1
|
Gordón Pidal JM, Moreno-Guzmán M, Montero-Calle A, Valverde A, Pingarrón JM, Campuzano S, Calero M, Barderas R, López MÁ, Escarpa A. Micromotor-based electrochemical immunoassays for reliable determination of amyloid-β (1-42) in Alzheimer's diagnosed clinical samples. Biosens Bioelectron 2024; 249:115988. [PMID: 38194814 DOI: 10.1016/j.bios.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Alzheimer's disease (AD), in addition to being the most common cause of dementia, is very difficult to diagnose, with the 42-amino acid form of Aβ (Aβ-42) being one of the main biomarkers used for this purpose. Despite the enormous efforts made in recent years, the technologies available to determine Aβ-42 in human samples require sophisticated instrumentation, present high complexity, are sample and time-consuming, and are costly, highlighting the urgent need not only to develop new tools to overcome these limitations but to provide an early detection and treatment window for AD, which is a top-challenge. In recent years, micromotor (MM) technology has proven to add a new dimension to clinical biosensing, enabling ultrasensitive detections in short times and microscale environments. To this end, here an electrochemical immunoassay based on polypyrrole (PPy)/nickel (Ni)/platinum nanoparticles (PtNPs) MM is proposed in a pioneering manner for the determination of Aβ-42 in left prefrontal cortex brain tissue, cerebrospinal fluid, and plasma samples from patients with AD. MM combines the high binding capacity of their immunorecognition external layer with self-propulsion through the catalytic generation of oxygen bubbles in the internal layer due to decomposition of hydrogen peroxide as fuel, allowing rapid bio-detection (15 min) of Aβ-42 with excellent selectivity and sensitivity (LOD = 0.06 ng/mL). The application of this disruptive technology to the analysis of just 25 μL of the three types of clinical samples provides values concordant with the clinical values reported, thus confirming the potential of the MM approach to assist in the reliable, simple, fast, and affordable diagnosis of AD by determining Aβ-42.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, s/n, 28040, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Alejandro Valverde
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain
| | - Susana Campuzano
- Department of Analytical Chemistry, Faculty of Chemistry Science, Complutense University of Madrid, Pza. de las Ciencias 2, Madrid, 28040, Spain.
| | - Miguel Calero
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Majadahonda, Madrid, 28220, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain; Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
2
|
Liu X, Su X, Chen M, Xie Y, Li M. Self-calibrating surface-enhanced Raman scattering-lateral flow immunoassay for determination of amyloid-β biomarker of Alzheimer's disease. Biosens Bioelectron 2024; 245:115840. [PMID: 37988777 DOI: 10.1016/j.bios.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Rapid early diagnosis of Alzheimer's disease (AD) is critical for its effective and prompt treatment since the clinically available treatments can only relieve the symptoms or slow the disease progression. However, it is still a grand challenge to accurately diagnose AD at its early stage because of the indiscernible early symptoms and the lack of sensitive detection tools. Here, we develop a self-calibrating surface-enhanced Raman scattering (SERS)-lateral flow immunoassay (LFIA) biosensor for quantitative analysis of amyloid-β1-42 (Aβ1-42) biomarker in biofluids, enabling accurate AD diagnosis. The designed SERS-LFIA biosensor makes full use of the unique aspects of the LFIA format and the SERS technique to quantify the Aβ1-42 level in complex biofluids with high sensitivity, excellent anti-interference capability, low-cost, and operation simplicity. The key aspect of the design of this biosensor is that internal standard (IS)-SERS nanoparticles are embedded in the test line of the test strip as a self-calibration unit for correction of fluctuations of SERS signals caused by various external factors such as test parameters and sample heterogeneity. We demonstrate significant improvement of the detection performance of the SERS-LFIA biosensor for ratiometric quantification of Aβ1-42 owing to the built-in IS in the test line. We expect that the present IS-based biosensing strategy provides a promising tool for accurate AD diagnosis and longitudinal monitoring of therapeutic response with great promises for clinical translation.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xiaoming Su
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Mingyang Chen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
3
|
Li Y, Chen Z, Li W, Zhang F, Yang X, Ding C. Peptide-antifouling interface for monitoring β-amyloid based on electrochemiluminescence resonance energy transfer. Talanta 2024; 267:125229. [PMID: 37757695 DOI: 10.1016/j.talanta.2023.125229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/28/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
In this study, a novel antifouling electrochemiluminescence (ECL) analytical platform has been developed for the highly sensitive quantification of β-amyloid (Aβ) peptides based on the ECL resonance energy transfer (ECL-RET) mechanism. Specifically, glassy carbon electrodes (GCE) were initially coated with graphite-phase carbon nitride (g-C3N4) nanosheets, followed by the electropolymerization of polyaniline (PANI) onto the electrode surface. Subsequently, a promising peptide motif candidate (COOH-CPPPPDKDKDKDKKLVFF) was immobilized onto the PANI-modified electrode, functioning as a critical component for both antifouling and specific recognition of full-length Aβ peptides. Furthermore, this peptide motif demonstrated inhibitory effects on Aβ aggregation and dissociation. Upon immobilization of the peptide motif, Aβ aptamer-CdS QDs were bound to the electrode surface through peptide-specific interactions with Aβ, thereby facilitating the highly sensitive ECL detection of Aβ. Under the optimal conditions, the proposed biosensor exhibited an Aβ detection range from 0.1 pM to 100 nM with a detection limit of 16.1 fM. As such, this innovative platform offers a straightforward approach to antifouling, quantification, and monitoring of Aβ concentrations in the blood samples.
Collapse
Affiliation(s)
- Yinan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, China
| | - Zixuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, China
| | - Wen Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, China
| | - Fei Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, China
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, China.
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE. College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
4
|
Prasanna AM, Sen P. Recent Developments of Hybrid Fluorescence Techniques: Advances in Amyloid Detection Methods. Curr Protein Pept Sci 2024; 25:667-681. [PMID: 38715332 DOI: 10.2174/0113892037291597240429094515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 09/21/2024]
Abstract
Amyloid fibrils are formed from various pathological proteins. Monitoring their aggregation process is necessary for early detection and treatment. Among the available detection techniques, fluorescence is simple, intuitive, and convenient due to its sensitive and selective mode of detection. It has certain disadvantages like poor photothermal stability and detection state limitation. Research has focused on minimising the limitation by developing hybrid fluorescence techniques. This review focuses on the two ways fluorescence (intrinsic and extrinsic) has been used to monitor amyloid fibrils. In intrinsic/label free fluorescence: i) The fluorescence emission through aromatic amino acid residues like phenylalanine (F), tyrosine (Y) and tryptophan (W) is present in amyloidogenic peptides/protein sequence. And ii) The structural changes from alpha helix to cross-β-sheet structures during amyloid formation contribute to the fluorescence emission. The second method focuses on the use of extrinsic fluorophores to monitor amyloid fibrils i) organic dyes/small molecules, ii) fluorescent tagged proteins, iii) nanoparticles, iv) metal complexes and v) conjugated polymers. All these fluorophores have their own limitations. Developing them into hybrid fluorescence techniques and converting it into biosensors can contribute to early detection of disease.
Collapse
Affiliation(s)
- A Miraclin Prasanna
- Centre for Bio Separation Technology (CBST), School of Biosciences and Technology, VIT, Vellore, 632014, Tamil Nadu, India
| | - Priyankar Sen
- Centre for Bio Separation Technology (CBST), School of Biosciences and Technology, VIT, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Gao Y, Guo J, Zhang F, Li Y. Safety Analysis of Bapineuzumab in the Treatment of Mild to Moderate Alzheimer's Disease: A Systematic Review and Meta-Analysis. Comb Chem High Throughput Screen 2024; 27:40-47. [PMID: 37076966 DOI: 10.2174/1386207326666230419095813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Alzheimer's disease affects millions of people worldwide, and very few drugs are available for its treatment. Monoclonal antibodies have shown promising effects in the treatment of various types of diseases. Bapineuzumab is one of the humanized monoclonal antibodies, which have shown promising effects in AD patients. Bapineuzumab has shown efficacy in the treatment of mild to moderate Alzheimer's disease. However, its safety is still unclear. OBJECTIVE Thus, the main objective of the current study is to find out the exact safety profile of bapineuzumab in the treatment of mild to moderate Alzheimer's disease. METHODS We performed a web-based literature search of PubMed and clinical trial websites using the relevant keywords. Data were extracted from eligible records, and the risk ratio (RR) was calculated with a 95% confidence interval (CI). All the analyses were performed using Review Manager software (version 5.3 for windows). Heterogeneity was measured by Chi-square and I-square tests. RESULTS Non-significant association of bapineuzumab with serious treatment-emergent adverse events [RR: 1.11 (0.92, 1.35)], headache [RR: 1.03 (0.81, 1.32)], delirium [RR: 2.21 (0.36, 13.53)], vomiting [RR: 0.92 (0.55, 1.55)], hypertension [RR: 0.49 (0.12, 2.12)], convulsions [RR:2.23 (0.42, 11.71)], falls [RR: 0.98 (0.80, 1.21)], fatal AEs [RR: 1.18 (0.59, 2.39)], and neoplasms [RR:1.81 (0.07, 49.52)] was reported; however, a significant association was found with vasogenic edema [RR: 22.58 (3.48, 146.44)]. CONCLUSION Based on available evidence, bapineuzumab is found to be safe in the treatment of AD patients. However, vasogenic edema should be considered.
Collapse
Affiliation(s)
- Yaqi Gao
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
- College of Health Care, Sehan University, Yeongam-gun, 58447, Korea
| | - Jing Guo
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
| | - Fang Zhang
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
| | - Yanfang Li
- College of Nursing, Hebi Polytechnic, Hebi, Henan, 458030 China
| |
Collapse
|
6
|
Abidi SMS, Sharma C, Randhawa S, Shukla AK, Acharya A. A review on nanotechnological perspective of "the amyloid cascade hypothesis" for neurodegenerative diseases. Int J Biol Macromol 2023; 253:126821. [PMID: 37690655 DOI: 10.1016/j.ijbiomac.2023.126821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration of neurons which deteriorates the brain functions. An early detection of the onset of NDs is utmost important, as it will provide the fast treatment strategies to prevent further progression of the disease. Conventionally, accurate diagnosis of the brain related disorders is difficult in their early phase. To solve this problem, nanotechnology based neurofunctional imaging and biomarker detection techniques have been developed which allows high specificity and sensitivity towards screening and diagnosis of NDs. Another challenge to treat the brain related disorders is to overcome the complex integrity of blood-brain-barrier (BBB) for the delivery of theranostic agents. Fortunately, utilization of nanomaterials has been pursued as promising strategy to address this challenge. Herein, we critically highlighted the recent improvements in the field of neurodiagnostic and therapeutic approaches involving innovative strategies for diagnosis, and inhibition of protein aggregates. We have provided particular emphasis on the use of nanotechnology which can push forward the blooming research growth in this field to win the battle against devastating NDs.
Collapse
Affiliation(s)
- Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Peng L, Min W, Chen R, Zhang L, Shen B, Xu W, Liu C. PdPtB Electrochemiluminescence Nanoenhancer and SiC@Au-PEDOT Nanowires-Based Detection of β-Amyloid Oligomers in Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59189-59198. [PMID: 38091553 DOI: 10.1021/acsami.3c14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
β-Amyloid oligomers (AβOs) are promising biomarkers for the diagnosis of Alzheimer's disease (AD). The present research introduces a novel electrochemiluminescence (ECL) immunosensor based on PdPtB nanoenhancer and SiC@Au-PEDOT nanowires (NWs) for the specific and ultrasensitive detection of AβOs. The PdPtB nanoenhancer exhibited excellent oxidase-like catalytic activity with in situ generation of reactive oxygen species (ROS) to enhance luminol ECL in neutral media. In addition, SiC@Au-PEDOT NWs were utilized as a biocompatible and conductive substrate for the modification of the glassy carbon electrode (GCE). With this design, the ECL immunosensor showed outstanding AβOs analytical performance without exogenous coreactant. The ECL immunosensor demonstrated a favorable linear range of 20 pM to 20 nM and a detection limit of 10 pM under optimized conditions with potential straightforward clinical application. In general, the developed ECL immunosensor provides a promising strategy for the early diagnosis of AD.
Collapse
Affiliation(s)
- Lingshuang Peng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiziyang Min
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Queen Mary School, Nanchang University, Nanchang 330036, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Changjin Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
8
|
Bu Y, Wang K, Yang X, Nie G. Sensitive dual-mode sensing platform for Amyloid β detection: Combining dual Z-scheme heterojunction enhanced photoelectrochemistry analysis and dual-wavelength ratiometric electrochemiluminescence strategy. Biosens Bioelectron 2023; 237:115507. [PMID: 37437453 DOI: 10.1016/j.bios.2023.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
As a tumor biomarker, the accumulation of amyloid β oligomers (Aβo) in the brain has been suggested as a key feature in the pathogenesis and progression of Alzheimer's disease (AD). In this work, we designed a novel photoelectrochemical (PEC) and electrochemiluminescence resonance energy transfer (ECL-RET) dual-mode biosensor to achieve ultra-sensitive detection of Aβo. Specifically, the electrode surface modified Carbon Dots (C Dots) and the electrodeposited polyaniline (PANI) film formed a Z-scheme heterojunction reversing the photocurrent signal, and then the Aβo specific recognition peptide was attached to the surface via amide bonding between the amino group of PANI and carbonyl group of peptide. After that, in the presence of CdTe labeled specific recognition aptamer for Aβ (CdTe-Apt), Aβo was captured to construct a sandwich-type biosensor and exhibited a significantly enhanced cathodic photocurrent response because the formed dual Z-scheme heterojunction promoted charge separation efficiency. Interestingly, the proposed biosensor also caused a ratiometric change in the ECL intensity at 555 nm and 640 nm. Therefore, the developed biosensor achieved dual-mode detection of Aβo, where the PEC detection range of Aβo was from 10 fM to 0.1 μM (with a detection limit of 4.27 fM) and the ECL method provided a linear detection range of 10 fM to 10 nM (with a detection limit of 6.41 fM). The stability and reliability of the experimental results indicate that this has been a promising biosensing pattern and could be extended to the analysis of other biomarkers.
Collapse
Affiliation(s)
- Yuwei Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Kun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
9
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
10
|
Chen M, Man Y, Xu S, Wu H, Ling P, Gao F. A label-free dually-amplified aptamer sensor for the specific detection of amyloid-beta peptide oligomers in cerebrospinal fluids. Anal Chim Acta 2023; 1266:341298. [PMID: 37244656 DOI: 10.1016/j.aca.2023.341298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
Amyloid-beta peptide oligomer (Aβo) is widely acknowledged to be associated with Alzheimer's disease (AD). The immediate and accurate detection of Aβo may provide the index for tracking the progress of the state of the disease, as well as some useful information for investigating the pathology of AD. In this work, based on a triple helix DNA which triggers a series of circular amplified reactions in the presence of Aβo, we designed a simple and label-free colorimetric biosensor with dually-amplified signal for the specific detection of Aβo. The sensor displays some advantages including high specificity, high sensitivity, low detection limit down to 0.23 pM, and wide detection range with three orders of magnitude from 0.3472 to 694.44 pM. Furthermore, the proposed sensor was successfully applied for detecting Aβo in artificial and real cerebrospinal fluids with satisfactory results, suggesting the potential application of the proposed sensor for state-monitoring and pathological studies of AD.
Collapse
Affiliation(s)
- Miao Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yizhi Man
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Shilin Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Hongjing Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
11
|
Wang C, Liu M, Zhang D, Li P, Wang D, Sun S, Wei W. Detection of β-amyloid peptide aggregates by quartz crystal microbalance based on dual-aptamer assisted signal amplification. Anal Chim Acta 2023; 1244:340857. [PMID: 36737146 DOI: 10.1016/j.aca.2023.340857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
β-amyloid peptide (Aβ) aggregates are regarded as a typical neuropathology hallmark for the diagnosis of Alzheimer's disease (AD). Aβ40 aggregates include soluble oligomers (Aβ40O) and insoluble fibrils (Aβ40F). Both of them can simultaneously bind to two different kinds of its aptamer (Apt1 and Apt2). As a mass-sensitive sensing platform, quartz crystal microbalance (QCM) converts changes in mass on the Au chip surface into frequency shift. Here, a dual-aptamer assisted Aβ40 aggregates assay was developed. Taking Aβ40O detection as an example, Apt2 was modified on the surface of Au chip by Au-S bond. Subsequently, the solution consisted of Aβ40O and gold nanoparticles-Apt1 (AuNPs-Apt1) were injected into the QCM chamber. As a result, Aβ40O was specifically recognized and captured by Apt2. AuNPs-Apt1 were also combined on the surface of the Au chip because Aβ40O can simultaneously bind to Apt1. Then, a significant frequency shift occurred because of the large weight of AuNPs. Similarly, this procedure can be used to detect Aβ40F. This QCM biosensor was able to detect Aβ40O with a range of 0.2-10 pM with a detection limit of 0.11 pM, while the linear range for Aβ40F was 0.1-10 pM with a detection limit of 0.02 pM. This QCM biosensor was simple and highly sensitive, which provided a new method for Aβ40 aggregates detection.
Collapse
Affiliation(s)
- Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Mengke Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Duoduo Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
12
|
Qu W, Zhang L, Liang X, Yu Z, Huang H, Zhao J, Guo Y, Zhou X, Xu S, Luo H, Luo X. Elevated Plasma Oligomeric Amyloid β-42 Is Associated with Cognitive Impairments in Cerebral Small Vessel Disease. BIOSENSORS 2023; 13:bios13010110. [PMID: 36671945 PMCID: PMC9855662 DOI: 10.3390/bios13010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 05/31/2023]
Abstract
Due to the heterogeneity of amyloid β-42 (Aβ42) species, the potential correlation between plasma oligomeric Aβ42 (oAβ42) and cognitive impairments in cerebral small vessel disease (CSVD) remains unclear. Herein, a sandwich ELISA for the specific detection of Aβ42 oligomers (oAβ42) and total Aβ42 (tAβ42) was developed based on sequence- and conformation-specific antibody pairs for the evaluation of plasma samples from a Chinese CSVD community cohort. After age and gender matching, 3-Tesla magnetic resonance imaging and multidimensional cognitive assessment were conducted in 134 CSVD patients and equal controls. The results showed that plasma tAβ42 and oAβ42 levels were significantly elevated in CSVD patients. By regression analysis, these elevations were correlated with the presence of CSVD and its imaging markers (i.e., white matter hyperintensities). Plasma Aβ42 tests further strengthened the predictive power of vascular risk factors for the presence of CSVD. Relative to tAβ42, oAβ42 showed a closer correlation with memory domains evaluated by neuropsychological tests. In conclusion, this sensitive ELISA protocol facilitated the detection of plasma Aβ42; Aβ42, especially its oligomeric form, can serve as a biosensor for the presence of CSVD and associated cognitive impairments represented by memory domains.
Collapse
Affiliation(s)
- Wensheng Qu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liding Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Zhiyuan Yu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Huang
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhao
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinping Guo
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xirui Zhou
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shabei Xu
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haiming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430070, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Xiang Luo
- Neurological Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
13
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
14
|
Biosensors for the detection of protein kinases: Recent progress and challenges. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Song G, Shui R, Wang D, Fang R, Yuan T, Li L, Feng J, Gao F, Shen Q, Gong J, Zheng F, Zhang M. Aptamer-conjugated graphene oxide-based surface assisted laser desorption ionization mass spectrometry for selective extraction and detection of Aβ1–42 in an Alzheimer’s disease SH-SY5 cell model. Front Aging Neurosci 2022; 14:993281. [PMID: 36204557 PMCID: PMC9530460 DOI: 10.3389/fnagi.2022.993281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
The generation and accumulation of amyloid-beta peptide (Aβ1–42) in amyloid plaques are key characteristics of Alzheimer’s disease (AD); thus, specific detection of Aβ1–42 is essential for the diagnosis and treatment of AD. Herein, an aptamer-conjugated graphene oxide (Apt-GO) sensor was synthesized by π-π and hydrophobic interactions using thiol poly (ethylene glycol) amine (SH-PEG-NH2) as a spacer unit. Then, it was applied to selective capture of Aβ1–42, and the resulting complex was directly analyzed by surface-assisted laser desorption ionization mass spectrometry (SALDI-MS). The results revealed that the Apt-GO could enhance the detection specificity and reduce non-specific adsorption. This method was validated to be sensitive in detecting Aβ1–42 at a low level in human serum (ca. 0.1 μM) within a linear range from 0.1 to 10 μM. The immobilizing amount of aptamer on the GO was calculated to be 36.1 nmol/mg (RSD = 11.5%). In conclusion, this Apt-GO-based SALDI-MS method was sensitive and efficient in selective extraction and detection of Aβ1–42, which proved to be a good option for early AD diagnosis.
Collapse
Affiliation(s)
- Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Ruofan Shui
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruosi Fang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Junli Feng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Feng Gao
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Feng Gao,
| | - Qing Shen
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Qing Shen, ,
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety/Key Laboratory of Alcoholic Beverages Quality and Safety of China Light Industry, Beijing Technology and Business University, Beijing, China
- Fuping Zheng,
| | - Manman Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Manman Zhang,
| |
Collapse
|
16
|
Wang H, Chen M, Sun Y, Xu L, Li F, Han J. Machine Learning-Assisted Pattern Recognition of Amyloid Beta Aggregates with Fluorescent Conjugated Polymers and Graphite Oxide Electrostatic Complexes. Anal Chem 2022; 94:2757-2763. [PMID: 35084168 DOI: 10.1021/acs.analchem.1c03623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Five fluorescent positively charged poly(para-aryleneethynylene) (P1-P5) were designed to construct electrostatic complexes C1-C5 with negatively charged graphene oxide (GO). The fluorescence of conjugated polymers was quenched by the quencher GO. Three electrostatic complexes were enough to distinguish between 12 proteins with 100% accuracy. Furthermore, using these sensor arrays, we could identify the levels of Aβ40 and Aβ42 aggregates (monomers, oligomers, and fibrils) via employing machine learning algorithms, making it an attractive strategy for early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Yimin Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211109, China
| | - Lian Xu
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Fei Li
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines and National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| |
Collapse
|
17
|
Feng Y, Liu G, La M, Liu L. Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles. Molecules 2022; 27:molecules27030615. [PMID: 35163874 PMCID: PMC8840628 DOI: 10.3390/molecules27030615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been regarded as one of the ideal targets for the development of antiviral drugs. The currently used methods for the probing of Mpro activity and the screening of its inhibitors require the use of a double-labeled peptide substrate. In this work, we suggested that the label-free peptide substrate could induce the aggregation of AuNPs through the electrostatic interactions, and the cleavage of the peptide by the Mpro inhibited the aggregation of AuNPs. This fact allowed for the visual analysis of Mpro activity by observing the color change of the AuNPs suspension. Furthermore, the co-assembly of AuNPs and peptide was achieved on the peptide-covered electrode surface. Cleavage of the peptide substrate by the Mpro limited the formation of AuNPs/peptide assembles, thus allowing for the development of a simple and sensitive electrochemical method for Mpro detection in serum samples. The change of the electrochemical signal was easily monitored by electrochemical impedance spectroscopy (EIS). The detection limits of the colorimetric and electrochemical methods are 10 and 0.1 pM, respectively. This work should be valuable for the development of effective antiviral drugs and the design of novel optical and electrical biosensors.
Collapse
Affiliation(s)
- Yunxiao Feng
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Gang Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450011, China
| | - Ming La
- College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China;
- Correspondence: (M.L.); (L.L.)
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
- Correspondence: (M.L.); (L.L.)
| |
Collapse
|
18
|
Ma W, Zhong C, Lin J, Chen Z, Li G, Tong W, Wu Y, Zhang L, Lin Z. Copper(II) ions-immobilized virus-like hollow covalent organic frameworks for highly efficient capture and sensitive analysis of amyloid beta-peptide 1-42 by MALDI-MS. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Hamd-Ghadareh S, Salimi A, Parsa S, Mowla SJ. Development of three-dimensional semi-solid hydrogel matrices for ratiometric fluorescence sensing of Amyloid β peptide and imaging in SH-SY5 cells: Improvement of point of care diagnosis of Alzheimer's disease biomarker. Biosens Bioelectron 2021; 199:113895. [PMID: 34968953 DOI: 10.1016/j.bios.2021.113895] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's is a neurodegenerative disease with high morbidity and mortality in the elderly, so, detection of its biomarker for definite diagnosis of Alzheimer's in the early stage of disease is a challenge. Amyloid beta peptide (Aβ) chosen as an Alzheimer's biomarker. Here, we developed novel, semi-solid, three-dimensional hydrogel matrices for ratiometric fluorescence detection of Aβ. This assay's great performance stems from the employment of a hybrid conjugate composed of Rhodamine B (RB), Carbon dots (CDs), and an Aβ probe entrapped in Polyvinyl alcohol (PVA), and then detection of fluorescence resonance energy transfer (FRET) that occurs in the presence of AuNP/target-Aβ, as a result of hybridization. The RB-CDs' fluorescence (at 582 nm and 675 nm under 430 nm excitation) is quenched in the presence of AuNPs, while the ratio of fluorescence (I582/I675) is increased by the addition of Aβ target, and shows a linear relationship in the range of 75 pM-250 nM, with a detection limit of 0.5 pM. Furthermore, the assay possesses strong selectivity for Aβ compared to other proteins, and different quantities of a human serum sample successfully analyzed with excellent sensitivity, satisfactory precision, and reliability. Due to distribution of Aβ in SH-SY5 human neuroblastoma cells, extending this UV-Vis-NIR full-range responsive CDs bio-probe to imaging of Aβ in cells. In both fixed and living SH-SY5 cells, the nanoprobe delivers a clear signal to the Aβ target. Because of its high sensitivity, selectivity, biocompatibility and affordability, this nanoprobe is a good option for early Alzheimer's disease diagnosis.
Collapse
Affiliation(s)
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Sara Parsa
- Faculty of Biological Sciences, Tarbiat Modarres University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Faculty of Biological Sciences, Tarbiat Modarres University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
20
|
Chang Y, Xia N, Huang Y, Sun Z, Liu L. In Situ Assembly of Nanomaterials and Molecules for the Signal Enhancement of Electrochemical Biosensors. NANOMATERIALS 2021; 11:nano11123307. [PMID: 34947656 PMCID: PMC8705329 DOI: 10.3390/nano11123307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 02/07/2023]
Abstract
The physiochemical properties of nanomaterials have a close relationship with their status in solution. As a result of its better simplicity than that of pre-assembled aggregates, the in situ assembly of nanomaterials has been integrated into the design of electrochemical biosensors for the signal output and amplification. In this review, we highlight the significant progress in the in situ assembly of nanomaterials as the nanolabels for enhancing the performances of electrochemical biosensors. The works are discussed based on the difference in the interactions for the assembly of nanomaterials, including DNA hybridization, metal ion-ligand coordination, metal-thiol and boronate ester interactions, aptamer-target binding, electrostatic attraction, and streptavidin (SA)-biotin conjugate. We further expand the range of the assembly units from nanomaterials to small organic molecules and biomolecules, which endow the signal-amplified strategies with more potential applications.
Collapse
Affiliation(s)
| | | | | | | | - Lin Liu
- Correspondence: (Z.S.); (L.L.)
| |
Collapse
|
21
|
Zhang Y, Zhao J, Yang G, He Y, Chen S, Yuan R. Ultrasensitive Detection of Amyloid β Oligomers Based on the "DD-A" FRET Binary Probes and Quadrivalent Cruciform DNA Nanostructure-Mediated Cascaded Amplifier. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32013-32021. [PMID: 34212714 DOI: 10.1021/acsami.1c07598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reported donor donor-acceptor ("DD-A") fluorescence resonance energy transfer (FRET) was typically achieved through random collisions and interactions of DNA molecules in the bulk solution, which has inevitable defects, including weak biological stability, slow reaction kinetics, and low hybridization efficiency. In order to overcome these deficiencies, this work developed a quadrivalent cruciform DNA nanostructure (qCDN)-mediated cascaded catalyzed hairpin assembly (CHA) amplifier for the fluorescence detection of amyloid β oligomer species (AβOs). First, four H1 and four H2 hairpins were assembled on one qCDN to obtain qCDNH1 and qCDNH2, respectively. In the presence of AβOs, strand C was released from the P1-C hybrid hairpin and then alternately opened qCDNH1 and qCDNH2 to trigger the qCDN-mediated CHA. As a result, double donors in H1 and one acceptor in H2 were mutually closed, and the porous DNA nanonet with a high loading of "DD-A" FRET binary probes was formed. The FRET efficiency was approximately 78%, and the initial reaction rate was 25-fold faster than the conventional CHA. The detection limit of AβOs was as low as 0.69 pM. The combination of the "DD-A" FRET binary probes and qCDN-mediated cascaded amplifier exhibited great promise for detecting biomarkers with trace levels.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
22
|
A highly sensitive and dual-readout immunoassay for norfloxacin in milk based on QDs-FM@ALP-SA and click chemistry. Talanta 2021; 234:122703. [PMID: 34364497 DOI: 10.1016/j.talanta.2021.122703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
A dual-readout immunoassay based on QDs-FM@ALP-SA and click chemistry was developed for quick and sensitive detection of norfloxacin (NOR), which is an important fluoroquinolone antibiotic. In the system, the NOR-biotin conjugate (NOR-Biotin) was synthesized by click chemistry for signal transformation, and alkaline phosphatase-labeled streptavidin (ALP-SA) was attached to quantum dot fluorescence microspheres (QDs-FM) by an activated ester method to form QDs-FM@ALP-SA for signal amplification. Here, QDs-FM was a dual-functional carrier: it was used not only as a chemiluminescence signal amplification carrier but also as a fluorescent signal due to its fluorescence character. The NOR antibody was coated on a 96-well chemiluminescence microtiter plate, and NOR-Biotin was bound to the antibody specifically. Then, QDs-FM@ALP-SA was combined with NOR-Biotin to develop a direct competition chemiluminescence/fluorescence immunoassay (dc-CLIA/FIA). The IC50 values were 0.345 and 1.206 ng/mL for dc-CLIA/FIA, respectively. The linear range was 0.013-12.48 ng/mL and 0.042-39.86 ng/mL, respectively. The recovery from the standard fortified blank milk samples was in the range of 86.44%-101.3%. Therefore, this method could be a useful tool for routine screening of NOR residues in milk.
Collapse
|
23
|
Wang XL, Han X, Tang XY, Chen XJ, Li HJ. A Review of Off-On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications. J Biomed Nanotechnol 2021; 17:1249-1272. [PMID: 34446130 DOI: 10.1166/jbn.2021.3117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the development of nanomaterials, fluorescent nanoprobes have attracted enormous attention in the fields of chemical sensing, optical materials, and biological detection. In this paper, the advantages of "off-on" fluorescent nanoprobes in disease detection, such as high sensitivity and short response time, are attentively highlighted. The characteristics, sensing mechanisms, and classifications of disease-related target substances, along with applications of these nanoprobes in cancer diagnosis and therapy are summarized systematically. In addition, the prospects of "off-on" fluorescent nanoprobe in disease detection are predicted. In this review, we presented information from all the papers published in the last 5 years discussing "off-on" fluorescent nanoprobes. This review was written in the hopes of being useful to researchers who are interested in further developing fluorescent nanoprobes. The characteristics of these nanoprobes are explained systematically, and data references and supports for biological analysis, clinical drug improvement, and disease detection have been provided appropriately.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Ying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Jun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Han-Jun Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Abbas M. Potential Role of Nanoparticles in Treating the Accumulation of Amyloid-Beta Peptide in Alzheimer's Patients. Polymers (Basel) 2021; 13:1051. [PMID: 33801619 PMCID: PMC8036916 DOI: 10.3390/polym13071051] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
The disorder of Alzheimer's is marked by progressive pathophysiological neurodegeneration. The amino acid peptides in the amyloid plaques found in the brains of people with Alzheimer's disease (AD) are known as amyloid-beta (Aβ). Current treatments are not curative, and the effects associated with AD are reduced. Improving treatment results involved the targeting of drugs at optimum therapeutic concentration. Nanotechnology is seen as an unconventional, modern technology that plays a key role in the treatment of Alzheimer's disease. Using nanoparticles, molecular detection, effective drug targeting, and their combination offer high sensitivity. The aim of this review is to shed light on the function and successful role of nanoparticles to resolve Aβ aggregation and thus to help cure Alzheimer's disease. The analysis divides these nanoparticles into three categories: polymer, lipid, and gold nanoparticles. A thorough comparison was then made between the nanoparticles, which are used according to their role, properties, and size in the procedure. The nanoparticles can prevent the accumulation of Aβ during the efficient delivery of the drug to the cells to treat Alzheimer's disease. Furthermore, this comparison demonstrated the ability of these nanoparticles to deal efficiently with Alzheimer's disease. The role of these nanoparticles varied from delivering the drug to brain cells to dealing with the disease-causing peptide.
Collapse
Affiliation(s)
- Mohamed Abbas
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Computers and Communications, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| |
Collapse
|
25
|
Qiu Z, Shen Q, Jiang C, Yao L, Sun X, Li J, Duan C, Li R, Li X, Gopinath SCB, Anbu P, Lakshmipriya T, Li X. Alzheimer's Disease Determination by a Dual Probe on Gold Nanourchins and Nanohorn Hybrids. Int J Nanomedicine 2021; 16:2311-2322. [PMID: 33776435 PMCID: PMC7989959 DOI: 10.2147/ijn.s302396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aβ) is a peptide involved in AD progression, and a high level of Aβ is highly correlated with severe AD. Identifying and quantifying Aβ levels helps in the early treatment of AD and reduces the factors associated with AD. Materials and Methods This research introduced a dual probe detection system involving aptamers and antibodies to identify Aβ. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized. Results This dual probe-modified surface enhanced the current flow during Aβ detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aβ peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aβ. Conclusion Aβ-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aβ.
Collapse
Affiliation(s)
- Zhengguo Qiu
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Qianhe Shen
- Department of Anesthesiology, Xi'an GemFlower Changqing Hospital, Xi'an, Shaanxi, 710200, People's Republic of China
| | - Chao Jiang
- The Third Department of Neurology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Li Yao
- Department of Neurology, The Hospital of Xidian Group, Xi'an, Shaanxi, 710077, People's Republic of China
| | - Xiaopeng Sun
- Department of Otolaryngology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Jing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710038, People's Republic of China
| | - Chongzhen Duan
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Rui Li
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Xiuli Li
- Department of Anesthesiology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712000, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000, Malaysia
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000, Malaysia
| | - Xu Li
- Department of Surgery and Anesthesiology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
26
|
Oyarzún MP, Tapia-Arellano A, Cabrera P, Jara-Guajardo P, Kogan MJ. Plasmonic Nanoparticles as Optical Sensing Probes for the Detection of Alzheimer's Disease. SENSORS (BASEL, SWITZERLAND) 2021; 21:2067. [PMID: 33809416 PMCID: PMC7998661 DOI: 10.3390/s21062067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), considered a common type of dementia, is mainly characterized by a progressive loss of memory and cognitive functions. Although its cause is multifactorial, it has been associated with the accumulation of toxic aggregates of the amyloid-β peptide (Aβ) and neurofibrillary tangles (NFTs) of tau protein. At present, the development of highly sensitive, high cost-effective, and non-invasive diagnostic tools for AD remains a challenge. In the last decades, nanomaterials have emerged as an interesting and useful tool in nanomedicine for diagnostics and therapy. In particular, plasmonic nanoparticles are well-known to display unique optical properties derived from their localized surface plasmon resonance (LSPR), allowing their use as transducers in various sensing configurations and enhancing detection sensitivity. Herein, this review focuses on current advances in in vitro sensing techniques such as Surface-enhanced Raman scattering (SERS), Surface-enhanced fluorescence (SEF), colorimetric, and LSPR using plasmonic nanoparticles for improving the sensitivity in the detection of main biomarkers related to AD in body fluids. Additionally, we refer to the use of plasmonic nanoparticles for in vivo imaging studies in AD.
Collapse
Affiliation(s)
- María Paz Oyarzún
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Andreas Tapia-Arellano
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Pablo Cabrera
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Pedro Jara-Guajardo
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, 8380000 Santiago, Chile; (M.P.O.); (A.T.-A.); (P.C.); (P.J.-G.)
- Advanced Center for Chronic Diseases (ACCDIS), Sergio Livingstone #1007, Independencia, 8380492 Santiago, Chile
| |
Collapse
|
27
|
Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease. Adv Clin Chem 2021; 103:135-190. [PMID: 34229849 DOI: 10.1016/bs.acc.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid plaques generated from the accumulation of amyloid-β peptides (Aβ) fibrils in the brain is one of the main hallmarks of Alzheimer's disease (AD), a most common neurodegenerative disorder. Aβ aggregation can produce neurotoxic oligomers and fibrils, which has been widely accepted as the causative factor in AD pathogenesis. Accordingly, both soluble oligomers and insoluble fibrils have been considered as diagnostic biomarkers for AD. Among the existing analytical methods, fluorometry using fluorescent probes has exhibited promising potential in quantitative detection and imaging of both soluble and insoluble Aβ species, providing a valuable approach for the diagnosis and drug development of AD. In this review, the most recent advances in the fluorescent probes for soluble or insoluble Aβ aggregates are discussed in terms of design strategy, probing mechanism, and potential applications. In the end, future research directions of fluorescent probes for Aβ species are also proposed.
Collapse
Affiliation(s)
- Yunhua Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Cen Ding
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Changhong Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, PR China.
| |
Collapse
|
28
|
Zhao J, Chang W, Liu L, Xing X, Zhang C, Meng H, Gopinath SCB, Lakshmipriya T, Chen Y, Liu Y. Graphene oxide-gold nanoparticle-aptamer complexed probe for detecting amyloid beta oligomer by ELISA-based immunoassay. J Immunol Methods 2020; 489:112942. [PMID: 33333060 DOI: 10.1016/j.jim.2020.112942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022]
Abstract
Highly sensitive and easy detection method for Alzheimer's disease (AD) with a suitable biomarker is mandatory for preventing the factors resulting from AD. This research reports a modified ELISA with graphene for the detection of AD biomarker amyloid beta (Aβ) oligomer. Gold nanoparticle (AuNP) conjugated aptamer was used as the capture probe and attached on ELISA-graphene oxide surface through the amine linker. Antibody was used as the detection molecule to reach the maximum detection of Aβ oligomer. Suitable level of APTMS (2%), size of AuNP (30 nm) and aptamer concentration (2 μM) were optimized. This sandwich pattern of aptamer-Aβ oligomer-antibody helps to reach the detection at 50 pM on the optimized ELISA surface and the control experiments in the absence of Aβ oligomer or anti-Aβ oligomer antibody did not show the significant optical detection at 492 nm, indicting the specific detection. Further, Aβ oligomer spiked artificial cerebrospinal fluid did not interfere the detection of Aβ oligomer, confirming the selective detection. This new and modified ELISA surface helps to reach the lower detection of Aβ oligomer and diagnose AD.
Collapse
Affiliation(s)
- Jing Zhao
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China.
| | - Wenlong Chang
- Endocrine laboratory, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Lu Liu
- Department of Clinical Psychology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Xiaoming Xing
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Chao Zhang
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Huihong Meng
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia; Institute of Nano Electronic Engineering, 01000 Kangar, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, 01000 Kangar, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yonggang Liu
- Department of First Neurology, Baoding No.1 Central hospital, Baoding, Hebei 071000, China.
| |
Collapse
|
29
|
Liao X, Zhang C, Shi Z, Shi H, Qian Y, Gao F. Signal-on and label-free electrochemical detection of amyloid β oligomers based on dual amplification induced hemin/G-quadruplex formation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Wang Z, Li S, Zhou C, Sun Y, Pang H, Liu W, Li X. Ratiometric fluorescent nanoprobe based on CdTe/SiO 2/folic acid/silver nanoparticles core-shell-satellite assembly for determination of 6-mercaptopurine. Mikrochim Acta 2020; 187:665. [PMID: 33205310 DOI: 10.1007/s00604-020-04628-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022]
Abstract
A sensitive and robust fluorescent assay of 6-MP is described which relies on the facile assembly of a fluorescence nanoprobe by design of silica nanosphere encapsulated CdTe quantum dots (CdTe QDs) as scaffold, coupling with chemically tethered folic acid (FA)-protected silver nanoparticles (AgNPs) that function as responsive element. In this way a stable ternary core-shell-satellite nanostructure with dual-emission signals can be established. On binding to the target molecules, 6-MP, FA molecules initially occupied by AgNPs are liberated to give dose-dependent fluorescence emission, which can further form a self-calibration ratiometric fluorescence assay using CdTe QDs as an internal reference. The nanoprobe color vividly changes from red to blue, enabling the direct visual detection. The linear concentration range is 0.15~50 μM with the detection limit of 67 nM. By virtue of the favorable selectivity and robust assays, the nanoprobe was applied to 6-MP detection in urine samples, with recoveries from 97.3 to 106% and relative standard deviations (RSD) less than 5%. Graphical abstract.
Collapse
Affiliation(s)
- Zhao Wang
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Shuting Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Chunyan Zhou
- Inorganic Chemistry Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Yingying Sun
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Hui Pang
- School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530031, People's Republic of China
| | - Wei Liu
- Biopharmaceutics and Pharmacokinetics Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xinchun Li
- Pharmaceutical Analysis Division, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, People's Republic of China.
| |
Collapse
|
31
|
g-C3N4-heme bound to amyloid β peptides: In-situ generation of the secondary co-reactant for dual-enhanced electrochemiluminescence assay of amyloid β detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre Iran University of Medical Sciences Tehran Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Dankook University Cheonan Republic of Korea
- Department of Biomaterials Science, School of Dentistry Dankook University Cheonan Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
33
|
Del Rio JA, Ferrer I. Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of " prion-like" Protein Assembly and Behavior. Front Bioeng Biotechnol 2020; 8:570692. [PMID: 33015021 PMCID: PMC7506036 DOI: 10.3389/fbioe.2020.570692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Human aging is accompanied by a relevant increase in age-associated chronic pathologies, including neurodegenerative and metabolic diseases. The appearance and evolution of numerous neurodegenerative diseases is paralleled by the appearance of intracellular and extracellular accumulation of misfolded proteins in affected brains. In addition, recent evidence suggests that most of these amyloid proteins can behave and propagate among neural cells similarly to infective prions. In order to improve understanding of the seeding and spreading processes of these "prion-like" amyloids, microfluidics and 3D lab-on-chip approaches have been developed as highly valuable tools. These techniques allow us to monitor changes in cellular and molecular processes responsible for amyloid seeding and cell spreading and their parallel effects in neural physiology. Their compatibility with new optical and biochemical techniques and their relative availability have increased interest in them and in their use in numerous laboratories. In addition, recent advances in stem cell research in combination with microfluidic platforms have opened new humanized in vitro models for myriad neurodegenerative diseases affecting different cellular targets of the vascular, muscular, and nervous systems, and glial cells. These new platforms help reduce the use of animal experimentation. They are more reproducible and represent a potential alternative to classical approaches to understanding neurodegeneration. In this review, we summarize recent progress in neurobiological research in "prion-like" protein using microfluidic and 3D lab-on-chip approaches. These approaches are driven by various fields, including chemistry, biochemistry, and cell biology, and they serve to facilitate the development of more precise human brain models for basic mechanistic studies of cell-to-cell interactions and drug discovery.
Collapse
Affiliation(s)
- Jose A Del Rio
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
34
|
Liu X, Zhang Q, Knoll W, Liedberg B, Wang Y. Rational Design of Functional Peptide-Gold Hybrid Nanomaterials for Molecular Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000866. [PMID: 32743897 DOI: 10.1002/adma.202000866] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Gold nanoparticles (AuNPs) have been extensively used for decades in biosensing-related development due to outstanding optical properties. Peptides, as newly realized functional biomolecules, are promising candidates of replacing antibodies, receptors, and substrates for specific molecular interactions. Both peptides and AuNPs are robust and easily synthesized at relatively low cost. Hence, peptide-AuNP-based bio-nano-technological approaches have drawn increasing interest, especially in the field of molecular targeting, cell imaging, drug delivery, and therapy. Many excellent works in these areas have been reported: demonstrating novel ideas, exploring new targets, and facilitating advanced diagnostic and therapeutic technologies. Importantly, some of them also have been employed to address real practical problems, especially in remote and less privileged areas. This contribution focuses on the application of peptide-gold hybrid nanomaterials for various molecular interactions, especially in biosensing/diagnostics and cell targeting/imaging, as well as for the development of highly active antimicrobial/antifouling coating strategies. Rationally designed peptide-gold nanomaterials with functional properties are discussed along with future challenges and opportunities.
Collapse
Affiliation(s)
- Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Qingwen Zhang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Wolfgang Knoll
- Austrian Institute of Technology, Giefinggasse 4, Vienna, 1210, Austria
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
35
|
Ultra-sensitive detection of commercial vitamin B9 and B12 by graphene nanobuds through inner filter effect. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Kim SH, Lee EH, Lee SC, Kim AR, Park HH, Son JW, Koh SH, Yoon MY. Development of peptide aptamers as alternatives for antibody in the detection of amyloid-beta 42 aggregates. Anal Biochem 2020; 609:113921. [PMID: 32828793 DOI: 10.1016/j.ab.2020.113921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) causes cognitive impairment and serious social isolation. However, there are no effective treatments and even no established confirmatory diagnostic tools for the disease. Amyloid beta (Aβ) aggregation in the brain is the best-known pathognomonic mechanism of AD, so various methods for Aβ detection have been developed for the diagnosis of this disease. We synthesized two novel, ultra-sensitive peptide probes specialized in detecting Aβ aggregates, and examined their potential for future diagnostic application. The peptides are produced through phage high-throughput screening (HTS) and amplified through a serial process called biopanning, which is a repeating method of elution and amplification of probes. We picked phages specific for amyloid from two kinds of phage display. The synthesized peptides were confirmed to have excellent binding affinity to Aβ aggregates, by immunohistochemical staining and western blotting using the brains of 3X transgenic (Tg) AD mice at different stages (5-7, 12-17 months old) of AD severity. In the present study, it was confirmed that newly developed amyloid-binding peptides could be used as novel probes for the detection of Aβ aggregates, which can be used for clinical diagnosis of AD in the future.
Collapse
Affiliation(s)
- Sang-Heon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea
| | - Sang-Choon Lee
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - A-Ru Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea
| | - Jeong-Woo Son
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea.
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
37
|
García-Chamé MÁ, Gutiérrez-Sanz Ó, Ercan-Herbst E, Haustein N, Filipiak MS, Ehrnhöfer DE, Tarasov A. A transistor-based label-free immunosensor for rapid detection of tau protein. Biosens Bioelectron 2020; 159:112129. [DOI: 10.1016/j.bios.2020.112129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
|
38
|
Zheng Y, Geng X, Yang X, Li S, Liu Y, Liu X, Wang Q, Wang K, Jia R, Xu Y. Exploring Interactions of Aptamers with Aβ 40 Amyloid Aggregates and Its Application: Detection of Amyloid Aggregates. Anal Chem 2020; 92:2853-2858. [PMID: 31916749 DOI: 10.1021/acs.analchem.9b05493] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The exhaustive investigating interactions between recognition probes and amyloid aggregates, especially simultaneous recognition events, are challenging and crucial for the design of biosensing probes and further diagnosis of amyloid diseases. In the present work, the interactions of aptamers (Apts) with β-amyloid (Aβ) aggregates were explored thoroughly by single-molecule force spectroscopy (SMFS). Indeed, it was found that the interaction of aptamer1 (Apt1)-amyloid aggregates was different from that of aptamer2 (Apt2)-Aβ40 aggregates at the single-molecule level. Especially, the interaction force of Apt1-Aβ40 fibril showed a double distinguishing Gaussian fitting. The only unimodal distribution of the force histogram was displayed for the interactions of Apt2-Aβ40 oligomer, Apt2-Aβ40 fibril, and Apt1-Aβ40 oligomer. More intriguingly, two Apts could bind to amyloid aggregates simultaneously. With the assistance of two Apts recognition, a novel sensitive dual Apt-based surface plasmon resonance (SPR) sensor using Au nanoparticles (AuNPs) was developed for quantifying Aβ40 aggregates. The dual Apt-based SPR sensor not only avoided the limitation of steric hindrance and epitope but also employed simple operation as well as inexpensive recognition probes. A detection limit as low as 0.2 pM for Aβ40 oligomer and 0.05 pM for Aβ40 fibril could be achieved. Moreover, the established sensor could be successfully applied to detect Aβ40 aggregates in artificial cerebrospinal fluid (CSF) and undiluted real CSF. This work could provide a strategy to monitor a simultaneous recognition event using SMFS and broaden the application of Apts in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Yaqin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province , Hunan University , Changsha 410082 , P. R. China
| | - Yao Xu
- Huaihe Hospital of Henan University , Henan University , Kaifeng 475001 , P. R. China
| |
Collapse
|
39
|
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020; 8:6179-6196. [DOI: 10.1039/d0tb00344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ as biomarker in Alzheimer’s disease (AD) drives the significant research efforts for developing different biosensors with different sensing strategies, materials, and mechanisms for Aβ detection.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Baiping Ren
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Dong Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Yonglan Liu
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Mingzhen Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Chao Zhao
- Department of Chemical and Biomolecular Engineering
- The University of Alabama
- USA
| | - Jie Zheng
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| |
Collapse
|
40
|
Tahaei Gilan SS, Yahya Rayat D, Mustafa TA, Aziz FM, Shahpasand K, Akhtari K, Salihi A, Abou-Zied OK, Falahati M. α-synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency. Int J Nanomedicine 2019; 14:4637-4648. [PMID: 31417259 PMCID: PMC6602305 DOI: 10.2147/ijn.s212387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Aim It has been indicated that NPs may change the amyloidogenic steps of proteins and relevant cytotoxicity. Therefore, this report assigned to explore the impact of ZVFe NPs on the amyloidogenicity and cytotoxicity of α-synuclein as one of the many known amyloid proteins. Methods The characterization of α-synuclein at amyloidogenic condition either alone or with ZVFe NPs was carried out by fluorescence, CD, UV-visible spectroscopic methods, TEM study, docking, and molecular modeling. The cytotoxicity assay of α-synuclein amyloid in the absence and presence of ZVFe NPs was also done by MTT, LDH, and flow cytometry analysis. Results ThT fluorescence spectroscopy revealed that ZVFe NPs shorten the lag phase and accelerate the fibrillation rate of α-synuclein. Nile red and intrinsic fluorescence spectroscopy, CD, Congo red adsorption, and TEM studies indicated that ZVFe NP increased the propensity of α-synuclein into the amyloid fibrillation. Molecular docking study revealed that hydrophilic residues, such as Ser-9 and Lys-12 provide proper sites for hydrogen bonding and electrostatic interactions with adsorbed water molecules on ZVFe NPs, respectively. Molecular dynamics study determined that the interacted protein shifted from a natively discorded conformation toward a more packed structure. Cellular assay displayed that the cytotoxicity of α-synuclein amyloid against SH-SY5Y cells in the presence of ZVFe NPs is greater than the results obtained without ZVFe NPs. Conclusion In conclusion, the existence of ZVFe NPs promotes α-synuclein fibrillation at amyloidogenic conditions by forming a potential template for nucleation, the growth of α-synuclein fibrillation and induced cytotoxicity.
Collapse
Affiliation(s)
- Seyedeh Sahar Tahaei Gilan
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Dorsa Yahya Rayat
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Twana Ahmed Mustafa
- Department of Medical Laboratory Technology, Health Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123 Muscat, Oman
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
41
|
Liu D, Li W, Jiang X, Bai S, Liu J, Liu X, Shi Y, Kuai Z, Kong W, Gao R, Shan Y. Using near-infrared enhanced thermozyme and scFv dual-conjugated Au nanorods for detection and targeted photothermal treatment of Alzheimer's disease. Theranostics 2019; 9:2268-2281. [PMID: 31149043 PMCID: PMC6531298 DOI: 10.7150/thno.30649] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
Investigation of targeting inhibitors of Aβ aggregation, heme-Aβ peroxidase-like activity and efficient detectors of Aβ aggregation, are of therapeutic value and diagnostics significance for the treatment of Alzheimer's disease (AD). Due to the complex pathogenesis of AD, theranostics treatment with multiple functions are necessary. Herein we constructed the NIR absorption property of gold nanorods (GNRs) loaded with single chain variable fragment (scFv) 12B4 and thermophilic acylpeptide hydrolase (APH) ST0779 as a smart theranostic complex (GNRs-APH-scFv, GAS), which possesses both rapid detection of Aβ aggregates and NIR photothermal treatment that effectively disassembles Aβ aggregates and inhibits Aβ-mediated toxicity. Methods: We screened targeting anti-Aβ scFv 12B4 and thermophilic acylpeptide hydrolase as amyloid-degrading enzyme, synthesized GAS gold nanorods complex. The GAS was evalued by Aβ inhibition and disaggregation assays, Aβ detection assays, Aβ mediated toxicity assays in vitro. In vivo, delaying Aβ-induced paralysis in AD model of Caenorhabditis elegans was also tested by GAS. Results: In vitro, GAS has a synergistic effect to inhibit and disassociate Aβ aggregates, in addition to decrease heme-Aβ peroxidase-like activity. In cultured cells, treatment with GAS reduces Aβ-induced cytotoxicity, while also delaying Aβ-mediated paralysis in CL4176 C.elegans model of AD. Furthermore, the photothermal effect of the GAS upon NIR laser irradiation not only helps disassociate the Aβ aggregates but also boosts APH activity to clear Aβ. The GAS, as a targeting detector and inhibitor, allows real-time detection of Aβ aggregates. Conclusion: These results firstly highlight the combination of scFv, APH and nanoparticles to be theranostic AD drugs. Taken together, our strategy provides a new thought into the design of smart compounds for use as efficiently therapeutic and preventive agents against AD. Moreover, our design provides broad prospects of biomedical strategy for further theranostics application in those diseases caused by abnormal protein.
Collapse
|
42
|
Qin J, Cho M, Lee Y. Ferrocene-Encapsulated Zn Zeolitic Imidazole Framework (ZIF-8) for Optical and Electrochemical Sensing of Amyloid-β Oligomers and for the Early Diagnosis of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11743-11748. [PMID: 30843389 DOI: 10.1021/acsami.8b21425] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the ferrocene-encapsulated Zn zeolitic imidazole framework (ZIF-8) was prepared by the self-assembly of Zn ions and 2-methylimidazole and used for the dual detection of amyloid-beta oligomers (AβO), which is the main neuropathological hallmark of Alzheimer's disease. Ferrocene is an optically and electrochemically active signal which was successfully encapsulated inside of the ZIF-8 and released by the competitive coordination between Zn ions and AβO after being treated with AβO. The released ferrocene content was monitored by ultraviolet/visible spectrophotometry and cyclic voltammetry. The dual determination of AβO played a synergetic role in the quick qualitative and precise quantitative analyses in a wide detection range of 10-5 to 102 μM and good feasibility in artificial cerebrospinal fluid.
Collapse
Affiliation(s)
- Jieling Qin
- School of Chemical Engineering , Sungkyunkwan University , 16419 Suwon , Korea
| | - Misuk Cho
- School of Chemical Engineering , Sungkyunkwan University , 16419 Suwon , Korea
| | - Youngkwan Lee
- School of Chemical Engineering , Sungkyunkwan University , 16419 Suwon , Korea
| |
Collapse
|
43
|
Liu L, Hao Y, Deng D, Xia N. Nanomaterials-Based Colorimetric Immunoassays. NANOMATERIALS 2019; 9:nano9030316. [PMID: 30818816 PMCID: PMC6473401 DOI: 10.3390/nano9030316] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/05/2023]
Abstract
Colorimetric immunoassays for tumor marker detection have attracted considerable attention due to their simplicity and high efficiency. With the achievements of nanotechnology and nanoscience, nanomaterials-based colorimetric immunoassays have been demonstrated to be promising alternatives to conventional colorimetric enzyme-linked immunoassays. This review is focused on the progress in colorimetric immunoassays with the signal amplification of nanomaterials, including nanomaterials-based artificial enzymes to catalyze the chromogenic reactions, analyte-induced aggregation or size/morphology change of nanomaterials, nanomaterials as the carriers for loading enzyme labels, and chromogenic reactions induced by the constituent elements released from nanomaterials.
Collapse
Affiliation(s)
- Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
| | - Dehua Deng
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| | - Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China.
| |
Collapse
|
44
|
Tian J. Aptamer-based colorimetric detection of various targets based on catalytic Au NPs/Graphene nanohybrids. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2019.100258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
45
|
Zhang J, Zhou R, Tang D, Hou X, Wu P. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Liu X, Zhang Y, Liang A, Ding H, Gai H. Plasmonic resonance energy transfer from a Au nanosphere to quantum dots at a single particle level and its homogenous immunoassay. Chem Commun (Camb) 2019; 55:11442-11445. [DOI: 10.1039/c9cc05548g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PRET from a AuNS to a QD is discovered at a single particle level, and then is used to develop ultra-sensitive homogenous immunoassays.
Collapse
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Yusu Zhang
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Aiye Liang
- Department of Physical Sciences
- Charleston Southern University
- North Charleston
- USA
| | - Hongwei Ding
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| | - Hongwei Gai
- School of Chemistry and Materials Science
- Jiangsu Normal University
- Xuzhou
- China
| |
Collapse
|
47
|
Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots. Anal Chim Acta 2019; 1047:179-187. [DOI: 10.1016/j.aca.2018.10.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
|
48
|
Ma X, Wu G, Zhao Y, Yuan Z, Zhang Y, Xia N, Yang M, Liu L. A Turn-On Fluorescent Probe for Sensitive Detection of Cysteine in a Fully Aqueous Environment and in Living Cells. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:1986468. [PMID: 30647984 PMCID: PMC6311829 DOI: 10.1155/2018/1986468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
We reported here a turn-on fluorescent probe (1) for the detection of cysteine (Cys) by incorporating the recognition unit of 2,4-dinitrobenzenesulfonyl ester (DNBS) to a coumarin derivative. The structure of the obtained probe was confirmed by NMR and HRMS techniques. The probe shows a remarkable fluorescence off-on response (∼52-fold) by the reaction with Cys in 100% aqueous buffer. The sensing mechanism was verified by the HPLC test. Probe 1 also displays high selectivity towards Cys. The detection limit was calculated to be 23 nM. Moreover, cellular experiments demonstrated that the probe is highly biocompatible and can be used for monitoring intracellular Cys.
Collapse
Affiliation(s)
- Xiaohua Ma
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Guoguang Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Yuehua Zhao
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zibo Yuan
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yu Zhang
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Ning Xia
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Mengnan Yang
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Lin Liu
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| |
Collapse
|
49
|
Liu G, Lu M, Huang X, Li T, Xu D. Application of Gold-Nanoparticle Colorimetric Sensing to Rapid Food Safety Screening. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4166. [PMID: 30486466 PMCID: PMC6308472 DOI: 10.3390/s18124166] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Due to their unique optical properties, narrow size distributions, and good biological affinity, gold nanoparticles have been widely applied in sensing analysis, catalytic, environmental monitoring, and disease therapy. The color of a gold nanoparticle solution and its maximum characteristic absorption wavelength will change with the particle size and inter-particle spacing. These properties are often used in the detection of hazardous chemicals, such as pesticide residues, heavy metals, banned additives, and biotoxins, in food. Because the gold nanoparticles-colorimetric sensing strategy is simple, quick, and sensitive, this method has extensive applications in real-time on-site monitoring and rapid testing of food quality and safety. Herein, we review the preparation methods, functional modification, photochemical properties, and applications of gold nanoparticle sensors in rapid testing. In addition, we elaborate on the colorimetric sensing mechanisms. Finally, we discuss the advantages and disadvantages of colorimetric sensors based on gold nanoparticles, and directions for future development.
Collapse
Affiliation(s)
- Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Meng Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| | - Tengfei Li
- College of Life Sciences and Engineering, Hebei University of Engineering, Handan 056021, China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China.
| |
Collapse
|
50
|
Lu H, Wu L, Wang J, Wang Z, Yi X, Wang J, Wang N. Voltammetric determination of the Alzheimer's disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles. Mikrochim Acta 2018; 185:549. [PMID: 30426239 DOI: 10.1007/s00604-018-3087-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/06/2018] [Indexed: 01/26/2023]
Abstract
A sensitive method is described for detection of the apoE 4 gene detection which is important for early diagnosis of Alzheimer's disease. It is based on signal amplification by using ferrocene (Fc) capped gold nanoparticles modified with streptavidin. The immobilized oligonucleotide probe captures complementary apoE 4 gene. This is followed by the specific recognition of the GCGC sequences which are hydrolyzed by the restriction enzyme HhaI. Cleavage only occurs at the complementary apoE 4 duplex, while mismatches prevent enzymatic cleavage. Thus, the apoE 4 sequence can be discriminated against other apoE sequences. Benefitting from amplified signal by Fc-capped nanoparticle/streptavidin and the recognition of HhaI, the detection limit is as low as 0.1 pM of the ApoE 4 gene. Four genomic DNA samples extracted from blood were analyzed for the presence of the apoE 4 gene. The approach presented here will provide viable proof-of-principle for an enzyme-assisted electrochemical assay for the apoE 4 gene in genomic DNAs. Graphical abstract Schematic presentation of amplified voltammetric detection of Alzheimer's Disease-related apoE 4 gene from unamplified genomic DNA extracts via ferrocene capped gold nanoparticle/streptavidin.
Collapse
Affiliation(s)
- Hanwen Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Ling Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Jingrui Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Zixiao Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China.
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Nan Wang
- Department oft of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|