1
|
Wang Y, Yuan CL, Huang W, Sun PZ, Liu B, Hu HL, Zheng Z, Lu YQ, Li Q. Programmable Jigsaw Puzzles of Soft Materials Enabled by Pixelated Holographic Surface Reliefs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211521. [PMID: 36744552 DOI: 10.1002/adma.202211521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Manual intervention in the self-organization of soft matter to obtain a desired superstructure is a complex but significant project. Specifically, optical components made fully or partially from reconfigurable and stimuli-responsive soft materials, referred to as soft photonics, are poised to form versatile platforms in various areas; however, a limited scale, narrow spectral adaptability, and poor stability are still formidable challenges. Herein, a facile way is developed to program the optical jigsaw puzzle of nematic liquid crystals via pixelated holographic surface reliefs, leading to an era of manufacturing for programmable soft materials with tailored functions. Multiscale jigsaw puzzles are established and endowed with unprecedented stability and durability, further sketching a prospective framework toward customized adaptive photonic architectures. This work demonstrates a reliable and efficient approach for directly assembling soft matter, unlocking the long-sought full potential of stimuli-responsive soft systems, and providing opportunities to inspire the next generation of soft photonics and relevant areas.
Collapse
Affiliation(s)
- Yifei Wang
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cong-Long Yuan
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenbin Huang
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Pei-Zhi Sun
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Binghui Liu
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hong-Long Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhigang Zheng
- School of Physics, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Nanjing, 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
2
|
Optical trapping and fluorescence control with vectorial structured light. Sci Rep 2022; 12:17690. [PMID: 36271234 DOI: 10.1038/s41598-022-21224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Here we functionalized micro-scaled polymer beads with nano-scaled quantum dots and demonstrate optical trapping and tweezing, with in-situ fluorescence measurement, in an all-digital all-optical configuration. We outline the chemistry required to facilitate this, from deactivating the optical trapping environment to size, adhesion and agglomeration control. We introduce a novel holographic optical trapping set-up that leverages on vectorially structured light, allowing for the delivery of tuneable forms of light from purely scalar to purely vector, including propagation invariant flat-top beams for uniform illumination and tailored intensity gradient landscapes. Finally, we show how this has the potential to quench bleaching in a single wavelength trap by linear (spatial mode) rather than non-linear effects, advancing the nascent field of optics for chemistry.
Collapse
|
3
|
Wan L, Ma J, Yi J, Dong Y, Niu R, Su Y, Li Q, Dan Zhu, Chao J, Su S, Fan C, Wang L, Wan Y. CRISPR-empowered hybridization chain reaction amplification for an attomolar electrochemical sensor. Chem Commun (Camb) 2022; 58:8826-8829. [PMID: 35848536 DOI: 10.1039/d2cc01155g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid pathogen screening holds the key against certain viral infections, especially in an overwhelming pandemic. Herein, a CRISPR-empowered electrochemical biosensor was designed for the ultrasensitive detection of the avian influenza A (H7N9) virus gene sequence. Combining the CRISPR/Cas system, a signal-amplification strategy and a high-conductivity sensing substrate, the developed biosensor showed an ultrawide dynamic range, an ultralow detection limit, and excellent selectivity for H7N9 detection, providing a potential sensing platform for the simple, fast, sensitive, and on-site detection of infectious diseases.
Collapse
Affiliation(s)
- Ling Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jianfeng Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jiasheng Yi
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yan Dong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Renjie Niu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Su Z, Zhao G, Dou W. High-sensitivity detection of two H7 subtypes of avian influenza viruses (AIVs) by immunochromatographic assay with highly chromatic red silica nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2313-2319. [PMID: 33956005 DOI: 10.1039/d1ay00204j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a sensitive and quantitative immunochromatographic assay (ICA) detection method for avian influenza viruses (AIVs) of the H7 hemagglutinin (HA) antigen was established based on highly chromatic red silica nanoparticles (SiNPs). It can detect two H7 subtypes of influenza viruses, H7N2 and H7N9. The highly chromatic red SiNPs were prepared by adsorbing C.I. Direct Red 224 on the surface of the SiNPs for multiple times using the layer by layer (LbL) self-assembly method under the electrostatic action of ethylene imine polymer (PEI) and poly(sodium-p-styrenesulfonate) (PSS). The highly chromatic red silica nanoparticles modified with anti-H7 HA mAb1 were used as immunodetection probes. The accumulated highly chromatic red SiNPs on the T-line can be observed by the naked eye to qualitatively detect the H7 HA antigen. The quantitative analysis is carried out by using a camera and Image J software. Within the range of 0.1-10 ng mL-1, the linear equation between the H7 HA antigen concentration and the peak area of the T-line gray value was y = 868.9722 + 435.4836X (R2 = 0.9716), and the limit of detection (LOD) of this method was 0.08 pg mL-1 (S/N = 3). The highly chromatic red SiNP based ICA for the detection of H7 HA has no cross activity with other subtypes of influenza viruses. This method of combining highly chromatic colored markers with ICA has great potential in practical applications for the rapid and quantitative detection of other types of AIVs.
Collapse
Affiliation(s)
- Zixian Su
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
5
|
Zheng B, Kang YF, Zhang T, Li CY, Huang S, Zhang ZL, Wu QS, Qi CB, Pang DW, Tang HW. Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding. Anal Chem 2020; 92:5258-5266. [DOI: 10.1021/acs.analchem.9b05800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, People’s Republic of China
| | - Sha Huang
- Electronic information school, Wuhan University, Wuhan 430072, China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Qiong-Shui Wu
- Electronic information school, Wuhan University, Wuhan 430072, China
| | - Chu-Bo Qi
- Hubei Cancer Hospital, Wuhan, 430079, People’s Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
6
|
Ultrasensitive SERS determination of avian influenza A H7N9 virus via exonuclease III-assisted cycling amplification. Talanta 2019; 205:120137. [DOI: 10.1016/j.talanta.2019.120137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/22/2023]
|
7
|
Li CY, Kang YF, Qi CB, Zheng B, Zheng MQ, Song CY, Guo ZZ, Lin Y, Pang DW, Tang HW. Breaking Through Bead-Supported Assay: Integration of Optical Tweezers Assisted Fluorescence Imaging and Luminescence Confined Upconversion Nanoparticles Triggered Luminescent Resonance Energy Transfer (LRET). Anal Chem 2019; 91:7950-7957. [DOI: 10.1021/acs.analchem.9b01941] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chu-Bo Qi
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
- Hubei Cancer Hospital, Wuhan, 430079, People’s Republic of China
| | - Bei Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Ming-Qiu Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Chong-Yang Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People’s Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People’s Republic of China
| |
Collapse
|
8
|
Kim J, Kwon JH, Jang J, Lee H, Kim S, Hahn YK, Kim SK, Lee KH, Lee S, Pyo H, Song CS, Lee J. Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosens Bioelectron 2018; 112:209-215. [DOI: 10.1016/j.bios.2018.04.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
|
9
|
Li CY, Cao D, Qi CB, Kang YF, Song CY, Xu DD, Zheng B, Pang DW, Tang HW. Combining Holographic Optical Tweezers with Upconversion Luminescence Encoding: Imaging-Based Stable Suspension Array for Sensitive Responding of Dual Cancer Biomarkers. Anal Chem 2018; 90:2639-2647. [DOI: 10.1021/acs.analchem.7b04299] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Cheng-Yu Li
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Di Cao
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chu-Bo Qi
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
- Hubei Cancer Hospital, Wuhan 430079, People’s Republic of China
| | - Ya-Feng Kang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chong-Yang Song
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dang-Dang Xu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bei Zheng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Dai-Wen Pang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hong-Wu Tang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
10
|
Moulick A, Richtera L, Milosavljevic V, Cernei N, Haddad Y, Zitka O, Kopel P, Heger Z, Adam V. Advanced nanotechnologies in avian influenza: Current status and future trends - A review. Anal Chim Acta 2017; 983:42-53. [PMID: 28811028 PMCID: PMC7094654 DOI: 10.1016/j.aca.2017.06.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
In the last decade, the control of avian influenza virus has experienced many difficulties, which have caused major global agricultural problems that have also led to public health consequences. Conventional biochemical methods are not sufficient to detect and control agricultural pathogens in the field due to the growing demand for food and subsidiary products; thus, studies aiming to develop potent alternatives to conventional biochemical methods are urgently needed. In this review, emerging detection systems, their applicability to diagnostics, and their therapeutic possibilities in view of nanotechnology are discussed. Nanotechnology-based sensors are used for rapid, sensitive and cost-effective diagnostics of agricultural pathogens. The application of different nanomaterials promotes interactions between these materials and the virus, which enables researchers to construct portable electroanalytical biosensing analyser that should effectively detect the influenza virus. The present review will provide insights into the guidelines for future experiments to develop better techniques to detect and control influenza viruses.
Collapse
Affiliation(s)
- Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic.
| |
Collapse
|