1
|
Huang J, Petrescu FIT, Li B, Wang L, Zhu H, Li Y. A Novel Ratiometric Photoelectrochemical Biosensor Based on Front and Back Illumination for Sensitive and Accurate Glutathione Sensing. BIOSENSORS 2024; 14:285. [PMID: 38920589 PMCID: PMC11202188 DOI: 10.3390/bios14060285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
The ratiometric detection method has a strong attraction for photoelectrochemical bioanalysis due to its high reliability and real-time calibration. However, its implementation typically depends on the spatial resolution of equipment and the pairing of wavelength/potential with photoactive materials. In this paper, a novel ratiometric photoelectrochemical biosensor based on front and back illumination was prepared for the detection of glutathione (GSH). Unlike traditional ratio methods, this ratiometric biosensor does not require voltage and wavelength modulation, thereby avoiding potential crosstalk caused by voltage and wavelength modulation. Additionally, the formation of a heterojunction between mTiO2 and Ag2S is conducive to enhancing light absorption and promoting charge separation, thereby boosting the photocurrent signal. Apart from forming a heterojunction with TiO2, Ag2S also shows a specific affinity towards GSH, thus enhancing the selectivity of the mTiO2/Ag2S ratiometric photoelectrochemical biosensor. The results demonstrate that the ratiometric photoelectrochemical biosensor exhibits a good detection range and a low detection limit for GSH, while also possessing significant interference elimination capability. The GSH detection range is 0.01-10 mmol L-1 with a detection limit of 6.39 × 10-3 mmol·L-1. The relative standard deviation of 20 repeated detections is 0.664%. Impressively, the proposed novel ratiometric PEC biosensor demonstrates enviable universality, providing new insights for the design and construction of PEC ratiometric sensing platforms.
Collapse
Affiliation(s)
- Jie Huang
- The Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (J.H.); (B.L.); (L.W.); (H.Z.)
| | - Florian Ion Tiberiu Petrescu
- Department of Mechanisms and Robots Theory, National University of Science and Technology Polytechnic Bucharest, 060042 Bucharest, Romania
| | - Bing Li
- The Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (J.H.); (B.L.); (L.W.); (H.Z.)
| | - Likui Wang
- The Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (J.H.); (B.L.); (L.W.); (H.Z.)
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (J.H.); (B.L.); (L.W.); (H.Z.)
| | - Ying Li
- The Key Laboratory of Synthetic and Biotechnology Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; (J.H.); (B.L.); (L.W.); (H.Z.)
| |
Collapse
|
2
|
Li J, Zhou Y, Xi M, Hu L, Lu B, Gu W, Zhu C. Potential-Resolved Ratiometric Aptasensor for Sensitive Acetamiprid Analysis Based on Coreactant-free Electrochemiluminescence Luminophores of Gd-MOF and "Light Switch" Molecule of [Ru(bpy) 2dppz] 2. Anal Chem 2024; 96:5022-5028. [PMID: 38470563 DOI: 10.1021/acs.analchem.4c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
For conventional potential-resolved ratiometric electrochemiluminescence (ECL) systems, the introduction of multiplex coreactants is imperative. However, the undesirable interactions between different coreactants inevitably affect analytical accuracy and sensitivity. Herein, through the coordination of aggregation-induced emission ligands with gadolinium cations, the self-luminescent metal-organic framework (Gd-MOF) is prepared and serves as a novel coreactant-free anodic ECL emitter. By the intercalation of [Ru(bpy)2dppz]2+ with light switch effect into DNA duplex, one high-efficiency cathodic ECL probe is obtained using K2S2O8 as a coreactant. In the presence of acetamiprid, the strong affinity between the target and its aptamer induces the release of [Ru(bpy)2dppz]2+, resulting in a decreasing cathode signal and an increasing anode signal owing to the ECL resonance energy transfer from Gd-MOF to [Ru(bpy)2dppz]2+. In this way, an efficient dual-signal ECL aptasensor is constructed for the ratiometric analysis of acetamiprid, exhibiting a remarkably low detection limit of 0.033 pM. Strikingly, by using only one exogenous coreactant, the cross interference from multiple coreactants can be eliminated, thus improving the detection accuracy. The developed high-performance ECL sensing platform is successfully applied to monitor the residual level of acetamiprid in real samples, demonstrating its potential application in the field of food security.
Collapse
Affiliation(s)
- Jingshuai Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mengzhen Xi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Bingzhang Lu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
3
|
Sun Y, Ge S, Liu R, Wang S, Liu C, Li L, Zhao P, Ge S, Yu J. Potential-resolved electrochemiluminescence biosensor for simultaneous determination of multiplex miRNA. Talanta 2024; 266:125063. [PMID: 37572473 DOI: 10.1016/j.talanta.2023.125063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The multi-target simultaneous detection strategy based on potential-resolved electrochemiluminescence (ECL) has still been a research hotspot in analytical science, but the limited selection of ECL luminophores hinders the development of this field. Herein, polyethyleneimine functionalized perylene derivatives (PTC-PEI) and luminol functionalized gold nanoparticles (Lu-Au NPs) possessed significantly resolved emission potentials as ECL luminophore. The ternary ECL system was constructed with MoS2 nanoflowers and K2S2O8 as the coreaction accelerator and coreactant respectively, which significantly improved the cathode ECL emission of PTC-PEI. Simultaneously, the anode coreaction accelerator ZnO nanoflowers could promote the anode coreactant dissolved O2 reduction, and extremely enhanced the anode ECL emission of Lu-Au NPs. The proposed strategy addressed the major technical challenge of cross interference and competition of the coreactants for dual-biomarker detection, thus enabling accurate detection of miRNA-205 and miRNA-21 from 10 fM to 100 nM, with detection limits of 2.57 and 1.15 fM, respectively. In general, this work achieved a single-step synchronous detection of dual biomarkers, providing a new idea for the ECL detection of multiple biomarkers, and having potential value in the clinical diagnosis.
Collapse
Affiliation(s)
- Yina Sun
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Shuo Ge
- Department of Medical Laboratory, Shandong Medical College, Jinan, 250002, PR China
| | - Ruifang Liu
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Shujing Wang
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University; Institute of Stomatology, Shandong University, Jinan, 250012, PR China.
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research(iAIR), University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
4
|
O'Connor S, Dennany L, O'Reilly E. Evolution of nanomaterial Electrochemiluminescence luminophores towards biocompatible materials. Bioelectrochemistry 2023; 149:108286. [DOI: 10.1016/j.bioelechem.2022.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
|
5
|
Gao X, Liu X, Zeng Y, Zhang Q, Zhang B, Zou G. Spectrum-Resolved Electrochemiluminescence to Multiplex the Immunoassay and DNA Probe Assay. Anal Chem 2022; 94:15801-15808. [DOI: 10.1021/acs.analchem.2c03579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiancheng Liu
- Shenzhen Lifotronic Technology Co., Ltd, Nanshan District, Shenzhen 518055, China
| | - Ying Zeng
- Shenzhen Lifotronic Technology Co., Ltd, Nanshan District, Shenzhen 518055, China
| | - Qingqing Zhang
- Shenzhen Lifotronic Technology Co., Ltd, Nanshan District, Shenzhen 518055, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
6
|
Wang D, Liu X, Zeng Y, Zhang Q, Zhang B, Zou G. Low-Triggering-Potential Single-Color Electrochemiluminescence from Bovine Serum Albumin-Stabilized Unary Au Nanocrystals for Immunoassays. Anal Chem 2022; 94:11688-11694. [PMID: 35943953 DOI: 10.1021/acs.analchem.2c02474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, low-triggering-potential (LTP) electrochemiluminescence (ECL) with an onset around 0.0 V (vs Ag/AgCl) is proposed with bovine serum albumin (BSA)-stabilized Au nanocrystals (BSA-AuNCs) as a luminophore and hydrazine hydrate (N2H4) as a coreactant. The BSA-AuNCs/N2H4 system can exhibit efficient LTP-ECL around 0.37 V with the luminophore of both monodispersed and surface-confined states. The LTP-ECL of BSA-AuNCs/N2H4 is a kind of single-color emission with a maximum emission wavelength around 740 nm, which is obviously red-shifted for 80 nm from that of BSA-AuNCs PL, and indicates that the ECL is generated in a surface-defect-involved route instead of the band-gap-engineered route. Importantly, BSA-AuNCs can be utilized as ECL tags to perform sandwich-type immunoassays with acceptable sensitivity and selectivity, which exhibits a wide linear response for determining CA125 from 0.5 to 1000 mU/mL and a limit of detection of 0.05 mU/mL (S/N = 3).
Collapse
Affiliation(s)
- Dongyang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiancheng Liu
- Shenzhen Lifotronic Technology Company Limited, No. 1008 Songbai Road, Nanshan District, Shenzhen 518055, P. R. China
| | - Ying Zeng
- Shenzhen Lifotronic Technology Company Limited, No. 1008 Songbai Road, Nanshan District, Shenzhen 518055, P. R. China
| | - Qingqing Zhang
- Shenzhen Lifotronic Technology Company Limited, No. 1008 Songbai Road, Nanshan District, Shenzhen 518055, P. R. China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Lu X, Yao C, Sun L, Li Z. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosens Bioelectron 2022; 203:114041. [DOI: 10.1016/j.bios.2022.114041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
8
|
Yin H, Shi Y, Liu H, Dong Y, Chu X. Dual-potential electrochemiluminescence of single luminophore for detection of biomarker based on black phosphorus quantum dots as co-reactant. Mikrochim Acta 2021; 188:181. [PMID: 33954865 DOI: 10.1007/s00604-021-04833-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
Simultaneous cathodic and anodic electrochemiluminescence (ECL) emissions of needle-like nanostructures of Ru(bpy)32+ (RuNDs) as the only luminophore are reported based on different co-reactants. Cathodic ECL was attained from RuNDs/K2S2O8 system, while anodic ECL was achieved from RuNDs/black phosphorus quantum dots (BPQDs) system. Ferrocene attached to the hairpin DNA could quench the cathodic and anodic ECL simultaneously. Subsequently, the ECL signals recovered in the presence of tumor marker mucin 1 (MUC1), which made it possible to quantitatively detect MUC1. The variation of ECL signal was related linearly to the concentrations of MUC1 in the range 20 pg mL-1 to 10 ng mL-1, and the detection limits were calculated to 2.5 pg mL-1 (anodic system, 3σ) and 6.2 pg mL-1 (cathodic system, 3σ), respectively. The recoveries were 97.0%, 105%, and 95.2% obtained from three human serum samples, and the relative standard deviation (RSD) is 5.3%. As a proof of concept, this work realized simultaneous ECL emission of a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones. Simultaneous cathodic and anodic ECL emissions of RuNDs were reported based on different co-reactants. Ferrocene could quench the ECL emission in the cathode and the anode simultaneously. Thus, an aptasensor was constructed based on the variation of ECL intensity. As a proof of concept, this work realized simultaneous ECL emission of a single luminophore, which initiates a new thought in biomarker ECL detection beyond the traditional ones by avoiding the false positive signals.
Collapse
Affiliation(s)
- Hao Yin
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - YaHao Shi
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - YongPing Dong
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China.
| | - XiangFeng Chu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Institute of Material Science and Engineering, Anhui University of Technology, Maanshan, 243002, China
| |
Collapse
|
9
|
Gao H, Zhang Z, Zhang Y, Yu H, Rong S, Meng L, Song S, Mei Y, Pan H, Chang D. Electrochemiluminescence immunosensor for cancer antigen 125 detection based on novel resonance energy transfer between graphitic carbon nitride and NIR CdTe/CdS QDs. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Yu L, Li M, Kang Q, Fu L, Zou G, Shen D. Bovine serum albumin-stabilized silver nanoclusters with anodic electrochemiluminescence peak at 904 nm in aqueous medium and applications in spectrum-resolved multiplexing immunoassay. Biosens Bioelectron 2021; 176:112934. [DOI: 10.1016/j.bios.2020.112934] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
|
11
|
Liu X, Wang Q, Chen J, Chen X, Yang W. Ultrasensitive electrochemiluminescence biosensor for the detection of tumor exosomes based on peptide recognition and luminol-AuNPs@g-C3N4 nanoprobe signal amplification. Talanta 2021; 221:121379. [DOI: 10.1016/j.talanta.2020.121379] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 01/20/2023]
|
12
|
Wang F, Liu Y, Fu C, Li N, Du M, Zhang L, Ge S, Yu J. Paper-Based Bipolar Electrode Electrochemiluminescence Platform for Detection of Multiple miRNAs. Anal Chem 2020; 93:1702-1708. [PMID: 33369382 DOI: 10.1021/acs.analchem.0c04307] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper introduces a novel potential-resolved paper-based biosensor for simultaneous detection of multiple microRNAs (miRNAs) (taking miRNA-155 and miRNA-126 as examples) based on the bipolar electrode (BPE) electrochemiluminescence (ECL) strategy. The proposed multiple-channel paper-based sensing microfluidic platform was prepared by wax-printing technology, screen-printing method, and in situ Au nanoparticles (AuNPs) growth to form hydrophilic areas, hydrophobic boundaries, waterproof electronic bridge, driving electrode regions, and parallel bipolar electrode regions. CdTe quantum dots (QDs)-H2 and Au@g-C3N4 nanosheets (NSs)-DNA1 were used as dual electrochemiluminescence signal probes, and carboxylated Fe3O4 magnetic nanoparticles existed as carriers. CdTe QDs-H2/S2O82- and Au@g-C3N4 NSs-DNA1/S2O82- could exhibit two strong and stable ECL emissions at a drive voltage of 9 and 12 V, respectively, which can be used as effective potential-resolved signal tags. In addition, the proposed three-dimensional (3D) DNA nanomachine model and the target miRNA cycle strategy were used to achieve double amplification of electrochemiluminescence intensity. More importantly, the combination of the bipolar electrode system and the potential-resolved multitarget electrochemiluminescence method can greatly reduce the spatial interference between substances. The prepared ECL biosensor showed a favorable linear response for the detection of miRNA-155 and miRNA-126 with relatively low detection limits of 5.7 and 4.2 fM, respectively. With excellent sensitivity, the strategy may provide an efficient method for clinical application, especially in detection of trace multiple targets.
Collapse
Affiliation(s)
- Fangfang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yunqing Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Cuiping Fu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Na Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Miao Du
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, School of Material Science and Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
13
|
Zhang L, Ying Y, Li Y, Fu Y. Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications. Biosens Bioelectron 2020; 154:112036. [DOI: 10.1016/j.bios.2020.112036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
|
14
|
Huang B, Liu XP, Chen JS, Mao CJ, Niu HL, Jin BK. Electrochemiluminescence immunoassay for the prostate-specific antigen by using a CdS/chitosan/g-C3N4 nanocomposite. Mikrochim Acta 2020; 187:155. [DOI: 10.1007/s00604-020-4125-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
|
15
|
Zou K, Fu Y, Yang R, Zhang X, Du C, Chen J. CuO–ZnO heterojunction derived from Cu2+-doped ZIF-8: A new photoelectric material for ultrasensitive PEC immunoassay of CA125 with near-zero background noise. Anal Chim Acta 2020; 1099:75-84. [DOI: 10.1016/j.aca.2019.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
|
16
|
Recent advances in electrochemiluminescence-based simultaneous detection of multiple targets. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115767] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Kannan P, Chen J, Su F, Guo Z, Huang Y. Faraday-Cage-Type Electrochemiluminescence Immunoassay: A Rise of Advanced Biosensing Strategy. Anal Chem 2019; 91:14792-14802. [PMID: 31692335 DOI: 10.1021/acs.analchem.9b04503] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemiluminescence immunoassays are usually carried out through "on-electrode" strategy, i.e., sandwich-type immunoassay format, the sensitivity of which is restricted by two key bottlenecks: (1) the number of signal labels is limited and (2) only a part of signal labels could participate in the electrode reaction. In this Perspective, we discuss the development of an "in-electrode" Faraday-cage-type concept-based immunocomplex immobilization strategy. The biggest difference from the traditional sandwich-type one is that the designed "in-electrode" Faraday-cage-type immunoassay uses a conductive two-dimensional (2-D) nanomaterial simultaneously coated with signal labels and a recognition component as the detection unit, which could directly overlap on the electrode surface. In such a case, electrons could flow freely from the electrode to the detection unit, the outer Helmholtz plane (OHP) of the electrode is extended, and thousands of signal labels coated on the 2-D nanomaterial are all electrochemically "effective." Thus, then, the above-mentioned bottlenecks obstructing the improvement of the sensitivity in sandwich-type immunoassay are eliminated, and as a result a much higher sensitivity of the Faraday-cage-type immunoassay can be obtained. And, the applications of the proposed versatile "in-electrode" Faraday-cage-type immunoassay have been explored in the detection of target polypeptide, protein, pathogen, and microRNA, with the detection sensitivity improved tens to hundreds of times. Finally, the outlook and challenges in the field are summarized. The rise of Faraday-cage-type electrochemiluminescence immunoassay (FCT-ECLIA)-based biosensing strategies opens new horizons for a wide range of early clinical identification and diagnostic applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , People's Republic of China
| | - Jing Chen
- Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS) , Ningbo 315201 , People's Republic of China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , People's Republic of China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
18
|
Hao N, Lu J, Dai Z, Qian J, Zhang J, Guo Y, Wang K. Analysis of aqueous systems using all-inorganic perovskite CsPbBr3 quantum dots with stable electrochemiluminescence performance using a closed bipolar electrode. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.106559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Zhou X, Zhang W, Wang Z, Han J, Xie G, Chen S. Ultrasensitive aptasensing of insulin based on hollow porous C 3N 4/S 2O 82-/AuPtAg ECL ternary system and DNA walker amplification. Biosens Bioelectron 2019; 148:111795. [PMID: 31665673 DOI: 10.1016/j.bios.2019.111795] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Abstract
In this work, a high-efficiency electrochemiluminescence (ECL) ternary system was constructed for ultrasensitive assay of insulin based on hollow porous graphitic carbon nitride (HP-C3N4) as novel luminophore, S2O82- as coreactant and tri-metallic AuPtAg as coreaction accelerator. Specifically, in comparison with C3N4-based bulk nanomaterials, the as-prepared HP-C3N4 exhibits high luminous efficiency though decreased inner filter effect and minimized inactive ECL emitter. Noteworthy, tri-metallic AuPtAg, possessing the superiority of Au, Pt and Ag, was first used as coreaction accelerator to significantly enhance ECL intensity of HP-C3N4 and S2O82-. As a consequence, with the resultant ECL ternary (HP-C3N4/S2O82-/AuPtAg) system as aptasensing platform, a high-intense initial ECL signal was achieved. Subsequently, ferrocene-labeled quenching probe (Fc-HP2) as ECL quencher was used to quench the initial signal and achieve the low-background noise. Eventually, in the presence of insulin, the target-induced triple-helix molecular switch and Nb.BbvCI-assisted DNA walker amplification were executed to recover a strong ECL signal by releasing Fc-HP2 from the electrode surface. As expected, the constructed aptasensor presents an excellent sensitivity and selectivity for detecting insulin range from 0.05 pg mL-1 to 100 ng mL-1 with a detection limit of 17 fg mL-1. This work provides a new avenue for developing highly efficient HP-C3N4 based ECL ternary system as well as ultrasensitive ECL aptasensors for bioanalysis.
Collapse
Affiliation(s)
- Xumei Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Zhen Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| |
Collapse
|
20
|
Zhang L, Li Y, Ying Y, Fu Y. Recent advances in fabrication strategies and protein preservation application of protein-nanomaterial hybrids: Integration and synergy. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Jin Y, Kang Q, Guo X, Zhang B, Shen D, Zou G. Electrochemical-Signal-Amplification Strategy for an Electrochemiluminescence Immunoassay with g-C 3N 4 as Tags. Anal Chem 2018; 90:12930-12936. [PMID: 30274510 DOI: 10.1021/acs.analchem.8b03554] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signal amplification for electrochemiluminescence (ECL) has conventionally been achieved by employing effective matrixes that can accelerate the electrochemical redox processes or carry more electrochemiluminophores. Herein, a convenient signal-amplification strategy was proposed for an ECL immunoassay with carboxylated g-C3N4 nanosheets (NSs) as tags and carcinoembryonic antigen (CEA) as the model target via electrochemically pretreating the substrate: a glassy-carbon electrode (GCE) modified with a polymerized 2-aminoterephthalic acid (ATA) film (GCE/ATA). Bioconjugates of g-C3N4 NSs and the signal CEA antibody (Ab2) (i.e., g-C3N4 NS-Ab2) were immobilized on GCE/ATA via a sandwich immunoreaction to form GCE/ATA-Ab1-Ag-Ab2-NSs. Electrochemical-impedance spectroscopy and potential-resolved ECL characterization proved that GCE/ATA plays an important role in the electron-transfer resistance ( Ret) of the GCE/ATA-Ab1-Ag-Ab2-NSs for ECL and that successively scanning GCE/ATA-Ab1-Ag-Ab2-NSs from 0 to -1.6 V in K2S2O8- and H2O2-containing medium could reduce the Ret and bring out 3.3-times-enhanced ECL at the 10th scan cycle compared with that of the 1st scan cycle, which was about 10.2 times the ECL of the GCE/ATA-Ab1-Ag-Ab2-NSs in medium containing merely K2S2O8. Inspired by this, direct and successive scanning of GCE/ATA in K2S2O8- and H2O2-containing medium was employed during fabrication, which dramatically reduced the Ret of GCE/ATA-Ab1-Ag-Ab2-NSs and brought out obviously enhanced ECL responses for selectively determining CEA from 0.1 pg/mL to 1 ng/mL, with a detection limit of 3 fg/mL.
Collapse
Affiliation(s)
- Yuchen Jin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , PR China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , PR China
| | - Xinli Guo
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , PR China
| | - Bin Zhang
- College of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , PR China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , PR China
| | - Guizheng Zou
- College of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , PR China
| |
Collapse
|
22
|
Peng Y, Li Y, Li L, Zhu JJ. A label-free aptasensor for ultrasensitive Pb 2+ detection based on electrochemiluminescence resonance energy transfer between carbon nitride nanofibers and Ru(phen) 32. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:121-128. [PMID: 30014907 DOI: 10.1016/j.jhazmat.2018.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
A label-free aptasensor was developed for ultrasensitive detection of Pb2+ based on electrochemiluminescence resonance energy transfer (ECL-RET) from graphitic carbon nitride nanofibers (CNNFs) to Ru(phen)32+. The CNNFs synthesized via a facile two-step hydrolysis-electrolysis strategy showed intense and stable ECL signal by taking advantages of amplifying and stabilizing effect of carbon nanotubes and Au nanoparticles. After the specific hybridation between capture DNA and Pb2+ specific aptamer, Ru(phen)32+ could be captured onto CNNFs modified electrode by effectively intercalating into the grooves of double-strand DNA, thus triggering the ECL-RET and leading to highly enhanced ECL intensity. The presence of Pb2+ would result in the detachment of Ru(phen)32+ and then the inhibition of ECL-RET. Then Pb2+ concentration could be quantified based on ECL change before and after introduction of Pb2+. The target recycling based on exonuclease I (Exo I) mediated digestion of Pb2+-aptamer complex was implemented to further improve the sensitivity. These synergistic amplification strategies enabled the aptasensor to be ultrasensitive for Pb2+ determination with a detection limit of 0.04 pM. The proposed probe was utilized to analyze environmental samples with satisfactory results.
Collapse
Affiliation(s)
- Yujiao Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Lingling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
23
|
Ultrasensitive Faraday cage-type electrochemiluminescence assay for femtomolar miRNA-141 via graphene oxide and hybridization chain reaction-assisted cascade amplification. Biosens Bioelectron 2018. [DOI: 10.1016/j.bios.2018.02.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Electrochemiluminescence based competitive immunoassay for Sudan I by using gold-functionalized graphitic carbon nitride and Au/Cu alloy nanoflowers. Mikrochim Acta 2018; 185:275. [DOI: 10.1007/s00604-018-2790-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/03/2018] [Indexed: 01/21/2023]
|
25
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Jiang J, Lin X, Ding D, Diao G. Graphitic-phase carbon nitride-based electrochemiluminescence sensing analyses: recent advances and perspectives. RSC Adv 2018; 8:19369-19380. [PMID: 35540965 PMCID: PMC9080761 DOI: 10.1039/c8ra02221f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
This review describes the current trends in synthesis methods, signaling strategies, and sensing applications of g-C3N4-based ECL emitters.
Collapse
Affiliation(s)
- Jingjing Jiang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Xinyi Lin
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Dong Ding
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
27
|
Song H, Zhang L, Su Y, Lv Y. Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0024-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|