1
|
Gao M, Chen Q, Li Z, Zhan Y, Wang L, He T, Yao Q, Jin F, Hu J. Solid phase extraction-surface enhanced Raman spectroscopy (SPE-SERS) test of antibiotic residues in Milk based on au@ MIL-101 NPs. Food Chem 2025; 465:141949. [PMID: 39531971 DOI: 10.1016/j.foodchem.2024.141949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
A SPE-SERS method was developed for the detection of several antibiotic residues in dairy products. Gold nanoparticles (Au NPs) encapsulated with an ultrathin Cr-MIL-101 shell (Au@Cr-MIL-101 NPs) have been synthesized, and the thickness of Cr-MIL-101 shell can be precisely controlled to 3 nm. As a superior solid phase extraction (SPE) adsorbent, Cr-MIL-101 acts as a shell layer to effectively enrich antibiotics within the localized surface plasmon resonance (LSPR) field of Au NPs, which enhances the SERS signal and eliminates background interference. The method can achieve highly sensitive and high-throughput detection for tetracycline hydrochloride, sulfapyridine and benzylpenicillin sodium in dairy products, and the detection limits (LOD) are as low as 2.237, 2.644 and 4.662 ppb respectively. The recoveries of antibiotic residues in spiked dairy products ranged from 72.31 % to 146.7 % with matrix effects (ME) of -15.13 % to 28.68 %. Thus, this method holds significant promise for rapid detection of antibiotics in milk.
Collapse
Affiliation(s)
- Mengyue Gao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China.
| | - Qiao Chen
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
| | - ZhiHao Li
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - YiFang Zhan
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - LiHua Wang
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Ting He
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Qi Yao
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Fengmei Jin
- Institute of Environment and Safety, Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jiming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Qiu Z, Yu X, Zhang J, Xu C, Gao M, Cheng Y, Zhu M. Fibrous aggregates: Amplifying aggregation-induced emission to boost health protection. Biomaterials 2022; 287:121666. [PMID: 35835002 PMCID: PMC9250848 DOI: 10.1016/j.biomaterials.2022.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Environmental monitoring and personal protection are critical for preventing and for protecting human health during all infectious disease outbreaks (including COVID-19). Fluorescent probes combining sensing, imaging and therapy functions, could not only afford direct visualizing existence of biotargets and monitoring their dynamic information, but also provide therapeutic functions for killing various bacteria or viruses. Luminogens with aggregation-induced emission (AIE) could be well suited for above requirements because of their typical photophysical properties and therapeutic functions. Integration of these molecules with fibers or textiles is of great interest for developing flexible devices and wearable systems. In this review, we mainly focus on how fibers and AIEgens to be combined for health protection based on the latest advances in biosensing and bioprotection. We first discuss the construction of fibrous sensors for visualization of biomolecules. Next recent advances in therapeutic fabrics for individual protection are introduced. Finally, the current challenges and future opportunities for "AIE + Fiber" in sensing and therapeutic applications are presented.
Collapse
Affiliation(s)
- Zhenduo Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Junyan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Chengjian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Mengyue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University. Shanghai, 201620, China
| |
Collapse
|
3
|
Sun J, Mao Y, Cui L, Cao Y, Li Z, Ling M, Xu X, He S. Using a safe and effective fixative to improve the immunofluorescence staining of bacteria. Methods Appl Fluoresc 2021; 9. [PMID: 33853048 DOI: 10.1088/2050-6120/abf81e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022]
Abstract
The emerging and development of green chemistry has once again drawn the researchers' attention to eliminating the use and generation of hazardous materials. Here we report the use of a safe and effective fixative, chlorine dioxide (ClO2), instead of traditional hazardous fixatives for the cross-linking of cellular proteins to improve immunofluorescence staining of bacteria. The concentration of ClO2needed for 100% fixation is 50μg ml-1, which is much lower than that of traditional fixatives (1000-10000μg ml-1). The ClO2mediated cross-linking can preserve the integrity of bacterial cells and prevent cell loss through lysis. Meanwhile, lysozyme can permeabilize the bacterial cells, allowing the labelled antibodies to diffuse to their intracellular target molecules. By usingE. coliO157:H7/RP4 as a gram-negative bacteria model, immunofluorescence staining assays for both intracellular protein and surface polysaccharide were carried out to investigate the effect of ClO2fixation on the staining. The results demonstrated that ClO2fixation could prevent the target antigens from cracking off the bacteria without damage on the interaction between the antibodies and antigens (either for polysaccharide or protein). As a safe and effective fixative, ClO2has potential practical applications in immunofluorescence staining and fluorescencein situhybridization for single bacteria/cell analysis.
Collapse
Affiliation(s)
- Jian Sun
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yuantian Mao
- The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Lanyu Cui
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Yongqiang Cao
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Zhao Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Min Ling
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaoping Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Shengbin He
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
4
|
Zhao L, Liu Y, Zhang Z, Wei J, Xie S, Li X. Fibrous testing papers for fluorescence trace sensing and photodynamic destruction of antibiotic-resistant bacteria. J Mater Chem B 2021; 8:2709-2718. [PMID: 32149315 DOI: 10.1039/d0tb00002g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The increasing prevalence of antibiotic-resistant bacteria needs rapid identification and efficient destruction routes. This study proposes testing paper derived from electrospun fibrous mats and aggregation-induced emission (AIE) probes for trace sensing and simultaneous destruction of antibiotic-resistant E. coli. Aptamers are conjugated on fibers for selective capture of E. coli, and the capture capability can be regenerated via rinsing with salt solution. Hydroxyl tetraphenylethene (TPE) is linked with two cephalosporin molecules to construct TPE-Cep probes, and the fluorescence emission is turned on specifically in the presence of β-lactamase, which is a critical marker for screening resistant bacteria. Fibrous mats are lit up only in the presence of antibiotic-resistant bacteria, and the fluorescence intensity changes could be statistically fitted into an equation for quantitative analysis. Fibrous strips display apparent color changes from blue to green for a visual readout of bacterial levels, and the limit of detection (LOD) is much lower than those of previous paper substrates. In addition, the TPE-Cep probes could produce reactive oxygen species (ROS) under room light illumination to kill the captured bacteria. Thus, the integration of aptamer-grafted electrospun fibers and functional AIE probes provides potential for selective capture, trace imaging and photodynamic destruction of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China. and School of Bioscience and Technology, Chengdu Medical College, Chengdu 610031, P. R. China
| | - Yuan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Zhanlin Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Jiaojun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Songzhi Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Xiaohong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| |
Collapse
|
5
|
Tummala S, Huang W, Wu B, Chang K, Ho Y. Fluorescent Mesoporous Nanoparticles for β-Lactamase Screening Assays. ChemistryOpen 2020; 9:1074-1081. [PMID: 33117628 PMCID: PMC7582675 DOI: 10.1002/open.202000221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/17/2020] [Indexed: 11/10/2022] Open
Abstract
We present a sensitive and rapid screening method for the determination of β-lactamase activity of antibiotic-resistant bacteria, by designing a pH-sensitive fluorescent dye-doped mesoporous silica nanoparticle encapsulated with penicillin G as a substrate. When penicillin G was hydrolysed by β-lactamase and converted into penicilloic acid, the acidic environment resulted in fluorescence quenching of the dye. The dye-doped mesoporous nanoparticles not only enhanced the β-lactamase-catalyzed reaction rate but also stablized the substrate, penicillin G, which degrades into penicilloic acid in a water solution without β-lactamase. Twentyfive clinical bacterial samples were tested and the antibiotic resistant and susceptible strains were identified. The proposed method may detect the presence of β -lactamases of clinically relevant samples in less than 1 hour. Moreover, the detection limit of β-lactamase activity was as low as 7.8×10-4 U/mL, which was determined within two hours.
Collapse
Affiliation(s)
- Srikrishna Tummala
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Wei‐An Huang
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Bo‐Hong Wu
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| | - Kai‐Chih Chang
- Department of Laboratory Medicine and BiotechnologyTzu Chi UniversityHualien970TaiwanRepublic of China
| | - Yen‐Peng Ho
- Department of ChemistryNational Dong Hwa UniversityHualien974TaiwanRepublic of China
| |
Collapse
|
6
|
Weber L, Jansen M, Krüttgen A, Buhl EM, Horz HP. Tackling Intrinsic Antibiotic Resistance in Serratia Marcescens with A Combination of Ampicillin/Sulbactam and Phage SALSA. Antibiotics (Basel) 2020; 9:antibiotics9070371. [PMID: 32630284 PMCID: PMC7400198 DOI: 10.3390/antibiotics9070371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
During the antibiotic crisis, bacteriophages (briefly phages) are increasingly considered as potential antimicrobial pillars for the treatment of infectious diseases. Apart from acquired drug resistance, treatment options are additionally hampered by intrinsic, chromosomal-encoded resistance. For instance, the chromosomal ampC gene encoding for the AmpC-type β-lactamases is typically present in a number of nosocomial pathogens, including S. marcescens. In this study, phage SALSA (vB_SmaP-SALSA), with lytic activity against clinical isolates of S. marcescens, was isolated from effluent. Besides phage characterization, the aim of this study was to evaluate whether a synergistic effect between the antibiotic ampicillin/sulbactam (SAM) and phage can be achieved despite intrinsic drug resistance. Phage SALSA belongs to the Podoviridae family and genome-wide treeing analysis groups this phage within the phylogenetic radiation of T7-like viruses. The genome of Phage SALSA consists of 39,933 bp, which encode for 49 open reading frames. Phage SALSA was able to productively lyse 5 out of 20 clinical isolates (25%). A bacterial challenge with phage alone in liquid medium revealed that an initial strong bacterial decline was followed by bacterial re-growth, indicating the emergence of phage resistance. In contrast, the combination of SAM and phage, together at various concentrations, caused a complete bacterial eradication, confirmed by absorbance measurements and the absence of colony forming units after plating. The data show that it is principally possible to tackle the axiomatic condition of intrinsic drug resistance with a dual antimicrobial approach, which could be extended to other clinically relevant bacteria.
Collapse
Affiliation(s)
- Lorenz Weber
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.W.); (M.J.)
| | - Mathias Jansen
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.W.); (M.J.)
| | - Alex Krüttgen
- Laboratory Diagnostic Center, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Eva Miriam Buhl
- Electron Microscopy Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Hans-Peter Horz
- Institute of Medical Microbiology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (L.W.); (M.J.)
- Correspondence:
| |
Collapse
|
7
|
Dai Y, Li C, Yi J, Qin Q, Liu B, Qiao L. Plasmonic Colloidosome-Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level. Anal Chem 2020; 92:8051-8057. [PMID: 32362117 DOI: 10.1021/acs.analchem.0c00494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuchen Dai
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Chenyu Li
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Changhai Road 168, Shanghai, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| |
Collapse
|
8
|
Xie X, Lv R, Yang C, Song Y, Yan Y, Cui Y, Yang R. Soft sweep development of resistance in Escherichia coli under fluoroquinolone stress. J Microbiol 2019; 57:1056-1064. [PMID: 31555989 DOI: 10.1007/s12275-019-9177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Abstract
We employed a stepwise selection model for investigating the dynamics of antibiotic-resistant variants in Escherichia coli K-12 treated with increasing concentrations of ciprofloxacin (CIP). Firstly, we used Sanger sequencing to screen the variations in the fluoquinolone target genes, then, employed Illumina NGS sequencing for amplicons targeted regions with variations. The results demonstrated that variations G81C in gyrA and K276N and K277L in parC are standing resistance variations (SRVs), while S83A and S83L in gyrA and G78C in parC were emerging resistance variations (ERVs). The variants containing SRVs and/or ERVs were selected successively based on their sensitivities to CIP. Variant strain 1, containing substitution G81C in gyrA, was immediately selected following ciprofloxacin exposure, with obvious increases in the parC SRV, and parC and gyrA ERV allele frequencies. Variant strain 2, containing the SRVs, then dominated the population following a 20× increase in ciprofloxacin concentration, with other associated allele frequencies also elevated. Variant strains 3 and 4, containing ERVs in gyrA and parC, respectively, were then selected at 40× and 160× antibiotic concentrations. Two variants, strains 5 and 6, generated in the selection procedure, were lost because of higher fitness costs or a lower level of resistance compared with variants 3 and 4. For the second induction, all variations/indels were already present as SRVs and selected out step by step at different passages. Whatever the first induction or second induction, our results confirmed the soft selective sweep hypothesis and provided critical information for guiding clinical treatment of pathogens containing SRVs.
Collapse
Affiliation(s)
- Xianxing Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,Huadong Research Institute for Medicine and Biotechnics, Nanjing, P. R. China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
| |
Collapse
|
9
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
10
|
He S, Hong X, Huang T, Zhang W, Zhou Y, Wu L, Yan X. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry. Methods Appl Fluoresc 2017; 5:024002. [DOI: 10.1088/2050-6120/aa64e4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Yang X, Zhou X, Zhu M, Xing D. Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens Bioelectron 2016; 91:238-245. [PMID: 28013018 DOI: 10.1016/j.bios.2016.11.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/26/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
Pathogens pose a significant threat to public health worldwide. Despite many technological advances in the rapid diagnosis of pathogens, sensitive pathogen detection remains challenging because target pathogenic bacteria usually exist in complex samples at very low concentrations. Here, the construction of multivalent brush-like magnetic nanoprobes and their application for the efficient enriching of pathogens are demonstrated. Brush-like magnetic nanoprobes were constructed by modification with poly-L-lysine (PLL) onto amino-modified magnetic beads, followed by coupling of PEG (amine-PEG5000-COOH) to the amine sites of PLL. Subsequently, vancomycin (Van), a small-molecule antibiotic with affinity to the terminal peptide (D-alanyl-D-alanine) on the cell wall of Gram-positive bacteria, was conjugated to the carboxyl of the PEG. The use of multivalent brush-like magnetic nanoprobes (Van-PEG-PLL-MNPs) results in a high enrichment efficiency (>94%) and satisfactory purity for Listeria monocytogenes (employed as a model) within 20min, even at bacterial concentrations of only 102cfumL-1. Integrated with the enrichment of the Van-PEG-PLL-MNP nano-platform and electrochemiluminescence (ECL) detection, Listeria monocytogenes can be rapidly and accurately detected at levels as low as 10cfumL-1. The approach described herein holds great potential for realizing rapid and sensitive pathogen detection in clinical samples.
Collapse
Affiliation(s)
- Xiaoke Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Minjun Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
12
|
Léonard L, Bouarab Chibane L, Ouled Bouhedda B, Degraeve P, Oulahal N. Recent Advances on Multi-Parameter Flow Cytometry to Characterize Antimicrobial Treatments. Front Microbiol 2016; 7:1225. [PMID: 27551279 PMCID: PMC4976717 DOI: 10.3389/fmicb.2016.01225] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The investigation on antimicrobial mechanisms is a challenging and crucial issue in the fields of food or clinical microbiology, as it constitutes a prerequisite to the development of new antimicrobial processes or compounds, as well as to anticipate phenomenon of microbial resistance. Nowadays it is accepted that a cells population exposed to a stress can cause the appearance of different cell populations and in particular sub-lethally compromised cells which could be defined as viable but non-culturable (VBNC). Recent advances on flow cytometry (FCM) and especially on multi-parameter flow cytometry (MP-FCM) provide the opportunity to obtain high-speed information at real time on damage at single-cell level. This review gathers MP-FCM methodologies based on individual and simultaneous staining of microbial cells employed to investigate their physiological state following different physical and chemical antimicrobial treatments. Special attention will be paid to recent studies exploiting the possibility to corroborate MP-FCM results with additional techniques (plate counting, microscopy, spectroscopy, molecular biology techniques, membrane modeling) in order to elucidate the antimicrobial mechanism of action of a given antimicrobial treatment or compound. The combination of MP-FCM methodologies with these additional methods is namely a promising and increasingly used approach to give further insight in differences in microbial sub-population evolutions in response to antimicrobial treatments.
Collapse
Affiliation(s)
- Lucie Léonard
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Lynda Bouarab Chibane
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Balkis Ouled Bouhedda
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Pascal Degraeve
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| | - Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d'Accueil n°3733, IUT Lyon 1 Bourg en Bresse, France
| |
Collapse
|
13
|
Zothanpuia, Passari AK, Gupta VK, Singh BP. Detection of antibiotic-resistant bacteria endowed with antimicrobial activity from a freshwater lake and their phylogenetic affiliation. PeerJ 2016; 4:e2103. [PMID: 27330861 PMCID: PMC4906672 DOI: 10.7717/peerj.2103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance poses a serious challenge to global public health. In this study, fifty bacterial strains were isolated from the sediments of a freshwater lake and were screened for antibiotic resistance. Out of fifty isolates, thirty-three isolates showed resistance against at least two of the selected antibiotics. Analysis of 16S rDNA sequencing revealed that the isolates belonged to ten different genera, namely Staphylococcus(n = 8), Bacillus(n = 7), Lysinibacillus(n = 4), Achromobacter(n=3), bacterium(n = 3), Methylobacterium(n = 2), Bosea(n = 2), Aneurinibacillus(n = 2), Azospirillum(n = 1), Novosphingobium(n = 1). Enterobacterial repetitive intergenic consensus (ERIC) and BOX-PCR markers were used to study the genetic relatedness among the antibiotic resistant isolates. Further, the isolates were screened for their antimicrobial activity against bacterial pathogens viz., Staphylococcus aureus(MTCC-96), Pseudomonas aeruginosa(MTCC-2453) and Escherichia coli(MTCC-739), and pathogenic fungi viz., Fusarium proliferatum (MTCC-286), Fusarium oxysporum (CABI-293942) and Fusarium oxy. ciceri (MTCC-2791). In addition, biosynthetic genes (polyketide synthase II (PKS-II) and non-ribosomal peptide synthetase (NRPS)) were detected in six and seven isolates, respectively. This is the first report for the multifunctional analysis of the bacterial isolates from a wetland with biosynthetic potential, which could serve as potential source of useful biologically active metabolites.
Collapse
Affiliation(s)
- Zothanpuia
- Department of Biotechnology, Mizoram University , Aizawl , Mizoram , India
| | - Ajit K Passari
- Department of Biotechnology, Mizoram University , Aizawl , Mizoram , India
| | - Vijai K Gupta
- Molecular Glyco-biotechnology Group, University of Ireland , Galway , Ireland , UK
| | - Bhim P Singh
- Department of Biotechnology, Mizoram University , Aizawl , Mizoram , India
| |
Collapse
|