1
|
Salinas G, Arnaboldi S, Garrigue P, Bonetti G, Cirilli R, Benincori T, Kuhn A. Magnetic field-enhanced redox chemistry on-the-fly for enantioselective synthesis. Faraday Discuss 2023; 247:34-44. [PMID: 37470179 DOI: 10.1039/d3fd00041a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Chemistry on-the-fly is an interesting concept, extensively studied in recent years due to its potential use for recognition, quantification and conversion of chemical species in solution. In this context, chemistry on-the-fly for asymmetric synthesis is a promising field of investigation, since it can help to overcome mass transport limitations, present for example in conventional organic electrosynthesis. Herein, the synergy between a magnetic field-enhanced self-electrophoretic propulsion mechanism and enantioselective redox chemistry on-the-fly is proposed as an efficient method to boost stereoselective conversion. We employ Janus swimmers as redox-active elements, exhibiting a well-controlled clockwise or anticlockwise motion with a speed that can be increased by one order of magnitude in the presence of an external magnetic field. While moving, these bifunctional objects convert spontaneously on-the-fly a prochiral molecule into a specific enantiomer with high enantiomeric excess. The magnetic field-enhanced self-mixing of the swimmers, based on the formation of local magnetohydrodynamic vortices, leads to a significant improvement of the reaction yield and the conversion rate.
Collapse
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607 Pessac, France.
| | - Serena Arnaboldi
- Dip. Di Chimica, Univ. degli Studi di Milano, 20133 Milan, Italy
| | - Patrick Garrigue
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607 Pessac, France.
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, 22100 Como, Italy
| | - Roberto Cirilli
- Istituto Superiore di Sanità, Centro Nazionale per il Controllo e la Valutazione dei Farmaci, 00161 Rome, Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia, Univ. degli Studi dell'Insubria, 22100 Como, Italy
| | - Alexander Kuhn
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, 33607 Pessac, France.
| |
Collapse
|
2
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209098. [DOI: 10.1002/anie.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Serena Arnaboldi
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
- Dip. Di Chimica Univ. degli Studi di Milano 20133 Milan Italy
| | - Gerardo Salinas
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Giorgia Bonetti
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Patrick Garrigue
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| | - Roberto Cirilli
- Istituto Superiore di Sanità Centro Nazionale per il Controllo e la Valutazione dei Farmaci 00161 Rome Italy
| | - Tiziana Benincori
- Dip. di Scienza e Alta Tecnologia Univ. degli Studi dell'Insubria 22100 Como Italy
| | - Alexander Kuhn
- Univ. Bordeaux CNRS, Bordeaux INP, ISM UMR 5255 33607 Pessac France
| |
Collapse
|
3
|
Salinas G, Niamlaem M, Kuhn A, Arnaboldi S. Recent Advances in Electrochemical Transduction of Chiral Information. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Arnaboldi S, Salinas G, Bonetti G, Garrigue P, Cirilli R, Benincori T, Kuhn A. Autonomous Chiral Microswimmers with Self‐mixing Capabilities for Highly Efficient Enantioselective Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Serena Arnaboldi
- University of Milan–Bicocca: Universita degli Studi di Milano-Bicocca Di Chimica ITALY
| | - Gerardo Salinas
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Giorgia Bonetti
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di Scienza e Alta Tecnologia ITALY
| | - Patrick Garrigue
- University of Bordeaux: Universite de Bordeaux Institute of Molecular Science FRANCE
| | - Roberto Cirilli
- Instituto superiore di santa Centro nazionale per il controlo e la valutazione dei Farmaci ITALY
| | - Tiziana Benincori
- Insubria University - Como Campus: Universita degli Studi dell'Insubria - Sede di Como di chimica ITALY
| | - Alexander Kuhn
- Bordeaux INP Chemistry ENSCBP 16 avenue Pey Berland 33607 Pessac FRANCE
| |
Collapse
|
5
|
Salinas G, Bonetti G, Cirilli R, Benincori T, Kuhn A, Arnaboldi S. Wireless light-emitting device for the determination of chirality in real samples. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Direct dynamic read-out of molecular chirality with autonomous enzyme-driven swimmers. Nat Chem 2021; 13:1241-1247. [PMID: 34650234 DOI: 10.1038/s41557-021-00798-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/24/2021] [Indexed: 11/08/2022]
Abstract
A key approach for designing bioinspired machines is to transfer concepts from nature to man-made structures by integrating biomolecules into artificial mechanical systems. This strategy allows the conversion of molecular information into macroscopic action. Here, we describe the design and dynamic behaviour of hybrid bioelectrochemical swimmers that move spontaneously at the air-water interface. Their motion is governed by the diastereomeric interactions between immobilized enantiopure oligomers and the enantiomers of a chiral probe molecule present in solution. These dynamic bipolar systems are able to convert chiral information present at the molecular level into enantiospecific macroscopic trajectories. Depending on the enantiomer in solution, the swimmers will move clockwise or anticlockwise; the concept can also be used for the direct visualization of the degree of enantiomeric excess by analysing the curvature of the trajectories. Deciphering in such a straightforward way the enantiomeric ratio could be useful for biomedical applications, for the read-out of food quality or as a more general analogue of polarimetric measurements.
Collapse
|
7
|
Rosini E, D’Antona P, Pollegioni L. Biosensors for D-Amino Acids: Detection Methods and Applications. Int J Mol Sci 2020; 21:E4574. [PMID: 32605078 PMCID: PMC7369756 DOI: 10.3390/ijms21134574] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
D-enantiomers of amino acids (D-AAs) are only present in low amounts in nature, frequently at trace levels, and for this reason, their biological function was undervalued for a long time. In the past 25 years, the improvements in analytical methods, such as gas chromatography, HPLC, and capillary electrophoresis, allowed to detect D-AAs in foodstuffs and biological samples and to attribute them specific biological functions in mammals. These methods are time-consuming, expensive, and not suitable for online application; however, life science investigations and industrial applications require rapid and selective determination of D-AAs, as only biosensors can offer. In the present review, we provide a status update concerning biosensors for detecting and quantifying D-AAs and their applications for safety and quality of foods, human health, and neurological research. The review reports the main challenges in the field, such as selectivity, in order to distinguish the different D-AAs present in a solution, the simultaneous assay of both L- and D-AAs, the production of implantable devices, and surface-scanning biosensors. These innovative tools will push future research aimed at investigating the neurological role of D-AAs, a vibrant field that is growing at an accelerating pace.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (P.D.); (L.P.)
| | | | | |
Collapse
|
8
|
Nanomaterial-based electrochemical (bio)-sensing: One step ahead in diagnostic and monitoring of metabolic rare diseases. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Ma J, Jiang Y, Shen L, Ma H, Sun T, Lv F, Kiran A, Zhu N. Wearable biomolecule smartsensors based on one-step fabricated berlin green printed arrays. Biosens Bioelectron 2019; 144:111637. [PMID: 31494509 DOI: 10.1016/j.bios.2019.111637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
The wearable smart detection of body biomolecules and biomarkers is being of significance in the practical fields. Hydrogen peroxide (H2O2) is a product of some enzyme-catalyzed biomolecular reactions. The detection of H2O2 could reflect the concentration information of the enzyme reaction biomolecule substrate such as glucose. A high-performance berlin green (BG) carbon ink for monitoring H2O2 was prepared in this work. And we have successfully developed the wearable smartsensors for detecting H2O2 and glucose based on one-step fabricated BG arrays by screen-printing technology. Comparing with other detection methods, these sensors are wearable, movable, flexible and biocompatible for monitoring biomolecules. As a result, the sensors exhibited good sensitivity, specificity, stability and reproductivity towards H2O2 and glucose. Additionally, there also received stable response after near one hundred times stretching and thousands of bending. Moreover, the wearable sensors could be easily remotely controlled by a smart phone, when integrated with wireless into the device. In prospective studies, the one-step fabricated wearable smartsensors is of great significance in developing a straightforward, highly-efficient and low-cost method for actual detection of biomolecules reflecting body health status, and would potentially be applied in the artificial intelligence (AI) fields.
Collapse
Affiliation(s)
- Junlin Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yu Jiang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Liuxue Shen
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongting Ma
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Tongrui Sun
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fengjuan Lv
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Almas Kiran
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Nan Zhu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
10
|
Karshalev E, Esteban-Fernández de Ávila B, Wang J. Micromotors for “Chemistry-on-the-Fly”. J Am Chem Soc 2018; 140:3810-3820. [DOI: 10.1021/jacs.8b00088] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Karshalev
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Joseph Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|