1
|
Qin J, Zhang J, Fan G, Wang X, Zhang Y, Wang L, Zhang Y, Guo Q, Zhou J, Zhang W, Ma J. Cold Atmospheric Plasma Activates Selective Photothermal Therapy of Cancer. Molecules 2022; 27:molecules27185941. [PMID: 36144674 PMCID: PMC9502787 DOI: 10.3390/molecules27185941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the body’s systemic distribution of photothermal agents (PTAs), and to the imprecise exposure of lasers, photothermal therapy (PTT) is challenging to use in treating tumor sites selectively. Striving for PTT with high selectivity and precise treatment is nevertheless important, in order to raise the survival rate of cancer patients and lower the likelihood of adverse effects on other body sections. Here, we studied cold atmospheric plasma (CAP) as a supplementary procedure to enhance selectivity of PTT for cancer, using the classical photothermic agent’s gold nanostars (AuNSs). In in vitro experiments, CAP decreases the effective power of PTT: the combination of PTT with CAP at lower power has similar cytotoxicity to that using higher power irradiation alone. In in vivo experiments, combination therapy can achieve rapid tumor suppression in the early stages of treatment and reduce side effects to surrounding normal tissues, compared to applying PTT alone. This research provides a strategy for the use of selective PTT for cancer, and promotes the clinical transformation of CAP.
Collapse
Affiliation(s)
- Jiamin Qin
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingqi Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Guojuan Fan
- Department of Skin, Weifang Hospital of Traditional Chinese Medicine, Weifang 261000, China
| | - Xiaoxia Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuzhong Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ling Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Qingfa Guo
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jinlong Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| |
Collapse
|
3
|
Borghi FF, Bean PA, Evans MDM, van der Laan T, Kumar S, Ostrikov K. Nanostructured Graphene Surfaces Promote Different Stages of Bone Cell Differentiation. NANO-MICRO LETTERS 2018; 10:47. [PMID: 30393696 PMCID: PMC6199093 DOI: 10.1007/s40820-018-0198-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Nanostructured graphene films were used as platforms for the differentiation of Saos-2 cells into bone-like cells. The films were grown using the plasma-enhanced chemical vapor deposition method, which allowed the production of both vertically and horizontally aligned carbon nanowalls (CNWs). Modifications of the technique allowed control of the density of the CNWs and their orientation after the transfer process. The influence of two different topographies on cell attachment, proliferation, and differentiation was investigated. First, the transferred graphene surfaces were shown to be noncytotoxic and were able to support cell adhesion and growth for over 7 days. Second, early cell differentiation (identified by cellular alkaline phosphatase release) was found to be enhanced on the horizontally aligned CNW surfaces, whereas mineralization (identified by cellular calcium production), a later stage of bone cell differentiation, was stimulated by the presence of the vertical CNWs on the surfaces. These results show that the graphene coatings, grown using the presented method, are biocompatible. And their topographies have an impact on cell behavior, which can be useful in tissue engineering applications.
Collapse
Affiliation(s)
- F F Borghi
- Plasma Nanoscience, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- CSIRO Manufacturing, P.O. Box 52, North Ryde, NSW, 2113, Australia
- Brazilian Centre for Physics Research (CBPF), Rua Dr. Xavier Sigaud - 150, Urca, Rio de Janeiro, RJ, CEP 22290180, Brazil
| | - P A Bean
- CSIRO Manufacturing, P.O. Box 52, North Ryde, NSW, 2113, Australia
| | - M D M Evans
- CSIRO Manufacturing, P.O. Box 52, North Ryde, NSW, 2113, Australia
| | - T van der Laan
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW, 2070, Australia
| | - S Kumar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW, 2070, Australia
| | - K Ostrikov
- Plasma Nanoscience, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- CSIRO-QUT Joint Sustainable Processes and Devices Laboratory, Commonwealth Scientific and Industrial Research Organization, P.O. Box 218, Lindfield, NSW, 2070, Australia.
| |
Collapse
|
4
|
Qin W, Li Y, Teng Y, Qin T. Hydrogen bond-assisted synthesis of MoS2/reduced graphene oxide composite with excellent electrochemical performances for lithium and sodium storage. J Colloid Interface Sci 2018; 512:826-833. [DOI: 10.1016/j.jcis.2017.10.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/13/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022]
|