1
|
Yang SQ, Jia BZ, Liu J, Wang H, Lei HT, Luo L, Xu ZL. Nanozyme-mediated ratiometric fluorescence hydrogel for on-site detection of sulfite in food. Food Chem 2025; 463:141525. [PMID: 39388869 DOI: 10.1016/j.foodchem.2024.141525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
In this work, a ratiometric fluorescence hydrogel nanosensor was developed by integrating a composite consisting of o-phenylenediamine (OPD), manganese dioxide nanoflakes (MnO2 NFs), and N-doped carbon dots (N-CDs) into an agarose hydrogel for sulfite detection. MnO2 NFs demonstrated intense oxidase-like activity, facilitating the conversion of non-fluorescent OPD into yellow-emissive 2,3-diaminophenazine (DAP). As a result, a significant emission peak belongs to DAP, alongside the fluorescence quenching of N-CDs through FRET. Upon interaction with sulfite, MnO2 NFs lost their oxidase-like function. This process decreased the fluorescence of DAP and restored the blue fluorescence of N-CDs, producing a typical ratiometric response, ranging from 3 nM ∼ 400 μM, with a detection limit (LOD) of 3.79 nM. Employing a smartphone, the fluorescence color change demonstrated by the hydrogel sensor was translated into quantitative data (LOD: 8.44 nM). This hydrogel sensor offers an affordable, portable, and user-friendly solution for sulfite detection and food safety monitoring.
Collapse
Affiliation(s)
- Si-Qi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bao-Zhu Jia
- College of Biology and Food Engineering, Guangdong University of Education, Guangzhou 510303, China; School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jie Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou Dublin International College of Life Sciences and Technology, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wang X, Wu X, Shen J, Zhao X, Gao P, Zhou W, An W. MnO 2-mineralized milk exosomes as a novel nanoplatform for glutathione detection. J Mater Chem B 2024; 13:249-255. [PMID: 39523895 DOI: 10.1039/d4tb01662a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Exosomes have garnered significant attention in the realms of disease diagnosis and therapeutics, owing to their remarkable biocompatibility. While engineered exosomes have the potential to augment delivery efficiency, targeting specificity, and circulation longevity, the intricacies of sample preparation have often hindered their broader application. In this pioneering study, we introduce a novel nanoplatform by leveraging surface manganese dioxide (MnO2) mineralization of milk exosomes. This innovative technique not only amplifies the inherent properties of exosomes but also endows them with additional functionalities, transforming them into a multifaceted tool for disease detection and therapeutic intervention. To expand the application of MnO2@milk exosomes, milk exosomes were stained with lipophilic molecules (curcumin) to prepare MnO2@mEVs-curcumin (MEC). The prepared nanocomposite was employed to detect GSH in cancer cells. By integrating exosome engineering with surface mineralization, we have paved the way for the creation of advanced biomaterials.
Collapse
Affiliation(s)
- Xudong Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
| | - Xue Wu
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
| | - Jiuheng Shen
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
| | - Xian Zhao
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
| | - Peifen Gao
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
| | - Wantong Zhou
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
| | - Wenlin An
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China.
| |
Collapse
|
3
|
Di C, Zhang Y, Xue L, Zeng W, Wang T, Lin Y, Chen P, Feng X, Du W, Liu BF. In-situ synthesis of 2D nanozymes-coated cellulose nanofibers on paper-based chips for portable detection of biothiols. Anal Chim Acta 2024; 1332:343363. [PMID: 39580175 DOI: 10.1016/j.aca.2024.343363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Simple, fast and low-cost paper-based analytical devices (PADs) have a good application prospect for point-of-care detection of GSH. However, effective immobilization of functional nanomaterials onto cellulose, as a critical factor in the construction of PADs, presents numerous difficulties and challenges. RESULTS In this study, we have developed an exceptionally straightforward and environmentally friendly synthetic approach by using ovalbumin (OVA) as a bio-mineralization template for the preparation of MnO2 nanosheets. The MnO2 nanosheets produced in the solution phase exhibited excellent intrinsic nano-enzyme activity and biodegradability. The OVA-MnO2 nanosheets can effectively oxidize Amplex red in the absence of H2O2, enabling sensitive detection of GSH with a linear range of 5 nM-10 μM and a detection limit as low as 2.8 nM. Furthermore, we utilized this method to facilitate in situ synthesis of OVA-MnO2 nanosheets directly on paper substrates. This approach eliminates the need for conventional stirring and centrifugation steps, greatly simplifying the fabrication process while reducing material usage and time expenditure. Characterization of the chemical composition and morphology confirmed the intimate growth of the 2D nano-enzymes on the cellulose fibers. Utilizing smartphone capabilities, the OVA-MnO2 nanosheet-modified PAD enabled instrument-free detection of GSH, demonstrating high sensitivity (0.74 μM) and a wide linear response range (1-1000 μM). SIGNIFICANCE The synthesis of MnO2 nanosheets directly on cellulose substrates substantially streamlines the modification workflow of PADs and reduces detection costs, offering new avenues for clinical diagnostics of relevant diseases.
Collapse
Affiliation(s)
- Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lian Xue
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenyi Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tengteng Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Lin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Li Y, Feng K, Li M, Li H, Zhang W, Yang X, Chen Y, Zheng L, Hsieh S, Yan B. A dual-mode ratiometric probe using europium-doped cyclen-functional carbon dots for fluorescent and point-of-care detection of tetracycline. ENVIRONMENTAL TECHNOLOGY 2024; 45:6051-6059. [PMID: 38522072 DOI: 10.1080/09593330.2024.2323027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024]
Abstract
The overuse of tetracycline (TC) has led to the accumulation of antibiotic residues in drinking water and animal products, which can consequently lead to bacteria resistance and chronic disease in humans. Urgently addressing the need for a rapid, user-friendly, and point-of-care test for TC detection. In this work, we use cyclen and citric acid to synthesise carbon dots (CDs) with a unique ring-shaped structure on their surface and combine them with europium (Eu3+) to form an Eu-CDs fluorescent probe. In the presence of TC in aqueous systems, the Eu-CDs probe emits two distinctive fluorescent signals: the stable blue emission from cyclen-modified CDs and the red emission from Eu3+,showing a proportional increase with TC concentration. The developed Eu-CDs probe demonstrates accurate and selective detection capabilities for TC class antibiotics among various interfering factors. The Eu-CDs probe exhibits excellent linearity within the concentration range of 0.04-2.4 µM and achieves an impressive detection limit of 2.7 nM. Moreover, point-of-care Eu-CDs test strips are designed, allowing convenient on-site TC analysis through the detection of a colour change from blue to red under a portable UV light. The results highlight the effectiveness of the proposed dual-mode ratiometric fluorescent Eu-CDs probe and test strips, offering a practical point-of-care testing strategy for real-world TC detection applications.
Collapse
Affiliation(s)
- Yuanhua Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, People's Republic of China
| | - Kejun Feng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, People's Republic of China
| | - Mingzhu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong, People's Republic of China
| | - Huiling Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, People's Republic of China
| | - Weiluo Zhang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, People's Republic of China
| | - Xiaofang Yang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, People's Republic of China
| | - Yuan Chen
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, People's Republic of China
| | - Lei Zheng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, People's Republic of China
| | - ShihHuan Hsieh
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, People's Republic of China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
5
|
Hu Z, Cheng M, Zhang Y, Zhang L, Xu H, Zhu X. A Sensitive and Quick Fluorescent Sensor for the "Turn-On" Detection and Imaging of Glutathione Based on Sulfur Quantum Dots and MnO 2 Nanosheets. LUMINESCENCE 2024; 39:e4929. [PMID: 39508153 DOI: 10.1002/bio.4929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Glutathione (GSH) is one of the most abundant bioethanol antioxidants in living cells. Here, a fluorescent probe based on MnO2 nanosheets and sulfur quantum dots (SQDs) was fabricated. Because of the synergistic effect of IFE and FRET, the fluorescence from SQDs was quenched by MnO2 nanosheets. In the presence of GSH, the fluorescence of SQDs could be recovered because of the reduction of MnO2 nanosheets by GSH. The method can detect GSH in the concentration range of 5 ~ 1000 μM with the detection limit as low as 1.26 μM. This quick, easy, and cost-effective sensor could be used for the quantification of GSH in serum samples and the imaging of GSH in Escherichia coli O157:H7.
Collapse
Affiliation(s)
- Zhenlin Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leyao Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Huifeng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Xi Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Li L, Lin D, Xu S, Yang L, Jiang C. Multi-deformable interpenetrating network thermosensitive hydrogel fluorescent device for real-time and visual detection of nitrite. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135471. [PMID: 39146591 DOI: 10.1016/j.jhazmat.2024.135471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Functionalized thermosensitive hydrogel materials exhibit excellent properties for the fabrication of sensing devices that enable real-time visual detection of food safety duo to their good plasticity and powerful loading capacity. Here, a ratiometric fluorescent device based on an interpenetrating network (IPN) thermosensitive hydrogel was designed to embed functionalized Au nanoclusters (Au NCs) and Blue Carbon dots (BCDs) composites in a multi-network structure to build a sensitive hazardous material nitrite (NO2-) chemsensor. The hydrogel was utilized poloxamer 407 (P407), lignin and cellulose to form stable IPN structure, which resulted in complementation and synergy, thereby strengthening its porous network structure. The combination of fluorescent nanoprobes with the porous network structure has the potential to enhance stable fluorescence signals and improve sensing sensitivity. Moreover, the thermosensitive liquid-solid transition characteristics of the hydrogel facilitate its preparation into diverse sensing devices following curing at room temperature. The hydrogel device, when combined with a smartphone system, converted image information into data information, thereby enabling the accurate quantification of NO2- with a detection limit of 9.38 nM in 2 s. The designed multi-functional hydrogel device is capable of real-time differentiation of NO2- dosage with the naked eye, offering a high-contrast, rapid-response sensing methodology for visual assessment of food freshness. This research contributes to the expansion of hydrogel materials applications and the detection of hazardous materials in food safety.
Collapse
Affiliation(s)
- Lingfei Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China.
| |
Collapse
|
7
|
Yuan X, Zhang W, Liu L, Lin Y, Xie L, Chai X, Xu K, Du G, Zhang L. A Chitosan-Based Fluorescent Probe Combined with Smartphone Technology for the Detection of Hypochlorite in Pure Water. Molecules 2023; 28:6316. [PMID: 37687144 PMCID: PMC10489715 DOI: 10.3390/molecules28176316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Using chitosan as a raw material, 1,8-naphthimide as the fluorescent chromophore, and sulfur-containing compounds as the recognition groups, a novel naphthimide-functionalized chitosan probe, CS-BNS, for the detection of ClO- was successfully synthesized. The modification of chitosan was verified by SEM, XRD, FTIR, mapping, 13C-NMR, TG and the structure of the probe molecule was characterized. The identification performance of the probes was studied using UV and fluorescence spectrophotometers. The results show that CS-BNS exhibits a specific response to ClO- based on the oxidative reaction of ClO- to the recognition motifs, as well as a good resistance to interference. And the probe has high sensitivity and fast response time, and can complete the detection of ClO- in a pure water system within 60 s. The probe can also quantify ClO- (y = 30.698x + 532.37, R2 = 0.9833) with a detection limit as low as 0.27 μM. In addition, the combination of the probe with smartphone technology enables the visualization and real-time monitoring of ClO-. Moreover, an identification system for ClO- was established by combining the probe with smartphone technology, which realized the visualization and real-time monitoring of ClO-.
Collapse
Affiliation(s)
- Xushuo Yuan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Wenli Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Li Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Linkun Xie
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Xijuan Chai
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (X.Y.); (W.Z.); (L.L.); (L.X.); (X.C.); (K.X.); (G.D.)
| |
Collapse
|
8
|
Cao Y, Zhang J, Yang J, Qin W. Covalent organic framework-MnO 2 nanoparticle composites for shape-selective sensing of bithiols. RSC Adv 2023; 13:15006-15014. [PMID: 37200701 PMCID: PMC10186332 DOI: 10.1039/d3ra01540h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Covalent organic frameworks (COFs) for detecting biological macromolecules in water or biological environments are generally challenging. In this work, a composite material IEP-MnO2 is obtained by combining manganese dioxide (MnO2) nanocrystals and a fluorescent COF (IEP), which is synthesized by using 2,4,6-tris(4-aminophenyl)-s-triazine and 2,5-dimethoxyterephthalaldehyde. By the addition of biothiols, such as glutathione, cysteine or homocysteine with different sizes, the fluorescence emission spectra of IEP-MnO2 changed ("turn-on" or "turn-off") via different mechanisms. The fluorescence emission of IEP-MnO2 increased in the presence of GSH by the elimination of the FRET (Förster resonance energy transfer) effect between MnO2 and IEP. Surprisingly, due to the formation of a hydrogen bond between Cys/Hcy and IEP, the fluorescence quenching for IEP-MnO2 + Cys/Hcy may be explained via the photoelectron transfer (PET) process, which endows IEP-MnO2 with specificity in distinguishing the detection of GSH and Cys/Hcy compared to other MnO2 complex materials. Therefore, IEP-MnO2 was used to detect GSH and Cys in human whole blood and serum, respectively. The limit of detection for GSH in whole blood and Cys in human serum was calculated to be 25.58 μM and 4.43 μM, which indicates that IEP-MnO2 can be used to investigate some diseases related to GSH and Cys concentration. Moreover, the research expands the application of covalent organic frameworks in the fluorescence sensing field.
Collapse
Affiliation(s)
- Yuping Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China +86-931-8912582
| | - Jin Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China +86-931-8912582
| | - Jilu Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China +86-931-8912582
| | - Wenwu Qin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China +86-931-8912582
- Academy of Plateau Science and Sustainability, People's Government Of Qinghai Province & Beijing Normal University Xining 810016 China
| |
Collapse
|
9
|
Chen J, Qin H, Xu L, Leng S, Chang J. Tetrabutylammonium-chloride-glycerol of deep eutectic solvent functionalized MnO 2: a novel mimic enzyme for the quantitative and qualitative colorimetric detection of L-cysteine. Analyst 2022; 148:182-190. [PMID: 36477518 DOI: 10.1039/d2an01771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
L-Cysteine is a common amino acid that plays an important role in human livelihood and production. Therefore, a novel method for the simultaneous quantitative and qualitative determination of L-cysteine by a colorimetric detection system is proposed. As a viable oxidase mimic, [N4444]Cl-G/MnO2, which consisted of MnO2 nanosheets functionalized by a tetrabutylammonium chloride-glycerol ([N4444]Cl-G) based deep eutectic solvent (DES) was fabricated. Owing to the oxidation of MnO2 nanosheets, [N4444]Cl-G/MnO2 could oxidize the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue product (oxTMB) with the characteristic UV-vis spectrum absorbance at 652 nm. The oxidation of TMB by DES/MnO2 was inhibited when L-cysteine was introduced, and the absorbance decreased proportionally with the increase in L-cysteine concentration. Due to this inhibition effect, a colorimetric detection system ([N4444]Cl-G/MnO2-TMB) was developed for the quantitative determination of L-cysteine. Under optimal conditions, the assay showed good linearity over the concentration range of 0.125-2.00 μg mL-1 with a low detection limit of 5.96 ng mL-1. A study of the inhibition mechanism demonstrated that the sulfhydryl group of L-cysteine could decompose [N4444]Cl-G/MnO2 into Mn2+, thus limiting the conversion of TMB to oxTMB. In addition, the [N4444]Cl-G/MnO2-TMB system was used in test strips for the visual qualitative detection of L-cysteine. The selectivity and test strip results demonstrated the high selectivity, simple operation, and rapid response of the [N4444]Cl-G/MnO2-TMB system for the qualitative detection of L-cysteine. Given the satisfying performance of the detection strategy, colorimetric sensing based on the [N4444]Cl-G/MnO2-TMB system is considered to have prospective application value in the quantitative and qualitative detection of L-cysteine.
Collapse
Affiliation(s)
- Jing Chen
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China. .,Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, Tongren University, Tongren 554300, PR China
| | - Hangdao Qin
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China.
| | - Lu Xu
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China. .,Tongren Key Laboratory for Modernization Research, Development and Utilization of Traditional Chinese Medicine and National Medicine, Tongren University, Tongren 554300, PR China
| | - Senlin Leng
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China.
| | - Jun Chang
- College of Material and Chemical Engineering, Tongren University, Tongren 554300, P.R. China.
| |
Collapse
|
10
|
Xu S, Li L, Lin D, Yang L, Wang Z, Jiang C. Rare-earth ions coordination enhanced ratiometric fluorescent sensing platform for quantitative visual analysis of antibiotic residues in real samples. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Yang M, Ye Z, Iqbal MA, Liang H, Zeng YJ. Progress on two-dimensional binary oxide materials. NANOSCALE 2022; 14:9576-9608. [PMID: 35766429 DOI: 10.1039/d2nr01076c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional van der Waals (2D vdW) materials have attracted much attention because of their unique electronic and optical properties. Since the successful isolation of graphene in 2004, many interesting 2D materials have emerged, including elemental olefins (silicene, germanene, etc.), transition metal chalcogenides, transition metal carbides (nitrides), hexagonal boron, etc. On the other hand, 2D binary oxide materials are an important group in the 2D family owing to their high structural diversity, low cost, high stability, and strong adjustability. This review systematically summarizes the research progress on 2D binary oxide materials. We discuss their composition and structure in terms of vdW and non-vdW categories in detail, followed by a discussion of their synthesis methods. In particular, we focus on strategies to tailor the properties of 2D oxides and their emerging applications in different fields. Finally, the challenges and future developments of 2D binary oxides are provided.
Collapse
Affiliation(s)
- Manli Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Zhixiang Ye
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Muhammad Ahsan Iqbal
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Huawei Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518052, Guangdong, China.
| |
Collapse
|
12
|
Tang W, An Y, Chen J, Row KH. Multienzyme mimetic activities of holey CuPd@H–C3N4 for visual colorimetric and ultrasensitive fluorometric discriminative detection of glutathione and glucose in physiological fluids. Talanta 2022; 241:123221. [DOI: 10.1016/j.talanta.2022.123221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022]
|
13
|
Wu L, Pan W, Ye H, Liang N, Zhao L. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhang T, Liu Y, Pi J, Lu N, Zhang R, Chen W, Zhang Z, Xing D. A novel artificial peroxisome candidate based on nanozyme with excellent catalytic performance for biosensing. Biosens Bioelectron 2022; 196:113686. [PMID: 34628262 DOI: 10.1016/j.bios.2021.113686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Artificial peroxisome is of critical importance to supersede natural peroxisome in fabricating protocell system and disease treatment. Nevertheless, developing feasible artificial peroxisome with various stable functions remains a monumental challenge. Nanozyme with multiple enzyme-like activities can mimic natural enzymes in peroxisome, which make it a prospective candidate for artificial peroxisome design. Herein, we prepared a nanozyme with multiple peroxisomal-like activities - Pd nanoparticles functionalized nitrogen-doped porous carbon-reduced graphene oxide (PdNPs/N-PC-rGO). Due to its sandwich-like structure, the incorporation of N heteroatoms and the synergistic effect between PdNPs and N-PC-rGO bi-support, the PdNPs/N-PC-rGO exhibited triple peroxisomal-like activities including oxidase (OXD), peroxidase (POD) and catalase (CAT), leading it a promising alternative for artificial peroxisome exploration. Furthermore, the PdNPs/N-PC-rGO showed high electrocatalytic activity, which could be employed for the detection of electrochemical active substances reduced glutathione (GSH). The PdNPs/N-PC-rGO modified electrode displayed a wide concentration range from 70 nM to 1500 μM, with a very low detection limit of 9.8 nM (S/N = 3). Therefore, PdNPs/N-PC-rGO was a promising nanozyme for various biotechnological applications such as artificial organelles, biosensing, cytoprotection, disease diagnosis and treatment.
Collapse
Affiliation(s)
- Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yu Liu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiuchan Pi
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer Institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Li X, Jiang S, Li J, Li K, Li J. Highly dispersed manganese dioxide nanoparticles anchored on diatomite surface by sol–gel method and its performance on soybean meal‐based adhesive. J Appl Polym Sci 2021. [DOI: 10.1002/app.51719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaona Li
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering Nanjing Forestry University Nanjing China
| | - Shuaicheng Jiang
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering Nanjing Forestry University Nanjing China
| | - Jiongjiong Li
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering Nanjing Forestry University Nanjing China
| | - Kuang Li
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering Nanjing Forestry University Nanjing China
| | - Jianzhang Li
- Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering Nanjing Forestry University Nanjing China
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology Beijing Forestry University Beijing China
| |
Collapse
|
16
|
Gao Y, Yin Z, Ji Q, Jiang J, Tao Z, Zhao X, Sun S, Wu A, Zeng L. Black titanium dioxide@manganese dioxide for glutathione-responsive MR imaging and enhanced photothermal therapy. J Mater Chem B 2021; 9:314-321. [PMID: 33305301 DOI: 10.1039/d0tb02514c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multifunctional nanoprobes with tumor microenvironment response are playing important roles in highly efficient theranostics of cancers. Herein, a kind of theranostic nanoprobe was synthesized by coating manganese dioxide (MnO2) on the surface of black commercial P25 titanium dioxide (b-P25). The resultant nanoprobe (b-P25@MnO2) possessed glutathione (GSH)-responsive magnetic resonance (MR) imaging and enhanced photothermal therapy (PTT). In tumor microenvironments, the excessive GSH was consumed by reacting with MnO2 to generate Mn2+ for GSH-responsive MR imaging, in which the longitudinal relaxation rate of b-P25@MnO2 was up to 30.44 mM-1 s-1, showing excellent cellular and intratumoral MR imaging. Moreover, the prepared b-P25@MnO2 exhibited stable and strong photothermal conversion capability with a high photothermal conversion efficiency of 30.67%, by which the 4T1 tumors disappeared completely, indicating safe and highly efficient PTT performance. The current work developed GSH-responsive b-P25@MnO2 nanoprobes, demonstrated for MR imaging and enhanced PTT in cancers.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China. and Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Zhibin Yin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Jiabing Jiang
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Zhengzheng Tao
- Department of Radiology, Tianjin First Central Hospital, First Central Clinical College of Tianjin Medical University, Tianjin, 300192, P. R. China.
| | - Xiaolong Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Sijia Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, College of Chemistry & Environmental Science, Institute of Life Science and Green development, Hebei University, Baoding 071002, P. R. China.
| |
Collapse
|
17
|
Han S, Yang L, Wen Z, Chu S, Wang M, Wang Z, Jiang C. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122894. [PMID: 32768819 DOI: 10.1016/j.jhazmat.2020.122894] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 05/20/2023]
Abstract
Residues in animal food and drinking water caused by the abuse of antibiotics lead to cell resistance and many chronic diseases in the human body. Therefore, it has become an inevitable trend to develop a fast, easy-to-use, on-site/real-time visualization method for the detection of antibiotics. Herein, we report a dual-response ratiometric fluorescence sensor which is fabricated by chelating europium ions (Eu3+) onto cadmium telluride quantum dots (CdTe QDs) for real-time and visible detection of tetracycline (TC). With the TC addition, the fluorescence of probe can be seen by the naked eye, from green to yellow and finally to red, exhibiting a dosage-sensitive and broad-chromatic detection strategy for TC. The fluorescence intensity ratio of I616/I512 of Eu/CdTe QDs sensor displays a good linear relation to TC concentrations in the range of 0-80 μM with a limit of detection (LOD) of 2.2 nM. In addition, the sensor can visually detect 200 nM TC in actual samples, which is lower than the maximum residue limit (MRL) of the safety standard. The methodology reported here opens a window toward the real applications of fluorescent and shows the wide applicability in pursuing the concepts simple, rapid, visual, and real-time for food safety and environmental protection.
Collapse
Affiliation(s)
- Shuai Han
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Zhigang Wen
- State Centre of Quality Supervision and Inspection for Camellia Products, Ganzhou, Jiangxi, 341000, China
| | - Suyun Chu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mei Wang
- State Centre of Quality Supervision and Inspection for Camellia Products, Ganzhou, Jiangxi, 341000, China
| | - Zhenyang Wang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| |
Collapse
|
18
|
A near-infrared turn-on fluorescence probe for glutathione detection based on nanocomposites of semiconducting polymer dots and MnO2 nanosheets. Anal Bioanal Chem 2020; 412:8167-8176. [DOI: 10.1007/s00216-020-02951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
|
19
|
Ding B, Zheng P, Ma P, Lin J. Manganese Oxide Nanomaterials: Synthesis, Properties, and Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905823. [PMID: 31990409 DOI: 10.1002/adma.201905823] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/23/2019] [Indexed: 05/20/2023]
Abstract
Despite the comprehensive applications in bioimaging, biosensing, drug/gene delivery, and tumor therapy of manganese oxide nanomaterials (MONs including MnO2 , MnO, Mn2 O3 , Mn3 O4 , and MnOx ) and their derivatives, a review article focusing on MON-based nanoplatforms has not been reported yet. Herein, the representative progresses of MONs on synthesis, heterogene, properties, surface modification, toxicity, imaging, biodetection, and therapy are mainly introduced. First, five kinds of primary synthetic methods of MONs are presented, including thermal decomposition method, exfoliation strategy, permanganates reduction method, adsorption-oxidation method, and hydro/solvothermal. Second, the preparations of hollow MONs and MON-based composite materials are summarized specially. Then, the chemical properties, surface modification, and toxicity of MONs are discussed. Next, the diagnostic applications including imaging and sensing are outlined. Finally, some representative rational designs of MONs in photodynamic therapy, photothermal therapy, chemodynamic therapy, sonodynamic therapy, radiotherapy, magnetic hyperthermia, chemotherapy, gene therapy, starvation therapy, ferroptosis, immunotherapy, and various combination therapy are highlighted.
Collapse
Affiliation(s)
- Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Pan Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Song X, Wang Y, Jiao C, Huang M, Wang GH, Jiang H. Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117783] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Shen B, Zhu W, Zhi X, Qian Y. A lysosome targeting probe based on fluorescent protein chromophore for selectively detecting GSH and Cys in living cells. Talanta 2020; 208:120461. [DOI: 10.1016/j.talanta.2019.120461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022]
|
22
|
Wang Q, Wang C, Wang X, Zhang Y, Wu Y, Dong C, Shuang S. Construction of CPs@MnO 2-AgNPs as a multifunctional nanosensor for glutathione sensing and cancer theranostics. NANOSCALE 2019; 11:18845-18853. [PMID: 31595915 DOI: 10.1039/c9nr06443e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A multifunctional nanosensor of CPs@MnO2-AgNPs was constructed for sensitive and selective sensing of GSH and cancer theranostics in this work. The CPs@MnO2 nanocomposite was synthesized by capping MnO2 onto carbon nanoparticles through an in situ redox reaction under ultrasonication. AgNPs with fluorescence were obtained through a silver-mirror-like reaction using BSA as both a template and reductant and further anchored onto the surface of CPs@MnO2 through electrostatic interaction to construct the CPs@MnO2-AgNP nanocomposite. The fluorescence of AgNPs was effectively quenched by MnO2 through an inner filter effect and a static quenching effect and further recovered by GSH owing to the unique redox reaction between GSH and MnO2. Therefore, a novel fluorescent turn-on nanosensor was established for GSH sensing in vitro and in vivo. For GSH sensing, a satisfactory linear range of 0.8-80 μM with a detection limit of 0.55 μM was obtained under optimal conditions. Moreover, by integrating the GSH-responsive fluorescence imaging capacity, the photothermal activity of carbon nanoparticles and the anticancer effect of AgNPs, the CPs@MnO2-AgNP nanocomposite was successfully applied for cancer theranostics. The fluorescence recognition of cancer was achieved by overexpressing GSH in cancer, meanwhile the photothermal therapy from CPs and chemotherapy from AgNPs jointly produced an enhanced therapeutic effect. This redox-responsive nanocomposite of CPs@MnO2-AgNPs improves the MnO2 nanomaterial-based applications in GSH sensing and cancer theranostics.
Collapse
Affiliation(s)
- Qi Wang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China. and Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, PR China
| | - Chunyan Wang
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, PR China
| | - Xiaodong Wang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuan Zhang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Yuehuan Wu
- Chemistry & Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, PR China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
23
|
A dual (colorimetric and fluorometric) detection scheme for glutathione and silver (I) based on the oxidase mimicking activity of MnO 2 nanosheets. Mikrochim Acta 2019; 186:498. [PMID: 31270601 DOI: 10.1007/s00604-019-3613-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023]
Abstract
A fluorimetric and colorimetric method is described for the determination of glutathione (GSH) and silver (I). It is based on the use of MnO2 nanosheets that were prepared by solution mixing and exfoliation. They display oxidase-mimicking activity and can catalyze the oxidation of o-phenylenediamine (OPD) to form yellow 2,3-diaminophenazine (DAP) with an absorption maximum at 410 nm. DAP also has a yellow fluorescence (with a peak at 560 nm). The MnO2 nanosheets can be rapidly reduced to Mn2+ by GSH. This reduces the efficiency of the oxidase mimic MnO2 and causes a decrease in fluorescence and absorbance intensity. However, on addition of Ag+, a complex is formed with GSH. It prevents the destruction of MnO2 nanosheets so that the enzyme mimicking activity is retained. A dual-method for the determination of GSH and Ag(I) was developed. It has excellent sensitivity for GSH with lower detection limits of 62 nM (fluorimetric) and 0.94 μM (colorimetric). The respective data for Ag(I) are 70 nM and 1.15 μM. The assay was successfully applied to the determination of GSH and Ag(I) in spiked serum samples. Graphical abstract Schematic presentation of a method for colorimetric and fluorometric determination of glutathione (GSH) and silver(I). MnO2 nanosheets are reduced to Mn(II) by GSH. This reduces the enzyme-mimicking activity of MnO2 nanosheets and causes a decrease in fluorescence and absorbance. On addition of Ag(I), the enzyme-like activity is increasingly retained. A decrease in fluorescence and absorbance is not observed any longer.
Collapse
|
24
|
Chen J, Meng H, Tian Y, Yang R, Du D, Li Z, Qu L, Lin Y. Recent advances in functionalized MnO 2 nanosheets for biosensing and biomedicine applications. NANOSCALE HORIZONS 2019; 4:321-338. [PMID: 32254087 DOI: 10.1039/c8nh00274f] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As one kind of redox active layered transition-metal dioxide nanomaterials, single-layer manganese dioxide (MnO2) nanosheets have gained significant research attention in the fields of biosensing and biomedicine because of their large surface area, intense and broad optical absorption, strong oxidation ability, catalytic activity, and robust mechanical properties. This review provides a brief overview of the recent advances in the development of MnO2 nanosheet-based biosensors, bioimaging as well as drug delivery for cancer therapy. The methodologies for the preparation of MnO2 nanosheets are summarized, followed by an introduction of the nanostructure and properties of MnO2 nanosheets. Special attention is paid to their applications in biosensing, bioimaging and cancer therapy. Future perspectives and the challenges of high-performance MnO2 nanosheets are also discussed.
Collapse
Affiliation(s)
- Juan Chen
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li X, Ma H, Qian J, Cao T, Teng Z, Iqbal K, Qin W, Guo H. Ratiometric fluorescent probe based on ESIPT for the highly selective detection of cysteine in living cells. Talanta 2019; 194:717-722. [DOI: 10.1016/j.talanta.2018.10.095] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 11/26/2022]
|
26
|
Liu J, Meng L, Fei Z, Dyson PJ, Zhang L. On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens Bioelectron 2018; 121:159-165. [DOI: 10.1016/j.bios.2018.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
27
|
Chen B, Wang F. NaYbF 4@CaF 2 core-satellite upconversion nanoparticles: one-pot synthesis and sensitive detection of glutathione. NANOSCALE 2018; 10:19898-19905. [PMID: 30346010 DOI: 10.1039/c8nr05552a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new class of core-satellite upconversion nanoparticles (UCNPs) formed through a kinetically controlled oriented attachment is presented. The core-satellite UCNPs comprising an optically active α-NaYbF4 core and several CaF2 satellites are synthesized by a one-pot sequential injection technique. Compared to conventional core-shell UCNPs, these core-satellite UCNPs show larger surface-to-volume ratios and are suitable for further surface modifications. As a proof-of-concept, a biosensing system is constructed by coating MnO2 nanosheets on the α-NaYbF4:Tm@CaF2 core-satellite UCNPs for high-sensitivity biothiol detection. These core-satellite UCNPs show great potential in the development of UCNP-based nanohybrids for biosensing, multimodal imaging and drug delivery.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.
| | | |
Collapse
|
28
|
Lee S, Li J, Zhou X, Yin J, Yoon J. Recent progress on the development of glutathione (GSH) selective fluorescent and colorimetric probes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.021] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Ni P, Jiang D, Chen C, Jiang Y, Lu Y, Zhao Z. Highly sensitive fluorescent detection of glutathione and histidine based on the Cu(ii)-thiamine system. Analyst 2018; 143:4442-4447. [DOI: 10.1039/c8an01201f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel fluorescence method for the simultaneous detection of glutathione and histidine based on their inhibitory effects on the oxidation of thiamine by Cu(ii) is proposed.
Collapse
Affiliation(s)
- Pengjuan Ni
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Dafeng Jiang
- Shandong Center for Disease Control and Prevention
- Jinan 250014
- China
| | - Chuanxia Chen
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yizhong Lu
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| | - Zhenlu Zhao
- School of Materials Science and Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
30
|
Gao ZF, Ogbe AY, Sann EE, Wang X, Xia F. Turn-on fluorescent sensor for the detection of glucose using manganese dioxide-phenol formaldehyde resin nanocomposite. Talanta 2017; 180:12-17. [PMID: 29332788 DOI: 10.1016/j.talanta.2017.11.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 11/28/2022]
Abstract
Monitoring blood glucose has attracted considerable attention because diabetes mellitus is a global public health problem. Herein, we reported a turn-on fluorescence detection strategy based on manganese dioxide (MnO2)-phenol formaldehyde resin (PFR) nanocomposite for rapid, sensitive, and selective detection of glucose levels in human blood. In this biosensing system, MnO2 nanoshell on the PFR nanoparticle surfaces serve as a quencher. PFR fluorescence can make a recovery in the presence of H2O2, reducing MnO2 to Mn2+. The sensor shows a linear range from 50nM to 90μM with a low detection limit of 20nM for H2O2 detection. Thus, the glucose can be detected on the basis of the enzymatic conversion of glucose by glucose oxidase to produce H2O2. This method exhibits a wide linear range from 5μM to 1mM with a low detection limit of 1.5μM. Because of the excellent photostability offered by PFR, the developed strategy has been successfully applied for the diagnosis of diabetes mellitus in human blood samples. Compared with commercial glucometer, our method showed satisfactory results, indicating the significant reliability. The developed turn-on fluorescent sensor might hold great promise in nanomedicine and bioanalysis.
Collapse
Affiliation(s)
- Zhong Feng Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Asmerom Yohannes Ogbe
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Ei Ei Sann
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Xudong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
31
|
Liu J, Meng L, Fei Z, Dyson PJ, Jing X, Liu X. MnO 2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron 2017; 90:69-74. [DOI: 10.1016/j.bios.2016.11.046] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
|
32
|
Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 2017; 89:123-135. [DOI: 10.1016/j.bios.2016.06.046] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
|
33
|
Li G, Lv N, Zhang J, Ni J. MnO2in situ formed into the pores of C-dots/ZIF-8 hybrid nanocomposites as an effective quencher for fluorescence sensing ascorbic acid. RSC Adv 2017. [DOI: 10.1039/c7ra00307b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid construction of C-dots/ZIF-8 composites and in situ growth of MnO2 into their pores as a quencher for ascorbic acid fluorescence sensing.
Collapse
Affiliation(s)
- Guangming Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- University of Science and Technology of China
| | - Nan Lv
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- University of Science and Technology of China
| | - Jilin Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
| | - Jiazuan Ni
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
| |
Collapse
|
34
|
Zhang H, Wang C, Wang K, Xuan X, Lv Q, Jiang K. Ultrasensitive fluorescent ratio imaging probe for the detection of glutathione ultratrace change in mitochondria of cancer cells. Biosens Bioelectron 2016; 85:96-102. [PMID: 27156018 DOI: 10.1016/j.bios.2016.04.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/17/2022]
Abstract
Glutathione (GSH) ultratrace change in mitochondria of cancer cells can mildly and effectively induce cancer cells apoptosis in early stage. Thus, if GSH ultratrace change in mitochondria of cancer cells could be recognized and imaged, it will be beneficial for fundamental research of cancer therapy. There have reported a lot of fluorescent probes for GSH, but the fluorescent probe with ultrasensitivity and high selectivity for the ratio imaging of GSH ultratrace changes in mitochondria of cancer cells is scarce. Herein, based on different reaction mechanism of sulfonamide under different pH, a sulfonamide-based reactive ratiometric fluorescent probe (IQDC-M) was reported for the recognizing and imaging of GSH ultratrace change in mitochondria of cancer cells. The detection limit of IQDC-M for GSH ultratrace change is low to 2.02nM, which is far less than 1.0‰ of endogenic GSH in living cells. And during the recognition process, IQDC-M can emit different fluorescent signals at 520nm and 592nm, which results in it recognizing GSH ultratrace change on ratio mode. More importantly, IQDC-M recognizing GSH ultratrace change specifically occurs in mitochondria of cancer cells because of appropriate water/oil amphipathy (log P) of IQDC-M. So, these make IQDC-M possible to image and monitor GSH ultratrace change in mitochondria during cancer cells apoptosis for the first time.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Caixia Wang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kui Wang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaopeng Xuan
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qingzhang Lv
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; Key Laboratory of Green Chemical Media and Reactions; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|