1
|
Wen A, Wang H, Yuan S, Yu H, Guo Y, Yao W. Underestimation of tetracycline antibiotic residues in chicken meat: The role of protein binding. Food Chem 2025; 463:141057. [PMID: 39236388 DOI: 10.1016/j.foodchem.2024.141057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Interesting variations in the analyte content were observed in chicken samples contaminated with tetracycline antibiotics (TCs) following pretreatment with various enzymatic hydrolysis before quantification by conventional analytical methods. Compared with untreated samples, the detectable contents of three TCs in protease-treated samples were 1.51 to 2.05 times higher, whereas lipase treatment did not significantly influence the contents. The marked changes following protease treatment confirmed the presence of protein-associated antibiotics. Infrared spectroscopy analysis indicated that the formation of protein-bound antibiotics resulted from non-covalent interactions between TCs and proteins. Further dissociation experiments determined that the intermolecular forces involved hydrogen bonding, hydrophobic interactions, and electrostatic attraction. Molecular docking substantiated these forces and detailed the binding mechanism at the molecular level. Moreover, the masking effect of protein binding on the determination of TCs was also evidenced in an additional 30 positive chicken samples, suggesting that the actual residue levels of TCs in protein-rich foodstuffs are underestimated.
Collapse
Affiliation(s)
- Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Huihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University.
| |
Collapse
|
2
|
Butterworth A, Pratibha P, Marx A, Corrigan DK. Electrochemical Detection of Oxacillin Resistance using Direct-Labeling Solid-Phase Isothermal Amplification. ACS Sens 2021; 6:3773-3780. [PMID: 34595928 DOI: 10.1021/acssensors.1c01688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isothermal amplification reactions represent an important and exciting approach to achieve widespread, low cost, and easily implemented molecular diagnostics. This work presents a modified recombinase polymerase amplification (RPA) reaction, which can be directly coupled to a simple electrochemical measurement to ultimately allow development of a nucleic acid-based assay for antibiotic resistance genes. It is shown that use of reagents from a standard RPA reaction kit allows incorporation of horse radish peroxidase-labeled thymine nucleotides into amplified DNA strands, which can be detected via an amperometric signal readout for detection of important gene sequences. The assay is exemplified through detection of fragments of the oxacillin resistance gene in Escherichia coli cells bearing a drug resistance plasmid, achieving a potential limit of detection of 319 cfus/mL and an unoptimized time to result of 60 min. This work serves as a suitable demonstration of the potential for a system to deliver detection of key drug resistance genes at clinically relevant levels.
Collapse
Affiliation(s)
- Adrian Butterworth
- Department of Biomedical Engineering, Wolfson Centre, University of Strathclyde, 106 Rottenrow East, Glasgow G1 1XQ, U.K
| | - Pratibha Pratibha
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Damion K. Corrigan
- Department of Biomedical Engineering, Wolfson Centre, University of Strathclyde, 106 Rottenrow East, Glasgow G1 1XQ, U.K
| |
Collapse
|
3
|
Advances in Antimicrobial Resistance Monitoring Using Sensors and Biosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indiscriminate use and mismanagement of antibiotics over the last eight decades have led to one of the main challenges humanity will have to face in the next twenty years in terms of public health and economy, i.e., antimicrobial resistance. One of the key approaches to tackling antimicrobial resistance is clinical, livestock, and environmental surveillance applying methods capable of effectively identifying antimicrobial non-susceptibility as well as genes that promote resistance. Current clinical laboratory practices involve conventional culture-based antibiotic susceptibility testing (AST) methods, taking over 24 h to find out which medication should be prescribed to treat the infection. Although there are techniques that provide rapid resistance detection, it is necessary to have new tools that are easy to operate, are robust, sensitive, specific, and inexpensive. Chemical sensors and biosensors are devices that could have the necessary characteristics for the rapid diagnosis of resistant microorganisms and could provide crucial information on the choice of antibiotic (or other antimicrobial medicines) to be administered. This review provides an overview on novel biosensing strategies for the phenotypic and genotypic determination of antimicrobial resistance and a perspective on the use of these tools in modern health-care and environmental surveillance.
Collapse
|
4
|
High-Frequency Interdigitated Array Electrode-Based Capacitive Biosensor for Protein Detection. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3412-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Behera B, Anil Vishnu GK, Chatterjee S, Sitaramgupta V VSN, Sreekumar N, Nagabhushan A, Rajendran N, Prathik BH, Pandya HJ. Emerging technologies for antibiotic susceptibility testing. Biosens Bioelectron 2019; 142:111552. [PMID: 31421358 DOI: 10.1016/j.bios.2019.111552] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022]
Abstract
Superbugs such as infectious bacteria pose a great threat to humanity due to an increase in bacterial mortality leading to clinical treatment failure, lengthy hospital stay, intravenous therapy and accretion of bacteraemia. These disease-causing bacteria gain resistance to drugs over time which further complicates the treatment. Monitoring of antibiotic resistance is therefore necessary so that bacterial infectious diseases can be diagnosed rapidly. Antimicrobial susceptibility testing (AST) provides valuable information on the efficacy of antibiotic agents and their dosages for treatment against bacterial infections. In clinical laboratories, most widely used AST methods are disk diffusion, gradient diffusion, broth dilution, or commercially available semi-automated systems. Though these methods are cost-effective and accurate, they are time-consuming, labour-intensive, and require skilled manpower. Recently much attention has been on developing rapid AST techniques to avoid misuse of antibiotics and provide effective treatment. In this review, we have discussed emerging engineering AST techniques with special emphasis on phenotypic AST. These techniques include fluorescence imaging along with computational image processing, surface plasmon resonance, Raman spectra, and laser tweezer as well as micro/nanotechnology-based device such as microfluidics, microdroplets, and microchamber. The mechanical and electrical behaviour of single bacterial cell and bacterial suspension for the study of AST is also discussed.
Collapse
Affiliation(s)
- Bhagaban Behera
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - G K Anil Vishnu
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Suman Chatterjee
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta V
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Niranjana Sreekumar
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Apoorva Nagabhushan
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | | | - B H Prathik
- Indira Gandhi Institute of Child Health, Bangalore, India
| | - Hardik J Pandya
- Biomedical and Electronic (10(-6)-10(-9)) Engineering Systems Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
6
|
Wang X, Shen W, Zhang X, Guo S, Gao Y, Li X, Feng F, Yang G. Indirect Electrochemical Determination of Ribavirin Using Boronic Acid-Diol Recognition on a 3-Aminophenylboronic Acid-Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode (APBA/ERGO/GCE). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1576716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiaolei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Siyan Guo
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ye Gao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaotong Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fang Feng
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Gongjun Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Leonard H, Colodner R, Halachmi S, Segal E. Recent Advances in the Race to Design a Rapid Diagnostic Test for Antimicrobial Resistance. ACS Sens 2018; 3:2202-2217. [PMID: 30350967 DOI: 10.1021/acssensors.8b00900] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Even with advances in antibiotic therapies, bacterial infections persistently plague society and have amounted to one of the most prevalent issues in healthcare today. Moreover, the improper and excessive administration of antibiotics has led to resistance of many pathogens to prescribed therapies, rendering such antibiotics ineffective against infections. While the identification and detection of bacteria in a patient's sample is critical for point-of-care diagnostics and in a clinical setting, the consequent determination of the correct antibiotic for a patient-tailored therapy is equally crucial. As a result, many recent research efforts have been focused on the development of sensors and systems that correctly guide a physician to the best antibiotic to prescribe for an infection, which can in turn, significantly reduce the instances of antibiotic resistance and the evolution of bacteria "superbugs." This review details the advantages and shortcomings of the recent advances (focusing from 2016 and onward) made in the developments of antimicrobial susceptibility testing (AST) measurements. Detection of antibiotic resistance by genomic AST techniques relies on the prediction of antibiotic resistance via extracted bacterial DNA content, while phenotypic determinations typically track physiological changes in cells and/or populations exposed to antibiotics. Regardless of the method used for AST, factors such as cost, scalability, and assay time need to be weighed into their design. With all of the expansive innovation in the field, which technology and sensing systems demonstrate the potential to detect antimicrobial resistance in a clinical setting?
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
| | - Raul Colodner
- Laboratory of Clinical Microbiology, Emek Medical Center, Afula, Israel 18101
| | - Sarel Halachmi
- Department of Urology, Bnai Zion Medical Center, Haifa, Israel 3104800
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion − Israel Institute of Technology, Haifa, Israel 3200003
- The Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Haifa, Israel, 3200003
| |
Collapse
|