1
|
Li Z, Wang K, Hou C, Li C, Zhang F, Ren W, Dong L, Zhao J. Self-sensing intelligent microrobots for noninvasive and wireless monitoring systems. MICROSYSTEMS & NANOENGINEERING 2023; 9:102. [PMID: 37565051 PMCID: PMC10409863 DOI: 10.1038/s41378-023-00574-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Microrobots have garnered tremendous attention due to their small size, flexible movement, and potential for various in situ treatments. However, functional modification of microrobots has become crucial for their interaction with the environment, except for precise motion control. Here, a novel artificial intelligence (AI) microrobot is designed that can respond to changes in the external environment without an onboard energy supply and transmit signals wirelessly in real time. The AI microrobot can cooperate with external electromagnetic imaging equipment and enhance the local radiofrequency (RF) magnetic field to achieve a large penetration sensing depth and a high spatial resolution. The working ranges are determined by the structure of the sensor circuit, and the corresponding enhancement effect can be modulated by the conductivity and permittivity of the surrounding environment, reaching ~560 times at most. Under the control of an external magnetic field, the magnetic tail can actuate the microrobotic agent to move accurately, with great potential to realize in situ monitoring in different places in the human body, almost noninvasively, especially around potential diseases, which is of great significance for early disease discovery and accurate diagnosis. In addition, the compatible fabrication process can produce swarms of functional microrobots. The findings highlight the feasibility of the self-sensing AI microrobots for the development of in situ diagnosis or even treatment according to sensing signals.
Collapse
Affiliation(s)
- Zhongyi Li
- School of Mechatronical Engineering, Beijing Institute of Technology, 100081 Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081 Beijing, China
| | - Kun Wang
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Kowloon Tong, Hong Kong China
| | - Chaojian Hou
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Kowloon Tong, Hong Kong China
| | - Chunyang Li
- School of Mechatronical Engineering, Beijing Institute of Technology, 100081 Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081 Beijing, China
| | - Fanqing Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, 100081 Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081 Beijing, China
| | - Wu Ren
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, 100081 Beijing, China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, 999077 Kowloon Tong, Hong Kong China
| | - Jing Zhao
- School of Mechatronical Engineering, Beijing Institute of Technology, 100081 Beijing, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
2
|
Kim H, Lee S, Yoon J, Song J, Park HG. CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosens Bioelectron 2021; 194:113587. [PMID: 34455224 DOI: 10.1016/j.bios.2021.113587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/26/2022]
Abstract
To realize the full potential of the CRISPR/Cas system and expand its applicability up to the detection of molecular interactions, we herein describe a novel method to identify protein/small molecule interactions by utilizing the CRISPR/Cas12a collateral cleavage activity. This technique employs a single-stranded activator DNA modified with a specific small molecule, which would switch on the CRISPR/Cas12a collateral cleavage activity upon binding to crRNA within the CRISPR/Cas12a system. When the target protein binds to the small molecule on the activator DNA, the bound protein sterically hinders the access of the activator DNA to crRNA, thereby promoting less collateral cleavage activity of CRISPR/Cas12a. As a consequence, fewer reporter probes nearby are cleaved to produce accordingly reduced fluorescence signals in response to target protein. Based on this unique design principle, the two model protein/small molecule interactions, streptavidin/biotin and anti-digoxigenin/digoxigenin, were successfully determined down to 0.03 nM and 0.09 nM, respectively, with a fast and simple detection workflow (11 min). The practical applicability of this method was also verified by reliably detecting target streptavidin spiked in heterogeneous human serum. This work would provide great insight to construct novel strategies to identify protein/small molecule interaction by making the most of the CRISPR/Cas12a system beyond its superior capabilities in genome editing and molecular diagnostics.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seoyoung Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junhyeok Yoon
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
3
|
Yang W, Peng Q, Guo Z, Wu H, Ding S, Chen Y, Zhao M. PtCo nanocubes/reduced graphene oxide hybrids and hybridization chain reaction-based dual amplified electrochemiluminescence immunosensing of antimyeloperoxidase. Biosens Bioelectron 2019; 142:111548. [PMID: 31400729 DOI: 10.1016/j.bios.2019.111548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 11/24/2022]
Abstract
Antimyeloperoxidase (anti-MPO) is regarded as one of the most important circulating autoantibodies for anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAVs). Hence, it is crucial for highly sensitive detection of anti-MPO to monitor efficacy of AAVs in clinical diagnosis. Herein, a highly sensitive electrochemiluminescence (ECL) immunosensor for anti-MPO detection was constructed by combining reduced graphene oxide-supported PtCo nanocubes hybrids (PtCo@rGO) with hybridization chain reaction (HCR) as signal amplification. Multiple ECL luminophores (Dox-ABEI) prepared by cross-linking of N-(aminobutyl)-N-(ethylisoluminol) (ABEI) and doxorubicin (Dox) were intercalated into dsDNA products of HCR, achieving the effective immobilization of ECL luminophores to obtain strong ECL emission. Benefiting from the efficient catalytic activity of PtCo@rGO toward H2O2, the massive the superoxide radical (O2●-) were generated to further react with ABEI for ECL emission. Thus, the designed ECL immunoassay for anti-MPO detection exhibited excellent sensitivity of a concentration variation from 50 fg/mL to 1 ng/mL and a detection limit of 15.68 fg/mL. Importantly, this work proposed an enzyme-free ECL immunoassay with high sensitivity, excellent specificity for protein detection in clinical diagnosis.
Collapse
Affiliation(s)
- Wei Yang
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiling Peng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhen Guo
- Department of Clinical Laboratory, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yongjian Chen
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Chen H, Sun Y, Li Y, Zhao J, Cao Y. Determination of hypoxia-inducible factor-1 by using a ratiometric colorimetric test based on click-mediated growth of gold nanoparticles. Mikrochim Acta 2018; 185:451. [PMID: 30209641 DOI: 10.1007/s00604-018-2992-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/01/2018] [Indexed: 11/24/2022]
Abstract
The authors describe a significantly improved colorimetric nanoprobe for the determination of transcription factors (TFs). It is making use of click-mediated growth of gold nanoparticles (AuNPs) to amplify the signal-to-noise ratio. Hypoxia-inducible factor-1 (HIF-1) is an important TF that acts as a mediator of cell response to hypoxia. So, the detection of HIF-1 was chosen as the model analyte. Specifically, target HIF-1 is designed to bind to the hypoxia response element within DNA duplex. The click chemistry between the DNA duplex and alkynyl-functionalized AuNPs (AF-AuNPs) is then inhibited because of significant steric hindrance. As a result, the AF-AuNPs grow into larger-sized highly-aggregated irregular nanostructures, which in turn enable colorimetric determination. The ratio of absorbances at 620 and 560 nm increases in the 0.5 to 10 nM HIF-1 concentration range, and the detection limit is 0.27 nM. This is better by a factor of 100 than that of aggregation-based colorimetric assays. The nanoprobe is selective and can be used in complex samples. Conceivably, it may also be extended to the determination of other TFs by simply changing the used DNA duplex. Graphical abstract Schematic of a nanoprobe for detecting hypoxia-inducible factor-1 (HIF-1). Three concepts are involved: the binding of HIF-1 and hypoxia response element, the Cu+-catalyzed click chemistry between P1/P2 duplex and alkynyl-functionalized AuNPs (AF-AuNPs), and the AuNPs growth with hydroxylamine and HAuCl4.
Collapse
Affiliation(s)
- Hong Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yan Sun
- Department of Endocrinology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, 221009, China
| | - Yifei Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China. .,Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Cui H, Bo B, Ma J, Tang Y, Zhao J, Xiao H. A target-responsive liposome activated by catalytic hairpin assembly enables highly sensitive detection of tuberculosis-related cytokine. Chem Commun (Camb) 2018; 54:4870-4873. [PMID: 29697111 DOI: 10.1039/c8cc01542b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Here, we propose a new fluorescence method to detect tuberculosis-related cytokine by using a target-responsive liposome activated by catalytic hairpin assembly. The method combines a DNA self-assembly based amplification process with a liposome-based signal amplification process, therefore offering a very high sensitivity.
Collapse
Affiliation(s)
- Haiyan Cui
- Clinic and Research Center of Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | | | | | | | | | | |
Collapse
|
6
|
Wang Z, Li Y, Han P, Mao X, Yin Y, Cao Y. Binding-responsive catalysis of Taq DNA polymerase for the sensitive and selective detection of cell-surface proteins. Chem Commun (Camb) 2018; 52:10684-7. [PMID: 27506247 DOI: 10.1039/c6cc04351h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we develop a new method for the sensitive and selective detection of cell-surface proteins with an aptamer probe designed for binding-responsive catalysis of Taq DNA polymerase. Taking the biotin receptor as a model, the method allows the detection of target protein on surfaces of different types of cancer cells.
Collapse
Affiliation(s)
- Zhuxin Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yifei Li
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China. and Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai 200444, China
| | - Peng Han
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Xiaoxia Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
8
|
Chen W, Fang X, Li H, Cao H, Kong J. DNA-mediated inhibition of peroxidase-like activities on platinum nanoparticles for simple and rapid colorimetric detection of nucleic acids. Biosens Bioelectron 2017; 94:169-175. [PMID: 28284076 DOI: 10.1016/j.bios.2017.02.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Abstract
In this research, we found that the peroxidase-like activities of noncovalent DNA-Pt hybrid nanoparticles could be obviously blocked, when Pt nanoparticles (PtNPs) were synthesized in situ using DNA as a template. Moreover, this self-assembled synthetic process was very convenient and rapid (within few mintues), and the inhibition mediated by DNA was also very effective. First, by the paper-based analytical device (PAD) we found the catalytic activities of DNA-Pt hybrid nanoparticles exhibited a linear response to the concentration of DNA in the range from 0.0075 to 0.25µM. Then, with the magnetic bead isolated system and target DNA-induced hybridization chain reaction (HCR), we realized the specific target DNA analysis with a low detection of 0.228nM, and demonstrated its effectivity in distinguishing the target DNA from other interferences. To our knowledge, this is the first report that used the nanoassembly between DNA and PtNPs for colorimetric detection of nucleic acids, which was based on DNA-mediated inhibition of catalytic activities of platinum nanoparticles. The results may be useful for understanding the interactions between DNA and metal nanoparticles, and for development of other convenient and effective analytical strategies.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, PR China
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, PR China.
| | - Hua Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, PR China
| | - Hongmei Cao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
9
|
Tăbăcaru A, Furdui B, Ghinea IO, Cârâc G, Dinică RM. Recent advances in click chemistry reactions mediated by transition metal based systems. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Construction of a specific binding peptide based electrochemical approach for sensitive detection of Zn2+. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Yin T, Li H, Zhang Y, Yang N, Sun L, Cao Y, Xiang Y. Sensitive and low-background electrochemical assay of corin activity via supramolecular recognition and rolling circle amplification. Anal Chim Acta 2016; 919:28-33. [PMID: 27086096 DOI: 10.1016/j.aca.2016.03.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
Abstract
Corin is an important member of type II transmembrane serine proteases that is involved in a variety of cardiovascular and pregnancy-related diseases. Herein, a sensitive and low-background electrochemical method is proposed to assay the activity of corin. In principle, a peptide comprising both the substrate motif of corin and binding site of cucurbit[8]uril (CB[8]) is first designed and immobilized on the electrode surface. Thereafter, via CB[8]-mediated supramolecular recognition, a DNA-primer is recruited, subsequently triggering the rolling circle amplification (RCA) reaction. In this way, a succeeding propagation of DNA strands is achieved on the electrode surface, which would produce remarkable repelling effect against the electrochemical species [Fe(CN)6](3-/4-), and thereby yield a highly minimized background signal. However, in the presence of activated corin, the peptide is specifically recognized and cleaved, breaching the recruitment of DNA primer as well as the RCA reaction, which decreases the repulsion to [Fe(CN)6](3-/4-), leading to a remarkable electrochemical response. As a result, the proposed assay method can sensitively determine the activity of corin with a detection limit of 0.92 pM, and can further be directly used in maternal plasma samples. Therefore, this method may provide a promising tool for pathological research and clinical diagnosis of corin-related diseases.
Collapse
Affiliation(s)
- Tingting Yin
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Hao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yuanyuan Zhang
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Nana Yang
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China
| | - Lizhou Sun
- Department of Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210036, China.
| | - Ya Cao
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|