1
|
Liang A, Lv T, Pan B, Zhu Z, Haotian R, Xie Y, Sun L, Zhang J, Luo A. Dynamic simulation and experimental studies of molecularly imprinted label-free sensor for determination of milk quality marker. Food Chem 2024; 449:139238. [PMID: 38583401 DOI: 10.1016/j.foodchem.2024.139238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Bovine serum albumin (BSA) has emerged as a biomarker for mammary gland health and cow quality, being recognized as a significant allergenic protein. In this study, a novel flexible molecular imprinted electrochemical sensor by surface electropolymerization using pyrrole (Py) as functional monomer, which can be better applied to the detection of milk quality marker BSA. Based on computational results, with regard to all polypyrrole (PPy) conformations and amino-acid positions within the protein, the BSA molecule remained firmly embedded into PPy polymers with no biological changes. The molecular imprinted electrochemical sensor displayed a broad linear detection range from 1.0 × 10-4 to 50 ng·mL-1 (R2 = 0.995) with a low detection limit (LOD) of 4.5 × 10-2 pg·mL-1. Additionally, the sensor was highly selective, reproducible, stable and recoverable, suggesting that it might be utilized for the evaluation of milk quality.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingchen Pan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Xie
- Beijing Dawn Aerospace Bio-Tech Co. Ltd, Beijing 100043, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
3
|
Ayankojo AG, Reut J, Syritski V. Electrochemically Synthesized MIP Sensors: Applications in Healthcare Diagnostics. BIOSENSORS 2024; 14:71. [PMID: 38391990 PMCID: PMC10886925 DOI: 10.3390/bios14020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Early-stage detection and diagnosis of diseases is essential to the prompt commencement of treatment regimens, curbing the spread of the disease, and improving human health. Thus, the accurate detection of disease biomarkers through the development of robust, sensitive, and selective diagnostic tools has remained cutting-edge scientific research for decades. Due to their merits of being selective, stable, simple, and having a low preparation cost, molecularly imprinted polymers (MIPs) are increasingly becoming artificial substitutes for natural receptors in the design of state-of-the-art sensing devices. While there are different MIP preparation approaches, electrochemical synthesis presents a unique and outstanding method for chemical sensing applications, allowing the direct formation of the polymer on the transducer as well as simplicity in tuning the film properties, thus accelerating the trend in the design of commercial MIP-based sensors. This review evaluates recent achievements in the applications of electrosynthesized MIP sensors for clinical analysis of disease biomarkers, identifying major trends and highlighting interesting perspectives on the realization of commercial MIP-endowed testing devices for rapid determination of prevailing diseases.
Collapse
Affiliation(s)
| | | | - Vitali Syritski
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; (A.G.A.); (J.R.)
| |
Collapse
|
4
|
Ahn J, Han H, Ha JH, Jeong Y, Jung Y, Choi J, Cho S, Jeon S, Jeong JH, Park I. Micro-/Nanohierarchical Structures Physically Engineered on Surfaces: Analysis and Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300871. [PMID: 37083149 DOI: 10.1002/adma.202300871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The high demand for micro-/nanohierarchical structures as components of functional substrates, bioinspired devices, energy-related electronics, and chemical/physical transducers has inspired their in-depth studies and active development of the related fabrication techniques. In particular, significant progress has been achieved in hierarchical structures physically engineered on surfaces, which offer the advantages of wide-range material compatibility, design diversity, and mechanical stability, and numerous unique structures with important niche applications have been developed. This review categorizes the basic components of hierarchical structures physically engineered on surfaces according to function/shape and comprehensively summarizes the related advances, focusing on the fabrication strategies, ways of combining basic components, potential applications, and future research directions. Moreover, the physicochemical properties of hierarchical structures physically engineered on surfaces are compared based on the function of their basic components, which may help to avoid the bottlenecks of conventional single-scale functional substrates. Thus, the present work is expected to provide a useful reference for scientists working on multicomponent functional substrates and inspire further research in this field.
Collapse
Affiliation(s)
- Junseong Ahn
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Hyeonseok Han
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Hwan Ha
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Yongrok Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Young Jung
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seokjoo Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sohee Jeon
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Jun-Ho Jeong
- Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Yang JC, Lee J, Lim SJ, Kwak G, Park J. Molecularly Imprinted Chalcone-Branched Polyimide-Based Chemosensors with Stripe Nanopatterns for the Detection of Melittin. ACS Sens 2023; 8:2298-2308. [PMID: 37261931 DOI: 10.1021/acssensors.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, a chalcone-branched polyimide (CB-PI) was synthesized by the Steglich esterification reaction for selective recognition of the toxic peptide melittin (MEL). MEL was immobilized on a nanopatterned poly(dimethylsiloxane) (PDMS) mold using a conventional surface modification technique to increase binding sites. A stripe-nanopatterned thin CB-PI film was formed on a quartz crystal (QC) substrate by simultaneously performing microcontact printing and ultraviolet (UV) light dimerization using a MEL-immobilized mold. The surface morphology changes and dimensions of the molecularly imprinted polymer (MIP) films with stripe nanopatterns (S-MIP) were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The sensing signals (Δf and Qe) of the S-MIP sensor were investigated upon adsorption in a 100-μL dilute plasma solution containing 30 μg/mL MEL, and its reproducibility, reuse, stability, and durability were investigated. The S-MIP sensor showed high sensitivity (5.49 mL/mg) and coefficient of determination (R2 = 0.999), and the detection limit (LOD) and the quantification limit (LOQ) were determined as 0.3 and 1.1 μg/mL, respectively. In addition, the selectivity coefficients (k*) calculated from the selectivity tests were 2.7-5.7, 2.1-4.3, and 2.8-4.6 for bovine serum albumin (BSA), immunoglobulin G (IgG), and apamin (APA), respectively. Our results indicate that the nanopatterned MIP sensors based on CB-PI demonstrate great potential as a sensing tool for the quantitative analysis of biomolecules.
Collapse
Affiliation(s)
- Jin Chul Yang
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jineun Lee
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Seok Jin Lim
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Giseop Kwak
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Kalecki J, Cieplak M, Iskierko Z, Piechowska J, Nogala W, D'Souza F, Sharma PS. Post-imprinting modification: electrochemical and scanning electrochemical microscopy studies of a semi-covalently surface imprinted polymer. J Mater Chem B 2023; 11:1659-1669. [PMID: 36722440 DOI: 10.1039/d2tb02116a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein we described a post-imprinting modification of the imprinted molecular cavities for electrochemical sensing of a target protein. Imprinted molecular cavities were generated by following the semi-covalent surface imprinting approach. These mesoporous cavities were modified with a ferrocene 'electrochemical' tracer for electrochemical transduction of the target protein recognition. Electrochemical sensors prepared after post-imprinting modification showed a linear response in the concentration range of 0.5 to 50 μM. Chemosensors fabricated based on capacitive impedimetric transduction demonstrated that imprinted molecular cavities without post-imprinting modification showed better selectivity. Scanning electrochemical microscopy (SECM) was used for the surface characterization of imprinted molecular cavities modified with ferrocene electrochemical tracers. SECM analysis performed in the feedback mode monitor changes in the surface state of the ferrocene-modified polymer film. The kinetics of the mediator regeneration was almost 1.8 times higher on the non-imprinted surface versus the post-imprinting modified molecular imprinted polymer.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Joanna Piechowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle No. 305070, Denton, TX 76203-5017, USA
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
7
|
Shah NS, Thotathil V, Zaidi SA, Sheikh H, Mohamed M, Qureshi A, Sadasivuni KK. Picomolar or beyond Limit of Detection Using Molecularly Imprinted Polymer-Based Electrochemical Sensors: A Review. BIOSENSORS 2022; 12:1107. [PMID: 36551073 PMCID: PMC9775238 DOI: 10.3390/bios12121107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Over the last decades, molecularly imprinted polymers (MIPs) have emerged as selective synthetic receptors that have a selective binding site for specific analytes/target molecules. MIPs are synthetic analogues to the natural biological antigen-antibody system. Owing to the advantages they exhibit, such as high stability, simple synthetic procedure, and cost-effectiveness, MIPs have been widely used as receptors/sensors for the detection and monitoring of a variety of analytes. Moreover, integrating electrochemical sensors with MIPs offers a promising approach and demonstrates greater potential over traditional MIPs. In this review, we have compiled the methods and techniques for the production of MIP-based electrochemical sensors along with the applications of reported MIP sensors for a variety of analytes. A comprehensive in-depth analysis of recent trends reported on picomolar (pM/10-12 M)) and beyond picomolar concentration LOD (≥pM) achieved using MIPs sensors is reported. Finally, we discuss the challenges faced and put forward future perspectives along with our conclusion.
Collapse
Affiliation(s)
- Naheed Sidiq Shah
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Vandana Thotathil
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hanan Sheikh
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Maimoona Mohamed
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmadyar Qureshi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | | |
Collapse
|
8
|
Mazzotta E, Di Giulio T, Malitesta C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities. Anal Bioanal Chem 2022; 414:5165-5200. [PMID: 35277740 PMCID: PMC8916950 DOI: 10.1007/s00216-022-03981-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
Abstract
Looking at the literature focused on molecularly imprinted polymers (MIPs) for protein, it soon becomes apparent that a remarkable increase in scientific interest and exploration of new applications has been recorded in the last several years, from 42 documents in 2011 to 128 just 10 years later, in 2021 (Scopus, December 2021). Such a rapid threefold increase in the number of works in this field is evidence that the imprinting of macromolecules no longer represents a distant dream of optimistic imprinters, as it was perceived until only a few years ago, but is rapidly becoming an ever more promising and reliable technology, due to the significant achievements in the field. The present critical review aims to summarize some of them, evidencing the aspects that have contributed to the success of the most widely used strategies in the field. At the same time, limitations and drawbacks of less frequently used approaches are critically discussed. Particular focus is given to the use of a MIP for protein in the assembly of electrochemical sensors. Sensor design indeed represents one of the most active application fields of imprinting technology, with electrochemical MIP sensors providing the broadest spectrum of protein analytes among the different sensor configurations.
Collapse
Affiliation(s)
- Elisabetta Mazzotta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy.
| | - Tiziano Di Giulio
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| | - Cosimino Malitesta
- Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
9
|
Feng X, Jin S, Li D, Fu G. Controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules with a PEGylated nanocore and their application for fluorescence detection of target protein. RSC Adv 2022; 12:19561-19570. [PMID: 35865605 PMCID: PMC9258328 DOI: 10.1039/d2ra02298b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Epitope imprinting is an effective way to create artificial receptors for protein recognition. Surface imprinting with immobilized templates and sacrificial supports can generate high-quality imprinted cavities of homogeneous orientation and good accessibility, but it is still challenging to fabricate nanoscale imprinted materials by this approach. Herein, we propose a method for the controlled synthesis of open-mouthed epitope-imprinted polymer nanocapsules (OM-MIP NCs) by limiting the imprinting polymerization on the template-bearing side of the Janus nanoparticles (JNPs). Concurrent bromoacetyl (Ac–Br) and 2-bromoisobutyryl (iB–Br) functionalization of the major portion of SiO2 nanoparticles is achieved via the molten-wax-in-water Pickering emulsion approach. The cysteinyl-derived epitope templates are immobilized through the Ac–Br groups, and then surface imprinting is fulfilled via ATRP initiated by the iB–Br groups. The SiO2 supports are partially etched and then PEGlated, affording OM-MIP NCs with a PEGylated nanocore. The inside nanocore can facilitate collection of the NCs by centrifugation, and its PEGylation can inhibit non-specific binding. The surface imprinting can be optimized through the ATRP time, and the etching can be tailored via the concentration of NH4HF2 employed. For proof-of-concept, with a C-terminus nonapeptide of bovine serum albumin (BSA) chosen as a model epitope and polymerizable carbon dots added to the pre-polymerization solution, fluorescent OM-MIP NCs were fabricated for BSA sensing. The as-synthesized NCs exhibited satisfactory detection performance, with an imprinting factor of 6.1, a limit of detection of 38.1 nM, a linear range of 0.25–6 μM, and recoveries of 98.0 to 104.0% in bovine serum samples. Surface epitope imprinting over the one side of Janus SiO2 NPs via ATRP affords open-mouthed epitope-imprinted nanocapsules with imprinted cavities of homogeneous orientation and good accessibility for fluorescence detection of target protein.![]()
Collapse
Affiliation(s)
- Xingjia Feng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86 22 23501443
| | - Siyu Jin
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86 22 23501443
| | - Dongru Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86 22 23501443
| | - Guoqi Fu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86 22 23501443
| |
Collapse
|
10
|
Lin SY, Lin CY. Electrochemically-functionalized CNT/ABTS nanozyme enabling sensitive and selective voltammetric detection of microalbuminuria. Anal Chim Acta 2022; 1197:339517. [DOI: 10.1016/j.aca.2022.339517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/01/2022]
|
11
|
Morsi SMM, Abd El-Aziz ME, Mohamed HA. Smart polymers as molecular imprinted polymers for recognition of target molecules. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samir M. M. Morsi
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| | | | - Heba A. Mohamed
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
12
|
Raza S, Li X, Soyekwo F, Liao D, Xiang Y, Liu C. A comprehensive overview of common conducting polymer-based nanocomposites; Recent advances in design and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Pan Y, Shan D, Ding LL, Yang XD, Xu K, Huang H, Wang JF, Ren HQ. Developing a generally applicable electrochemical sensor for detecting macrolides in water with thiophene-based molecularly imprinted polymers. WATER RESEARCH 2021; 205:117670. [PMID: 34583204 DOI: 10.1016/j.watres.2021.117670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 05/05/2023]
Abstract
Our screening data revealed the threat macrolide antibiotics, especially azithromycin (AZN), posed to human health with its increasing occurrence in water environment. The electrochemical sensor based on molecularly imprinted polymer (MIP) is a promising platform that caters for the next generation of intelligent wastewater treatment plants (WWTPs) by virtue of its wide tolerance to water from all sources and in-situ monitoring. However, low initiation potentials of cross-linking monomers contributed by the electron-rich circumstance allowed them to usurp sites designed for functional monomers when electrically stimulated, leading to an unsatisfactory binding capacity. Another uncertainty is that multiple reaction sites of cross-linking monomers granted them complex polymerization routes and made it difficult to ensure the consistency of preparation. Serval monomers had been investigated with electrochemical tools and the performance of sensors constructed with these monomers were compared in this study. Based on the results, we proposed a protocol in which a novel functional monomer possessing a stronger electron-donating group, phenyl, was adopted to compete for the dominance in electropolymerization. Beyond that, the cross-linking monomer was modified with electron-withdrawing groups to raise its initiation potential. A monothiophene with a moderate initiation potential was also recruited as the linker to address the steric hindrance. In this way, polymerization proceeded in a specific order. It is worth mentioning that the Marangoni flow is an ideal tool to deal with the Coffee-ring deposition while drop-casting. The resulting sensor showed good performance with a limitation of detection (LOD) of 0.120 μM for AZN and a satisfactory selectivity, and the design can be applied to constructing sensors for a variety of macrolide antibiotics.
Collapse
Affiliation(s)
- Yao Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Li-Li Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Dong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jin-Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Kumar A, Gonçalves JM, Furtado VL, Araki K, Angnes L, Bouvet M, Bertotti M, Meunier‐Prest R. Mass Transport in Nanoporous Gold and Correlation with Surface Pores for EC
1
Mechanism: Case of Ascorbic Acid. ChemElectroChem 2021. [DOI: 10.1002/celc.202100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abhishek Kumar
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche-Comté 9 Avenue Alain Savary Dijon Cedex 21078 France
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Josue M. Gonçalves
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Vinicius L. Furtado
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Lucio Angnes
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche-Comté 9 Avenue Alain Savary Dijon Cedex 21078 France
| | - Mauro Bertotti
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Rita Meunier‐Prest
- Institut de Chimie Moléculaire de l'Université de Bourgogne UMR CNRS 6302 Université Bourgogne Franche-Comté 9 Avenue Alain Savary Dijon Cedex 21078 France
| |
Collapse
|
15
|
Kalecki J, Iskierko Z, Cieplak M, Sharma PS. Oriented Immobilization of Protein Templates: A New Trend in Surface Imprinting. ACS Sens 2020; 5:3710-3720. [PMID: 33225686 PMCID: PMC7771019 DOI: 10.1021/acssensors.0c01634] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022]
Abstract
In this Review, we have summarized recent trends in protein template imprinting. We emphasized a new trend in surface imprinting, namely, oriented protein immobilization. Site-directed proteins were assembled through specially selected functionalities. These efforts resulted in a preferably oriented homogeneous protein construct with decreased protein conformation changes during imprinting. Moreover, the maximum functionality for protein recognition was utilized. Various strategies were exploited for oriented protein immobilization, including covalent immobilization through a boronic acid group, metal coordinating center, and aptamer-based immobilization. Moreover, we have discussed the involvement of semicovalent as well as covalent imprinting. Interestingly, these approaches provided additional recognition sites in the molecular cavities imprinted. Therefore, these molecular cavities were highly selective, and the binding kinetics was improved.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
16
|
Lowdon JW, Diliën H, Singla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K. MIPs for commercial application in low-cost sensors and assays - An overview of the current status quo. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128973. [PMID: 33012991 PMCID: PMC7525251 DOI: 10.1016/j.snb.2020.128973] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.
Collapse
Affiliation(s)
- Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Pankaj Singla
- Department of Chemistry, UGC-Centre for advanced studies-1, Guru Nanak Dev University, Amritsar 143005, India
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
17
|
Ayerdurai V, Cieplak M, Noworyta KR, Gajda M, Ziminska A, Sosnowska M, Piechowska J, Borowicz P, Lisowski W, Shao S, D'Souza F, Kutner W. Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film. Bioelectrochemistry 2020; 138:107695. [PMID: 33296790 DOI: 10.1016/j.bioelechem.2020.107695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
A molecularly imprinted polymer (MIP) film based electrochemical sensor for selective determination of tyramine was devised, fabricated, and tested. Tyramine is generated in smoked and fermented food products. Therefore, it may serve as a marker of the rottenness of these products. Importantly, intake of large amounts of tyramine by patients treated with monoamine oxidase (MAO) inhibitors may lead to a "cheese effect", namely, a dangerous hypertensive crisis. The limit of detection at S/N = 3 of the chemosensor, in both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) determinations, with the use of the Fe(CN)64-/Fe(CN)63- redox probe, was 159 and 168 µM tyramine, respectively. The linear dynamic concentration range was 290 µM to 2.64 mM tyramine. The chemosensor was highly selective with respect to the glucose, urea, and creatinine interferences. Its DPV determined apparent imprinting factor was 5.6. Moreover, the mechanism of the "gate effect" in the operation of the polymer film-coated electrodes was unraveled.
Collapse
Affiliation(s)
- Viknasvarri Ayerdurai
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Krzysztof R Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marianna Gajda
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-091 Warsaw, Poland
| | - Agnieszka Ziminska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, Banacha 1, 02-091 Warsaw, Poland
| | - Marta Sosnowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Joanna Piechowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Shuai Shao
- Department of Chemistry, University of North Texas, Denton, 1155, Union Circle, #305070, TX 76203-5017, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, 1155, Union Circle, #305070, TX 76203-5017, USA.
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland.
| |
Collapse
|
18
|
Feyzi-barnaji B, Darbasizadeh B, Arkan E, Salehzadeh H, Salimi A, Nili F, Dinarvand R, Mohammadi A. Immunoreaction-triggered diagnostic device using reduced graphene oxide/CuO NPs/chitosan ternary nanocomposite, toward enhanced electrochemical detection of albumin. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Chiappini A, Pasquardini L, Bossi AM. Molecular Imprinted Polymers Coupled to Photonic Structures in Biosensors: The State of Art. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5069. [PMID: 32906637 PMCID: PMC7570731 DOI: 10.3390/s20185069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Optical sensing, taking advantage of the variety of available optical structures, is a rapidly expanding area. Over recent years, whispering gallery mode resonators, photonic crystals, optical waveguides, optical fibers and surface plasmon resonance have been exploited to devise different optical sensing configurations. In the present review, we report on the state of the art of optical sensing devices based on the aforementioned optical structures and on synthetic receptors prepared by means of the molecular imprinting technology. Molecularly imprinted polymers (MIPs) are polymeric receptors, cheap and robust, with high affinity and selectivity, prepared by a template assisted synthesis. The state of the art of the MIP functionalized optical structures is critically discussed, highlighting the key progresses that enabled the achievement of improved sensing performances, the merits and the limits both in MIP synthetic strategies and in MIP coupling.
Collapse
Affiliation(s)
- Andrea Chiappini
- Institute of Photonics and Nanotechnologies (IFN-CNR) CSMFO Laboratory and Fondazione Bruno Kessler (FBK) Photonics Unit, via alla Cascata 56/C, 38123 Povo Trento, Italy;
| | | | - Alessandra Maria Bossi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
20
|
Fathi F, Rashidi MR, Pakchin PS, Ahmadi-Kandjani S, Nikniazi A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2020; 221:121615. [PMID: 33076145 PMCID: PMC7466948 DOI: 10.1016/j.talanta.2020.121615] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Photonic crystal (PC)-based inverse opal (IO) arrays are one of the substrates for label-free sensing mechanism. IO-based materials with their advanced and ordered three-dimensional microporous structures have recently found attractive optical sensor and biological applications in the detection of biomolecules like proteins, DNA, viruses, etc. The unique optical and structural properties of IO materials can simplify the improvements in non-destructive optical study capabilities for point of care testing (POCT) used within a wide variety of biosensor research. In this review, which is an interdisciplinary investigation among nanotechnology, biology, chemistry and medical sciences, the recent fabrication methodologies and the main challenges regarding the application of (inverse opals) IOs in terms of their bio-sensing capability are summarized. The recent main challenges regarding the application of inverse opals (IOs) in the detection of biomolecules are reviewed. Sensing mechanisms of biomolecules including glucose, proteins, DNA, viruses were summarized. IO materials with their ordered 3D microporous structures have found attractive optical biosensor applications.
Collapse
Affiliation(s)
- Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Ahmadi-Kandjani
- Photonics Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran
| | - Arash Nikniazi
- Photonics Group, Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz, Iran; Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
21
|
Qi F, Meng Z, Xue M, Qiu L. Recent advances in self-assemblies and sensing applications of colloidal photonic crystals. Anal Chim Acta 2020; 1123:91-112. [PMID: 32507245 DOI: 10.1016/j.aca.2020.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Colloidal photonic crystals (PCs), consisting of highly ordered monodisperse nanoparticles, have been carried out a great deal of research in recent decades due to the attributes of readable signal, easy modification and low cost. With these unique features, colloidal PCs have also gradually become a focus of candidates applied in sensing fields. In this review, an overview of recent advances in colloidal PCs including self-assemblies and sensing applications is illustrated. With respect to the development in self-assemblies of colloidal PCs, the review concentrates on the summary of responsive mechanisms, detection methods, responsive materials, unit cells and fabrication methods. In terms of advances in sensing application of colloidal PCs, various types of sensors are summarized based on the kinds and applications of target analytes. Furthermore, the current limitations and potential future directions of colloidal PCs in self-assemblies and sensing areas are also discussed.
Collapse
Affiliation(s)
- Fenglian Qi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Min Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| |
Collapse
|
22
|
|
23
|
Mazouz Z, Mokni M, Fourati N, Zerrouki C, Barbault F, Seydou M, Kalfat R, Yaakoubi N, Omezzine A, Bouslema A, Othmane A. Computational approach and electrochemical measurements for protein detection with MIP-based sensor. Biosens Bioelectron 2020; 151:111978. [DOI: 10.1016/j.bios.2019.111978] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
|
24
|
Kalecki J, Cieplak M, Dąbrowski M, Lisowski W, Kuhn A, Sharma PS. Hexagonally Packed Macroporous Molecularly Imprinted Polymers for Chemosensing of Follicle-Stimulating Hormone Protein. ACS Sens 2020; 5:118-126. [PMID: 31845570 DOI: 10.1021/acssensors.9b01878] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Homogenous nanostructuration of molecularly imprinted polymer (MIP) films for follicle-stimulating hormone (FSH)-sensing was achieved by using optimized colloidal crystals as a hard mold. Introduction of a heating step after assembling colloidal crystals of silica beads promoted their adhesion. Thus, precise assembling of beads was not disturbed during further multisteps of surface imprinting, and crack-free hexagonal packing was maintained. Scanning electron microscopy imaging confirmed hexagonal packing of silica colloidal crystals as well as homogenous nanostructuration in MIP films. FSH immobilization over silica beads and later its derivatization with electroactive functional monomers was confirmed by X-ray photoelectron spectroscopy analysis. The nanostructured molecular recognition films prepared in this way were combined with an electrochemical transducer in order to design a capacitive impedimetry-based chemosensing system. It was tested for the determination of FSH in the range from 0.1 fM to 100 pM in 10 mM 2-(N-morpholino) ethane sulfonic acid buffer (pH = 4.2). The detection limit of the chemosensor was 0.1 fM, showing a high selectivity with respect to common protein interferences as well as other protein hormones of the gonadotropin family.
Collapse
Affiliation(s)
- Jakub Kalecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Dąbrowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 Avenue Pey Berland, 33607 Pessac, France
| | - Wojciech Lisowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Alexander Kuhn
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP, 16 Avenue Pey Berland, 33607 Pessac, France
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
25
|
Assavapanumat S, Gupta B, Salinas G, Goudeau B, Wattanakit C, Kuhn A. Chiral platinum-polypyrrole hybrid films as efficient enantioselective actuators. Chem Commun (Camb) 2019; 55:10956-10959. [PMID: 31451809 DOI: 10.1039/c9cc05854k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the synthesis of a hybrid bilayer, being composed of a free-standing conducting polymer film and a layer of mesoporous metal, encoded with chiral features. The resulting structure constitutes an enantioselective actuator, which can be electrochemically addressed in a wireless way. The controlled discriminatory deformation of the film allows an easy readout of chiral information.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France.
| | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Liu Y, Liu Z, Du F, Qin G, Li G, Hu X, Xu Z, Cai Z. Supramolecularly imprinted polymeric solid phase microextraction coatings for synergetic recognition nitrophenols and bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:358-364. [PMID: 30685724 DOI: 10.1016/j.jhazmat.2019.01.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
We herein firstly presented supramolecularly imprinted polymeric (SMIP) solid phase microextraction (SPME) coatings which showed synergetic recognition for nitrophenols and bisphenol A. A series of β-cyclodextrins (β-CD) with different substituents were successfully designed and synthesized. It was employed as supramolecular functional monomers for SMIPs. The orderly assembling structures settled down under the molecular imprinting process. The four of SMIPs solid phase microextraction coatings showed good selectivity for the template and could be used to extract 4-NP in real water samples. Furthermore, the inclusion effects of derived β-CDs with the 4-NP were investigated by measuring the UV-vis spectra and the theoretical calculations. The strongest intermolecular force is come from the supramolecular complex of 4-NP and β-CD-4 which shows the strongest UV-vis spectra absorption value. Meanwhile, the difference of the theoretical calculations value coming from the system of derived β-CDs and 4-NP is the largest, revealing the strongest electronic interactions between derived β-CD-4 and 4-NP. Therefore, these polymers possess inclusion interactions from β-cyclodextrin cavities and hydrogen-bonding interactions from molecular imprinting. Multiple adsorptions triggered off a synergetic recognition for target analytes. The SMIPs also performed highly selective recognition in complex real water sample with sensitive detection limits.
Collapse
Affiliation(s)
- Yuanchen Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China
| | - Yujian Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, PR China
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Gongke Li
- School of Chemistry, SunYat-Sen University, Guangzhou 510275, PR China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, PR China.
| |
Collapse
|
27
|
Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. SENSORS 2019; 19:s19051186. [PMID: 30857146 PMCID: PMC6427742 DOI: 10.3390/s19051186] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The most commonly used methods to electrodeposit nanomaterials on conductive supports or to obtain electrosynthesis nanomaterials are described. Au, layered double hydroxides (LDHs), metal oxides, and polymers are the classes of compounds taken into account. The electrochemical approach for the synthesis allows one to obtain nanostructures with well-defined morphologies, even without the use of a template, and of variable sizes simply by controlling the experimental synthesis conditions. In fact, parameters such as current density, applied potential (constant, pulsed or ramp) and duration of the synthesis play a key role in determining the shape and size of the resulting nanostructures. This review aims to describe the most recent applications in the field of electrochemical sensors of the considered nanomaterials and special attention is devoted to the analytical figures of merit of the devices.
Collapse
|
28
|
Dąbrowski M, Zimińska A, Kalecki J, Cieplak M, Lisowski W, Maksym R, Shao S, D'Souza F, Kuhn A, Sharma PS. Facile Fabrication of Surface-Imprinted Macroporous Films for Chemosensing of Human Chorionic Gonadotropin Hormone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9265-9276. [PMID: 30714713 DOI: 10.1021/acsami.8b17951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present an improved approach for the preparation of highly selective and homogeneous molecular cavities in molecularly imprinted polymers (MIPs) via the combination of surface imprinting and semi-covalent imprinting. Toward that, first, a colloidal crystal mold was prepared via the Langmuir-Blodgett (LB) technique. Then, human chorionic gonadotropin (hCG) template protein was immobilized on the colloidal crystal mold. Later, hCG derivatization with electroactive functional monomers via amide chemistry was performed. In a final step, optimized potentiostatic polymerization of 2,3'-bithiophene enabled depositing an MIP film as the macroporous structure. This synergistic strategy resulted in the formation of molecularly imprinted cavities exclusively on the internal surface of the macropores, which were accessible after dissolution of silica molds. The recognition of hCG by the macroporous MIP film was transduced with the help of electric transducers, namely, extended-gate field-effect transistors (EG-FET) and capacitive impedimetry (CI). These readout strategies offered the ability to create chemosensors for the label-free determination of the hCG hormone. Other than the simple confirmation of pregnancy, hCG assay is a common tool for the diagnosis and follow-up of ectopic pregnancy or trophoblast tumors. Concentration measurements with these EG-FET and CI-based devices allowed real-time measurements of hCG in the range of 0.8-50 and 0.17-2.0 fM, respectively, in 10 mM carbonate buffer (pH = 10). Moreover, the selectivity of chemosensors with respect to protein interferences was very high.
Collapse
Affiliation(s)
- Marcin Dąbrowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Agnieszka Zimińska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Department of Biomaterials Chemistry, Faculty of Pharmacy with Laboratory Medicine Division , Medical University of Warsaw , Banacha 1 , 02-097 Warsaw , Poland
| | - Jakub Kalecki
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Maciej Cieplak
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Radosław Maksym
- Department of Reproductive Health, Center of Postgraduate Medical Education , St. Sophia Hospital , Zelazna 90 , 01-004 Warsaw , Poland
| | - Shuai Shao
- Department of Chemistry , University of North Texas , 1155 Union Circle No. 305070 , Denton , Texas 76203-5017 , United States
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle No. 305070 , Denton , Texas 76203-5017 , United States
| | - Alexander Kuhn
- University of Bordeaux, CNRS UMR 5255, Bordeaux INP, ENSCBP , 16 Avenue Pey Berland , 33607 Pessac , France
| | - Piyush S Sharma
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| |
Collapse
|
29
|
Assavapanumat S, Yutthalekha T, Garrigue P, Goudeau B, Lapeyre V, Perro A, Sojic N, Wattanakit C, Kuhn A. Potential-Induced Fine-Tuning of the Enantioaffinity of Chiral Metal Phases. Angew Chem Int Ed Engl 2019; 58:3471-3475. [PMID: 30552860 DOI: 10.1002/anie.201812057] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/05/2018] [Indexed: 11/12/2022]
Abstract
Concepts leading to single enantiomers of chiral molecules are of crucial importance for many applications, including pharmacology and biotechnology. Recently, mesoporous metal phases encoded with chiral information have been developed. Fine-tuning of the enantioaffinity of such structures by imposing an electric potential is proposed, which can influence the electrostatic interactions between the chiral metal and the target enantiomer. This allows the binding affinity between the chiral metal and the target enantiomer to be increased, and thus, the discrimination between two enantiomers to be improved. The concept is illustrated by generating chiral encoded metals in a microfluidic channel by reduction of a platinum salt in the presence of a liquid crystal and l-tryptophan as a chiral model template. After removal of the template molecules, the modified microchannel retains a pronounced chiral character. The chiral recognition efficiency of the microchannel can be fine-tuned by applying a suitable potential to the metal phase. This enables the separation of both components of a racemate flowing through the channel. The approach constitutes a promising and complementary strategy in the frame of chiral discrimination technologies.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- University Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac, France.,School of Energy Science and Engineering and School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Engineering (VISTEC), Rayong, Thailand
| | - Thittaya Yutthalekha
- School of Energy Science and Engineering and School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Engineering (VISTEC), Rayong, Thailand
| | - Patrick Garrigue
- University Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac, France
| | - Bertrand Goudeau
- University Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac, France
| | - Véronique Lapeyre
- University Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac, France
| | - Adeline Perro
- University Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac, France
| | - Neso Sojic
- University Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering and School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Engineering (VISTEC), Rayong, Thailand
| | - Alexander Kuhn
- University Bordeaux, CNRS UMR 5255, Bordeaux INP, Site ENSCBP, Pessac, France
| |
Collapse
|
30
|
Tan S, Long Y, Han Q, Wang J, Liang Q, Ding M. Polymer-Assisted Hierarchically Bulky Imprinted Microparticles for Enhancing the Selective Enrichment of Proteins. ACS APPLIED BIO MATERIALS 2018; 2:388-396. [DOI: 10.1021/acsabm.8b00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Yang Long
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Qiang Han
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Jundong Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
31
|
Chotsuwan C, Boonrungsiman S, Asawapirom U, Jiramitmongkon K, Jiemsakul T, Ngamaroonchote A, Rattanaamron T. Highly viscous composite gel electrolyte based on cellulose acetate and nanoparticles. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 2018; 102:17-26. [DOI: 10.1016/j.bios.2017.10.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
33
|
Iskierko Z, Noworyta K, Sharma PS. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens Bioelectron 2018. [PMID: 29525669 DOI: 10.1016/j.bios.2018.02.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided.
Collapse
Affiliation(s)
- Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
34
|
Chen M, Xiang X, Wu K, He H, Chen H, Ma C. A Novel Detection Method of Human Serum Albumin Based on the Poly(Thymine)-Templated Copper Nanoparticles. SENSORS 2017; 17:s17112684. [PMID: 29160831 PMCID: PMC5712895 DOI: 10.3390/s17112684] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
In this work, we developed a facile fluorescence method for quantitative detection of human serum albumin (HSA) based on the inhibition of poly(thymine) (poly T)-templated copper nanoparticles (CuNPs) in the presence of HSA. Under normal circumstances, poly T-templated CuNPs can display strong fluorescence with excitation/emission peaks at 340/610 nm. However, in the presence of HSA, it will absorb cupric ion, which will prevent the formation of CuNPs. As a result, the fluorescence intensity will become obviously lower in the presence of HSA. The analyte HSA concentration had a proportional linear relationship with the fluorescence intensity of CuNPs. The detection limit for HSA was 8.2 × 10−8 mol·L−1. Furthermore, it was also successfully employed to determine HSA in biological samples. Thus, this method has potential applications in point-of-care medical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Mingjian Chen
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Xinying Xiang
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Kefeng Wu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Hailun He
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Hanchun Chen
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|