1
|
Khezri R, Jamaleddin Shahtaheri S, Khezri E, Niknam Shahrak M, Khadem M. In-silico green toxicology approach toward discovering safer ligands for development of safe-by-design metal-organic frameworks. Toxicol Mech Methods 2024; 34:821-832. [PMID: 38725267 DOI: 10.1080/15376516.2024.2353364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
A vast variety of chemical compounds have been fabricated and commercialized, they not only result in industrial exposure during manufacturing and usage, but also have environmental impacts throughout their whole life cycle. Consequently, attempts to assess the risk of chemicals in terms of toxicology have never ceased. In-silico toxicology, also known as predictive toxicology, has advanced significantly over the last decade as a result of the drawbacks of experimental investigations. In this study, ProTox-III was applied to predict the toxicity of the ligands used for metal-organic framework (MOF) design and synthesis. Initially, 35 ligands, that have been frequently utilized for MOF synthesis and fabrication, were selected. Subsequently, canonical simplified molecular-input line-entry system (SMILES) of ligands were extracted from the PUBCHEM database and inserted into the ProTox-III online server. Ultimately, webserver outputs including LD50 and the probability of toxicological endpoints (cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, and ecotoxicity) were obtained and organized. According to retrieved LD50 data, the safest ligand was 5-hydroxyisophthalic. In contrast, the most hazardous ligand was 5-chlorobenzimidazole, with an LD50 of 8 mg/kg. Among evaluated endpoints, ecotoxicity was the most active and was detected in several imidazolate ligands. This data can open new horizons in design and development of green MOFs.
Collapse
Affiliation(s)
- Reyhane Khezri
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Khezri
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Niknam Shahrak
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Monireh Khadem
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Karimzadeh Z, Mahmoudpour M, Rahimpour E, Jouyban A. Recent advancements in the specific determination of carcinoembryonic antigens using MOF-based immunosensors. RSC Adv 2024; 14:9571-9586. [PMID: 38516167 PMCID: PMC10955552 DOI: 10.1039/d3ra07059j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Carcinoembryonic antigens (CEAs) are prominent cancer biomarkers that enable the early detection of numerous cancers. For effective CEA screening, rapid, portable, efficient, and sensitive diagnosis approaches should be devised. Metal-organic frameworks (MOFs) are porous crystalline materials that have received major attention for application in high-efficiency signal probes owing to their advantages such as large specific surface area, superior chemical stability and tunability, high porosity, easy surface functional modification, and adjustable size and morphology. Immunoassay strategies using antigen-antibody specific interaction are one of the imperative means for rapid and accurate measurement of target molecules in biochemical fields. The emerging MOFs and their nanocomposites are synthesized with excellent features, providing promising potential for immunoassays. This article outlines the recent breakthroughs in the synthesis approaches of MOFs and overall functionalization mechanisms of MOFs with antigen/antibody and their uses in the CEA immunoassays, which operate according to electrochemical, electrochemiluminescent and colorimetric techniques. The prospects and limitations of the preparation and immunoassay applications of MOF-derived hybrid nanocomposites are also discussed at the end.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Mansour Mahmoudpour
- Miandoab Schools of Medical Sciences Miandoab Iran
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
4
|
Jagirani MS, Zhou W, Nazir A, Akram MY, Huo P, Yan Y. A Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit Rev Anal Chem 2024:1-22. [PMID: 38252119 DOI: 10.1080/10408347.2023.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Yasir Akram
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
5
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
6
|
Fernández H, Zon MA, Maccio SA, Alaníz RD, Di Tocco A, Carrillo Palomino RA, Cabas Rodríguez JA, Granero AM, Arévalo FJ, Robledo SN, Pierini GD. Multivariate Optimization of Electrochemical Biosensors for the Determination of Compounds Related to Food Safety-A Review. BIOSENSORS 2023; 13:694. [PMID: 37504093 PMCID: PMC10377565 DOI: 10.3390/bios13070694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
We summarize the application of multivariate optimization for the construction of electrochemical biosensors. The introduction provides an overview of electrochemical biosensing, which is classified into catalytic-based and affinity-based biosensors, and discusses the most recent published works in each category. We then explore the relevance of electrochemical biosensors for food safety analysis, taking into account analytes of different natures. Then, we describe the chemometrics tools used in the construction of electrochemical sensors/biosensors and provide examples from the literature. Finally, we carefully discuss the construction of electrochemical biosensors based on design of experiments, including the advantages, disadvantages, and future perspectives of using multivariate optimization in this field. The discussion section offers a comprehensive analysis of these topics.
Collapse
Affiliation(s)
- Héctor Fernández
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - María Alicia Zon
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sabrina Antonella Maccio
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Rubén Darío Alaníz
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Aylen Di Tocco
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Roodney Alberto Carrillo Palomino
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Jose Alberto Cabas Rodríguez
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Adrian Marcelo Granero
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Fernando J Arévalo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Sebastian Noel Robledo
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
- Departamento de Tecnología Química (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| | - Gastón Darío Pierini
- Grupo de Electroanalítica (GEANA), Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud UNRC-CONICET (IDAS), Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto 5800, Argentina
| |
Collapse
|
7
|
Hasan Alzaimoor EF, Khan E. Metal-Organic Frameworks (MOFs)-Based Sensors for the Detection of Heavy Metals: A Review. Crit Rev Anal Chem 2023; 54:3016-3037. [PMID: 37347646 DOI: 10.1080/10408347.2023.2220800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Metal-organic-frameworks (MOFs) have emerged as promising candidates in different scientific disciplines owing to their intriguing characteristics. Their unique structural properties, including large surface area to volume ratio with multi-functionalities and ultra-high porosity, tunability, uniformity, and easy derivation and fabrication, render them effective materials for sensing applications. The detection of heavy metals in different environmental matrices using various MOF-based sensors is in practice. They include luminescent, electrochemical, electrochemiluminescent, colorimetric, and surface-enhanced Raman scattering, are of great interest. This review elaborates on selected synthetic methods for the fabrication of MOF-based sensors, modification routes for tailoring and enhancing the desired properties, basic characterization techniques, and their limitations in the detection of heavy metals. Also, it emphasizes the use of various types of MOF-based sensors alternatively for the detection of different heavy metals such as Fe(III), Cr(III), Hg(II), Cd(II), and Pb(II) in addition to a normal metal Al(III). A collection of recent references is provided for researchers interested in such applications. Results from the literature have been summarized in tables which give an easy comparison and will help to develop efficient materials.
Collapse
Affiliation(s)
| | - Ezzat Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
8
|
Allangawi A, Alzaimoor EFH, Shanaah HH, Mohammed HA, Saqer H, El-Fattah AA, Kamel AH. Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C 2023; 9:17. [DOI: 10.3390/c9010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Global warming and climate changes are among the biggest modern-day environmental problems, the main factor causing these problems is the greenhouse gas effect. The increased concentration of carbon dioxide in the atmosphere resulted in capturing increased amounts of reflected sunlight, causing serious acute and chronic environmental problems. The concentration of carbon dioxide in the atmosphere reached 421 ppm in 2022 as compared to 280 in the 1800s, this increase is attributed to the increased carbon dioxide emissions from the industrial revolution. The release of carbon dioxide into the atmosphere can be minimized by practicing carbon capture utilization and storage methods. Carbon capture utilization and storage (CCUS) has four major methods, namely, pre-combustion, post-combustion, oxyfuel combustion, and direct air capture. It has been reported that applying CCUS can capture up to 95% of the produced carbon dioxide in running power plants. However, a reported cost penalty and efficiency decrease hinder the wide applicability of CCUS. Advancements in the CCSU were made in increasing the efficiency and decreasing the cost of the sorbents. In this review, we highlight the recent developments in utilizing both physical and chemical sorbents to capture carbon. This includes amine-based sorbents, blended absorbents, ionic liquids, metal-organic framework (MOF) adsorbents, zeolites, mesoporous silica materials, alkali-metal adsorbents, carbonaceous materials, and metal oxide/metal oxide-based materials. In addition, a comparison between recently proposed kinetic and thermodynamic models was also introduced. It was concluded from the published studies that amine-based sorbents are considered assuperior carbon-capturing materials, which is attributed to their high stability, multifunctionality, rapid capture, and ability to achieve large sorption capacities. However, more work must be done to reduce their cost as it can be regarded as their main drawback.
Collapse
Affiliation(s)
- Abdulrahman Allangawi
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Eman F. H. Alzaimoor
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Haneen H. Shanaah
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Hawraa A. Mohammed
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Husain Saqer
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
| | - Ahmed Abd El-Fattah
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, El-Shatby, Alexandria 21526, Egypt
| | - Ayman H. Kamel
- Department of Chemistry, College of Science, University of Bahrain, Zallaq P.O. Box 32038, Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
9
|
Yuan Z, Dai H, Liu X, Duan S, Shen Y, Zhang Q, Shu Z, Xiao A, Wang J. An electrochemical immunosensor based on prussian blue@ zeolitic imidazolate framework-8 nanocomposites probe for the detection of deoxynivalenol in grain products. Food Chem 2022; 405:134842. [DOI: 10.1016/j.foodchem.2022.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
10
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
11
|
Shi D, Cui C, Wang S, Wang X, Gao N, Guan H, Zeng L, Zhang X, Zhao J. Tetrazole-Containing Triphenylamine-Based MOF as a Sensitive Sensor for Food Inspection. Inorg Chem 2022; 61:13768-13774. [PMID: 35998355 DOI: 10.1021/acs.inorgchem.2c01456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new metal-organic framework (MOF) with tetrazole-derived triphenylamine (TPA) as the ligand, namely Mn-TPA, has been successfully prepared and thoroughly characterized via thermogravimetric analysis, IR spectroscopy, elemental analysis, UV-vis absorption, fluorescence analysis, bond valence sum calculations, and single-crystal and powder X-ray diffraction analysis. The undulating monolayer of Mn-TPA can hinder the interaction and tight stacking among analytes, which creates a bionic microenvironment for the electrochemical recognition process. Mn-TPA exhibits high specific surface area, stable film-forming capacity, excellent electrochemical activity, and good biocompatibility. Furthermore, the developed Mn-TPA-based immunosensing system exhibits an excellent limit of detection of 0.50 pg·mL-1 toward vomitoxin, which is more outstanding than that of the reported vomitoxin-sensing system. Thus, this work shows the great potential of a well-designed MOF as an easy-to-make and highly sensitive electrochemical platform for biosensing in food safety detection and other fields.
Collapse
Affiliation(s)
- Dongying Shi
- Henan Provincial Key Laboratory of Surface & Interface Science, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Chaojie Cui
- Henan Provincial Key Laboratory of Surface & Interface Science, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Sijia Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Xiaohui Wang
- Henan Provincial Key Laboratory of Surface & Interface Science, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Ning Gao
- Henan Provincial Key Laboratory of Surface & Interface Science, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Huijian Guan
- Henan Provincial Key Laboratory of Surface & Interface Science, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xuejing Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
12
|
Electrochemical aptasensing strategy based on a multivariate polymertitanium-metal-organic framework for zearalenone analysis. Food Chem 2022; 385:132654. [PMID: 35287107 DOI: 10.1016/j.foodchem.2022.132654] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
An electrochemical aptasensing strategy was developed with a novel bioplatform based on a multivariate titanium metal-organic framework, i.e. MTV polyMOF(Ti), to detect zearalenone (ZEN). MTV polyMOF(Ti) was prepared by using mixed linkers of polyether polymer (pbdc-xa or L8, pbdc = poly(1,4-benzenedicarboxylate) and 1,4-benzenedicarboxylic acid (H2bdc or L0) as well as tetrabutyl titanate as nodes (MTV polyMOF(Ti)-L8,0). Compared with Ti-MOFs synthesized by using the single ligand of L8 or L0, MTV polyMOF(Ti)-L8,0 shows more porous structure assembled with multilayered nanosheets. In light of the improved electrochemical activity and strong bioaffinity to the aptamer, the aptasensor based on MTV polyMOF(Ti)-L8,0 shows excellent performance for detecting ZEN with the ultralow detection limit at fg mL-1 level in the linear range of 10 fg mL-1 to 10 ng mL-1, along with good selectivity, reproducibility, stability, regenerability, and applicability.
Collapse
|
13
|
Zhang B, Lv L, Ma X, Xie L, Lin M, Chen H, He B. Au@ZnNi-MOF labeled electrochemical aptasensor for detection of enrofloxacin based on AuPt@h-CeO2/MoS2 and DNAzyme-driven DNA walker triple amplification signal strategy. Biosens Bioelectron 2022; 210:114296. [DOI: 10.1016/j.bios.2022.114296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
14
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
15
|
Marimuthu M, Arumugam SS, Jiao T, Sabarinathan D, Li H, Chen Q. Metal organic framework based sensors for the detection of food contaminants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Yang Z, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown the development of electrochemical biosensors based on enzymes immobilized in metal–organic frameworks (MOFs). Although enzymes have unique properties, such as efficiency, selectivity, and environmental sustainability, when immobilized, these properties are improved, presenting significant potential for several biotechnological applications. Using MOFs as matrices for enzyme immobilization has been considered a promising strategy due to their many advantages compared to other supporting materials, such as larger surface areas, higher porosity rates, and better stability. Biosensors are analytical tools that use a bioactive element and a transducer for the detection/quantification of biochemical substances in the most varied applications and areas, in particular, food, agriculture, pharmaceutical, and medical. This review will present novel insights on the construction of biosensors with materials based on MOFs. Herein, we have been highlighted the use of MOF for biosensing for biomedical, food safety, and environmental monitoring areas. Additionally, different methods by which immobilizations are performed in MOFs and their main advantages and disadvantages are presented.
Collapse
|
18
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
19
|
Zhang Z, Lou Y, Guo C, Jia Q, Song Y, Tian JY, Zhang S, Wang M, He L, Du M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Wang H, Pei X, Proserpio DM, Yaghi OM. Design of MOFs with Absolute Structures: A Case Study. Isr J Chem 2021. [DOI: 10.1002/ijch.202100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Haoze Wang
- Department of Chemistry University of California-Berkeley Berkeley California 94720 U.S.A
- Kavli Energy NanoSciences Institute Berkeley California 94720 U.S.A
| | - Xiaokun Pei
- Department of Chemistry University of California-Berkeley Berkeley California 94720 U.S.A
- Kavli Energy NanoSciences Institute Berkeley California 94720 U.S.A
| | - Davide M. Proserpio
- Dipartimento di Chimica Università degli Studi di Milano Milano 20133 Italy
- Samara Center for Theoretical Materials Science (SCTMS) Samara State Technical University Samara 443100 Russia
| | - Omar M. Yaghi
- Department of Chemistry University of California-Berkeley Berkeley California 94720 U.S.A
- Kavli Energy NanoSciences Institute Berkeley California 94720 U.S.A
| |
Collapse
|
21
|
Xue YQ, Yang X, Sun XL, Han ZY, Sun J, He H. Reversible Structural Transformation of Cu I-Tb III Heterometallic MOFs with Highly Efficient Detection Capability toward Penicillin. Inorg Chem 2021; 60:11081-11089. [PMID: 34242020 DOI: 10.1021/acs.inorgchem.1c00952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A CuI-TbIII heterometallic MOF, namely 1·DMF, was obtained via a coordination assembly process of isonicotinic acid with CuI and TbIII. 1·DMF can be switched to 1·MeOH in methanol with a luminescent emission response. Meanwhile, 1·MeOH exhibits a reversible single-crystal transformation to 1·DMF after immersion in DMF. Both MOFs have superior physicochemical stability. The 1·DMF-based biosensor has a remarkable sensing performance toward penicillin.
Collapse
Affiliation(s)
- Ya-Qi Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xintong Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiao-Long Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Zhang-Ye Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jianchao Sun
- School of Environment and Material Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
22
|
Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Cheng W, Tang X, Zhang Y, Wu D, Yang W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Du T, Huang L, Wang J, Sun J, Zhang W, Wang J. Luminescent metal-organic frameworks (LMOFs): An emerging sensing platform for food quality and safety control. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Abstract
Abstract
The excessive use of natural gas and other fossil fuels by the industrial sector leads to the production of great quantities of gas pollutants, including CO2, SO2, and NO
x
. Consequently, these gases increase the temperature of the earth, producing global warming. Different strategies have been developed to help overcome this problem, including the utilization of separation membrane technology. Mixed matrix membranes (MMMs) are hybrid membranes that combine an organic polymer as a matrix and an inorganic compound as a filler. In this study, MMMs were prepared based on polyethersulfone (PES) and a type of metal–organic framework (MOF), Materials of Institute Lavoisier (MIL)-100(Al) [Al3O(H2O)2(OH)(BTC)2] (BTC: benzene 1,3,5-tricarboxylate) using a phase inversion method. The influence on the properties of the produced membranes by addition of 5, 10, 20, and 30% MIL-100(Al) (w/w) to the PES was also investigated. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that no chemical interactions occurred between PES and MIL-100(Al). Scanning electron microscope (SEM) images showed agglomeration at PES/MIL-100(Al) 30% (w/w) and that the thickness of the dense layer increased up to 3.70 µm. After the addition of MIL-100(Al) of 30% (w/w), the permeability of the MMMs for CO2, O2, and N2 gases was enhanced by approximately 16, 26, and 14 times, respectively, as compared with a neat PES membrane. The addition of MIL-100(Al) to PES increased the thermal stability of the membranes, reaching 40°C as indicated by thermogravimetry analysis (TGA). An addition of 20% MIL-100(Al) (w/w) increased membrane selectivity for CO2/O2 from 2.67 to 4.49 (approximately 68.5%), and the addition of 10% MIL-100(Al) increased membrane selectivity for CO2/N2 from 1.01 to 2.12 (approximately 110.1%).
Collapse
|
26
|
Metal-organic frameworks for food applications: A review. Food Chem 2021; 354:129533. [PMID: 33743447 DOI: 10.1016/j.foodchem.2021.129533] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) are high surface-to-volume ratio crystalline hybrid porous coordination materials composed of metal ions as nodes and organic linkers. The goal of this paper was to provide an updated and comprehensive state-of-the-art review of MOFs for different food applications such as active food contact materials, antimicrobial nanocarriers, controlled release nanosystems for active compounds, nanofillers for food packaging materials, food nanoreactors, food substance nanosensors, stabilizers and immobilizers for active compounds and enzymes, and extractors of food contaminants. Extraction and sensing of several food contaminants have been the main food applications of MOFs. The other applications listed above require further investigation, as they are at an early stage. However, interesting results are being reported for these other fields. Finally, an important limitation of MOFs has been the use of non-renewable feedstocks for their synthesis, but this has recently been solved through the manufacture and use of γ-cyclodextrin-based MOFs.
Collapse
|
27
|
Colorimetric aptasensor for sensitive detection of kanamycin based on target-triggered catalytic hairpin assembly amplification and DNA-gold nanoparticle probes. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105858] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Sensitive sandwich-type voltammetric immunosensor for breast cancer biomarker HER2 detection based on gold nanoparticles decorated Cu-MOF and Cu2ZnSnS4 NPs/Pt/g-C3N4 composite. Mikrochim Acta 2021; 188:78. [DOI: 10.1007/s00604-021-04735-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
|
29
|
Younis SA, Bhardwaj N, Bhardwaj SK, Kim KH, Deep A. Rare earth metal–organic frameworks (RE-MOFs): Synthesis, properties, and biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213620] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
|
31
|
Wu JY, Hu ZJ, Sung HL. A water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole as a highly sensitive luminescence sensor for the selective detection of bisphenol AF and bisphenol B. CrystEngComm 2021. [DOI: 10.1039/d0ce01740j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole has been used as a sensor platform for the luminescence detection of bisphenol AF (BPAF) and bisphenol B (BPB) in water with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Jing-Yun Wu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Zhi-Jia Hu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Hui-Ling Sung
- Division of Preparatory Programs for Overseas Chinese Students
- National Taiwan Normal University
- New Taipei City 244
- Taiwan
| |
Collapse
|
32
|
Liu S, Lai C, Liu X, Li B, Zhang C, Qin L, Huang D, Yi H, Zhang M, Li L, Wang W, Zhou X, Chen L. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213520] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Label-free electrochemical immunosensor for sensitive HER2 biomarker detection using the core-shell magnetic metal-organic frameworks. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114722] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Functional metal–organic frameworks constructed from triphenylamine-based polycarboxylate ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213354] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Zhang M, Bu T, Bai F, Zhao S, Tian Y, He K, Zhao Y, Zheng X, Wang L. Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide: A high-sensitivity thermal analysis immunochromatographic sensor. Food Chem 2020; 341:128231. [PMID: 33011476 DOI: 10.1016/j.foodchem.2020.128231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
A sensitive photothermal immunochromatographic test strip (PITS) for the detection of deoxynivalenol (DON) was developed using flower-like gold nanoparticle-deposited manganese dioxide nanocarrier (FMD-G NC) labeled antibodies (Abs) as the photothermal-sensing probe. FMD was used as a template to deposit small gold nanoparticles (GNPs) to synthesize FMD-G NC with large specific surface area and significant photothermal conversion property. The FMD-G-Ab probe was competitively captured by DON target and antigen coated on test line (T-line), forming colorimetric signals under naked eyes and photothermal signals under an 808 nm laser. Under optimal conditions, the PITS exhibited sensitive and specific detection of DON from 0.19 ng mL-1 to 12 ng mL-1 with detection limits of 0.013 ng mL-1, which were over 15-fold and 58-fold more sensitive than visual FMD-G-ITS and traditional GNPs-ITS. In addition, the novel FMD-G-PITS possessed a universal applicability, which could be well applied in green bean, corn, and millet.
Collapse
Affiliation(s)
- Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yongming Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yijian Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
36
|
Gu C, Li J, Yang G, Zhang L, Liu CS, Pang H. Morphology and size controlled synthesis of Co-doped MIL-96 by different alkaline modulators for sensitively detecting alpha-fetoprotein. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Lu Y, Yang Q, Wu J. Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Metal–Organic Framework (MOF) through the Lens of Molecular Dynamics Simulation: Current Status and Future Perspective. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4020075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As hybrid porous structures with outstanding properties, metal–organic frameworks (MOFs) have entered into a large variety of industrial applications in recent years. As a result of their specific structure, that includes metal ions and organic linkers, MOFs have remarkable and tunable properties, such as a high specific surface area, excellent storage capacity, and surface modification possibility, making them appropriate for many industries like sensors, pharmacies, water treatment, energy storage, and ion transportation. Although the volume of experimental research on the properties and performance of MOFs has multiplied over a short period of time, exploring these structures from a theoretical perspective such as via molecular dynamics simulation (MD) requires a more in-depth focus. The ability to identify and demonstrate molecular interactions between MOFs and host materials in which they are incorporates is of prime importance in developing next generations of these hybrid structures. Therefore, in the present article, we have presented a brief overview of the different MOFs’ properties and applications from the most recent MD-based studies and have provided a perspective on the future developments of MOFs from the MD viewpoint.
Collapse
|
39
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Multicomponent nanohybrids of nickel/ferric oxides and nickel cobaltate spinel derived from the MOF-on-MOF nanostructure as efficient scaffolds for sensitively determining insulin. Anal Chim Acta 2020; 1110:44-55. [DOI: 10.1016/j.aca.2020.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
41
|
Zhang B, Guo PY, Ma LN, Liu B, Hou L, Wang YY. Two Robust In(III)-Based Metal–Organic Frameworks with Higher Gas Separation, Efficient Carbon Dioxide Conversion, and Rapid Detection of Antibiotics. Inorg Chem 2020; 59:5231-5239. [DOI: 10.1021/acs.inorgchem.0c00539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bin Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Pan-Yue Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. China
| |
Collapse
|
42
|
|
43
|
Xue YQ, Bi Y, Chen J. Halide-directed Assembly of Mercury(II) Coordination Polymers for Electrochemical Biosensing Toward Penicillin. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.201900322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ya-Qi Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Yan Bi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| | - Jing Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
| |
Collapse
|
44
|
Samie HA, Arvand M. Label-free electrochemical aptasensor for progesterone detection in biological fluids. Bioelectrochemistry 2020; 133:107489. [PMID: 32097878 DOI: 10.1016/j.bioelechem.2020.107489] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
A label-free electrochemical progesterone (P4) aptasensor was successfully developed by covalently immobilizing NH2-functionalized P4-specific aptamer on the electrode surface. The NiO-Au hybrid nanofibers were synthesized by the electrospinning technique. GQDs-NiO-AuNFs nanocomposite was prepared by dispersing of electrospun NiO-AuNFs in the as-synthesized graphene quantum dots (GQDs) solution and stirring for 24 h. Novel GQDs-NiO-AuNFs nano-architecture in combination with functionalized multiwalled carbon nanotubes (f-MWCNTs) were further utilized to modify screen printed carbon electrode (SPCE) in order to construct an effective immobilization matrix with plenty of carboxylic functional groups. The stepwise assembly process of the designed aptasensor was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The aptamer-progesterone complex formation led to a hindered electron transfer reaction on the sensing interface, which decreased the redox probe peak current. Based on of this, progesterone could be quantitatively detected by monitoring the decrease of differential pulse voltammetric (DPV) responses of [Fe(CN)6]3-/4- peak current with increasing the progesterone concentration. Under optimized experimental parameters, the aptasensor exhibited a dynamic concentration range from 0.01 to 1000 nM and a detection limit of 1.86 pM. The proposed aptasensor was successfully employed for the determination of progesterone in human serum samples and pharmaceutical formulations.
Collapse
Affiliation(s)
- Hedieh Asadi Samie
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914, Rasht, Iran
| | - Majid Arvand
- Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914, Rasht, Iran.
| |
Collapse
|
45
|
Ultrathin nanosheet-assembled accordion-like Ni-MOF for hydrazine hydrate amperometric sensing. Mikrochim Acta 2020; 187:168. [DOI: 10.1007/s00604-020-4153-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
46
|
Shait Mohammed MR, Ahmad V, Ahmad A, Tabrez S, Choudhry H, Zamzami MA, Bakhrebah MA, Ahmad A, Wasi S, Mukhtar H, Khan MI. Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. Semin Cancer Biol 2019; 69:129-139. [PMID: 31866477 DOI: 10.1016/j.semcancer.2019.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/16/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
Nano metal organic frameworks (NMOFs) belong to the group of nanoporous materials. Over the decades, the conducted researches explored the area for the potential applications of NMOFs in areas like biomedical, chemical engineering and materials science. Recently, NMOFs have been explored for their potential use in cancer diagnosis and therapeutics. The excellent physico-chemical features of NMOFs also make them a potential candiadate to facilitate drug design, delivery and storage against cancer cells. In this review, we have explored the characterstic features, synthesis methods, NMOFs based drug delivery, diagnosis and imaging in various cancer types. In addition to this, we have also pondered on the stability and toxicological concerns of NMOFs. Despite, a significant research has been done for the potential use of NMOFs in cancer diagonostic and therapeutics, more information regarding the stability, in-vivo clearance, toxicology, and pharmacokinetics is still needed to ehnace the use of NMOFs in cancer diagonostic and therapeutics.
Collapse
Affiliation(s)
| | - Varish Ahmad
- Health Information Technology Department,Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammed A Bakhrebah
- Life Science and Environmental Research Institute (KFMRC), King Abdulaziz City of Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department,Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samina Wasi
- College of Medicine, Department of Biochemistry, Imam Abdul Rahman Bin Faisal Uuniversity, Dammam, Saudi Arabia
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, 4385 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Pseudohalide-directed assemblies of Cu(II) coordination polymers with diverse structures and dye adsorption behaviors. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Liao X, Fu H, Yan T, Lei J. Electroactive metal-organic framework composites: Design and biosensing application. Biosens Bioelectron 2019; 146:111743. [PMID: 31586760 DOI: 10.1016/j.bios.2019.111743] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 12/20/2022]
Abstract
Metal-organic frameworks (MOFs) as molecular crystalline materials have been extensively applied in various fields such as catalysis, separation, and biomedical engineering. However, the applications of MOFs materials are limited in electrochemical biosensing due to the poor conductivity, less selectivity, and lack of modification sites. By incorporating the functionalized nanoparticles into MOF structures, MOF-based composites are endowed with high electronic conductivity and strong catalytic activity, which process the advantages over single-component MOFs. With a particular focus on the electrochemical applications of MOF composites, this review summarizes the comprehensive guidelines on design of electroactive MOF composites: dopant modification of electroactive ligands, in situ synthesis of nanoparticle@MOF composites and post-modification of MOF structure. The illustrative examples of electroactive MOF composites in the last five years are highlighted in electrochemical, electrochemiluminescent, and photoelectrochemical biosensing. The prospects and challenges for future work are also included. Understanding the structure-function relationship of electroactive MOF composites benefits the design of next-generation electrochemical biosensors.
Collapse
Affiliation(s)
- Xianjiu Liao
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tingting Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
50
|
Nanocomposites of Pt nanoparticles anchored on UiO66-NH2 as carriers to construct acetylcholinesterase biosensors for organophosphorus pesticide detection. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|