-0041, Japan
- PRESTO, Japan Science and Technology Agency,
Kawaguchi, Saitama 332-0012, Japan
| | - Hirotaka Sato
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
47
|
Pu W, Lisha W, Li Z. Two rhodamine derived chemosensors excited by up-conversion lattice for cysteine detection: Synthesis, characterization and sensing behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 159:223-230. [PMID: 26852112 DOI: 10.1016/j.saa.2016.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/12/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
In this paper, two chemosensors derived from rhodamine were reported for cysteine optical recognition. An up-conversion NaYF4 lattice was applied as excitation host to minimize chemosensor photobleaching. This NaYF4 lattice was firstly modified with α-cyclodextrin, making it water dispersible. It was found that chemosensor absorption matched well with host emission. The energy transfer between this excitation host and our chemosensors was analyzed and confirmed by their spectral analysis and emission decay lifetime comparison. Detailed analysis suggested that the recognition mechanism between our chemosensors and cysteine was a simple one with binding stoichiometry of 1:1. Our chemosensors showed emission "off-on" effect towards cysteine with good photostability. Maximum sensitivity was obtained as 7.90 for our chemosensors with a linear working curve. S substituent was found positive to improve selectivity.
Collapse
Affiliation(s)
- Wan Pu
- Zhaotong University, Zhaotong, Yunnan, PR China.
| | - Wang Lisha
- Zhaotong University, Zhaotong, Yunnan, PR China
| | - Zhou Li
- Zhaotong University, Zhaotong, Yunnan, PR China
| |
Collapse
|