1
|
Cai J, Shen F, Zhao J, Xiao X. Enzymatic biofuel cell: A potential power source for self-sustained smart textiles. iScience 2024; 27:108998. [PMID: 38333690 PMCID: PMC10850773 DOI: 10.1016/j.isci.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Self-sustained smart textiles require a miniaturized and flexible power source, while the state-of-the-art lithium-ion battery cannot be seamlessly integrated into smart textiles. Enzymatic biofuel cells (EBFC), utilizing physiological glucose or lactate as fuels to convert chemical energy into electricity, are a potential alternative power source. In comparison to other proposed energy harvesters relying on solar and biomechanical energy, EBFCs feature several key properties, including continuous power generation, biocompatible interfaces without using toxic elements, simple configuration without extra packaging, and biodegradability. There is an urgent need to introduce EBFCs to the researchers working on smart textiles, who typically are not expert on bioelectrochemistry. This minireview first introduces the working principle of EBFC and then summarizes its recent progress on fibers, yarns, and textiles. It's expected that this review can help to bridge the knowledge gap and provide the community of smart textiles with information on both the strengths and limitations of EBFCs.
Collapse
Affiliation(s)
- Jingsheng Cai
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Fei Shen
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Jianqing Zhao
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
2
|
Guan S, Yang Y, Wang Y, Zhu X, Ye D, Chen R, Liao Q. A Dual-Functional MXene-Based Bioanode for Wearable Self-Charging Biosupercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305854. [PMID: 37671789 DOI: 10.1002/adma.202305854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/30/2023] [Indexed: 09/07/2023]
Abstract
As a reliable energy-supply platform for wearable electronics, biosupercapacitors combine the characteristics of biofuel cells and supercapacitors to harvest and store the energy from human's sweat. However, the bulky preparation process and deep embedding of enzyme active sites in bioelectrodes usually limit the energy-harvesting process, retarding the practical power-supply sceneries especially during the complicated in vivo motion. Herein, a MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure as the dual-functional bioanode is designed, which can not only provide a superior 3D catalytic microenvironment for enzyme accommodation to harvest energy from sweat, but also offers sufficient capacitance to store energy via the electrical double-layer capacitor. A wearable biosupercapacitor is fabricated in the "island-bridge" structure with a composite bioanode, active carbon/Pt cathode, polyacrylamide hydrogel substrate, and liquid metal conductor. The device exhibits an open-circuit voltage of 0.48 V and the high power density of 220.9 µW cm-2 at 0.5 mA cm-2 . The compact conformal adhesion with skin is successfully maintained under stretching/bending conditions. After repeatedly stretching the devices, there is no significant power attenuation in pulsed output. The unique bioelectrode structure and attractive energy harvesting/storing properties demonstrate the promising potential of this biosupercapacitor as a micro self-powered platform of wearable electronics.
Collapse
Affiliation(s)
- Shoujie Guan
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yang Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yuyang Wang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Dingding Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Rong Chen
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
3
|
Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractAs the world works to move away from traditional energy sources, effective efficient energy storage devices have become a key factor for success. The emergence of unconventional electrochemical energy storage devices, including hybrid batteries, hybrid redox flow cells and bacterial batteries, is part of the solution. These alternative electrochemical cell configurations provide materials and operating condition flexibility while offering high-energy conversion efficiency and modularity of design-to-design devices. The power of these diverse devices ranges from a few milliwatts to several megawatts. Manufacturing durable electronic and point-of-care devices is possible due to the development of all-solid-state batteries with efficient electrodes for long cycling and high energy density. New batteries made of earth-abundant metal ions are approaching the capacity of lithium-ion batteries. Costs are being reduced with the advent of flow batteries with engineered redox molecules for high energy density and membrane-free power generating electrochemical cells, which utilize liquid dynamics and interfaces (solid, liquid, and gaseous) for electrolyte separation. These batteries support electrode regeneration strategies for chemical and bio-batteries reducing battery energy costs. Other batteries have different benefits, e.g., carbon-neutral Li-CO2 batteries consume CO2 and generate power, offering dual-purpose energy storage and carbon sequestration. This work considers the recent technological advances of energy storage devices. Their transition from conventional to unconventional battery designs is examined to identify operational flexibilities, overall energy storage/conversion efficiency and application compatibility. Finally, a list of facilities for large-scale deployment of major electrochemical energy storage routes is provided.
Graphical abstract
Collapse
|
4
|
Zhao P, Zhang H, Sun X, Hao S, Dong S. A hybrid bioelectrochemical device based on glucose/O2 enzymatic biofuel cell for energy conversion and storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Pankratova G, Bollella P, Pankratov D, Gorton L. Supercapacitive biofuel cells. Curr Opin Biotechnol 2021; 73:179-187. [PMID: 34481244 DOI: 10.1016/j.copbio.2021.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Supercapacitive biofuel cells' (SBFCs) most recent advancements are herein disclosed. In conventional SBFCs the biocomponent is employed as the pseudocapacitive component, while in self-charging biodevices it also works as the biocatalyst. The performance of different types of SBFCs are summarized according to the categorization based on the biocatalyst employed: supercapacitive microbial fuel cells (s-MFCs), supercapacitive biophotovoltaics (SBPV) and supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be considered as promising 'alternative' energy devices (low-cost, environmentally friendly, and technically undemanding electric power sources etc.) being suitable for powering a new generation of miniaturized electronic applications.
Collapse
Affiliation(s)
- Galina Pankratova
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Paolo Bollella
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Dmitry Pankratov
- Department of Bioengineering, University of Antwerp, B-2020 Antwerp, Belgium
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
6
|
Cohen R, Bitton RE, Herzallh NS, Cohen Y, Yehezkeli O. Utilization of FAD-Glucose Dehydrogenase from T. emersonii for Amperometric Biosensing and Biofuel Cell Devices. Anal Chem 2021; 93:11585-11591. [PMID: 34383460 PMCID: PMC8631703 DOI: 10.1021/acs.analchem.1c02157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Flavin-dependent glucose dehydrogenases (FAD-GDH) are oxygen-independent enzymes with high potential to be used as biocatalysts in glucose biosensing applications. Here, we present the construction of an amperometric biosensor and a biofuel cell device, which are based on a thermophilic variant of the enzyme originated from Talaromyces emersonii. The enzyme overexpression in Escherichia coli and its isolation and performance in terms of maximal bioelectrocatalytic currents were evaluated. We examined the biosensor's bioelectrocatalytic activity in 2,6-dichlorophenolindophenol-, thionine-, and dichloro-naphthoquinone-mediated electron transfer configurations or in a direct electron transfer one. We showed a negligible interference effect and good stability for at least 20 h for the dichloro-naphthoquinone configuration. The constructed biosensor was also tested in interstitial fluid-like solutions to show high bioelectrocatalytic current responses. The bioanode was coupled with a bilirubin oxidase-based biocathode to generate 270 μW/cm2 in a biofuel cell device.
Collapse
Affiliation(s)
- Roy Cohen
- Faculty
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Rachel E. Bitton
- Faculty
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Nidaa S. Herzallh
- Faculty
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Yifat Cohen
- Faculty
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Omer Yehezkeli
- Faculty
of Biotechnology and Food Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Russell
Berrie Nanotechnology Institute, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- The
Nancy and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
7
|
Kim SH. Nanoporous Gold for Energy Applications. CHEM REC 2021; 21:1199-1215. [PMID: 33734584 DOI: 10.1002/tcr.202100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
Research activities using nanoporous gold (NPG) were reviewed in the field of energy applications in three categories: fuel cells, supercapacitors, and batteries. First, applications to fuel cells are reviewed with the subsections of proof-of-concept studies, studies on fuel oxidations at anode, and studies on oxygen reduction reactions at cathode. Second, applications to supercapacitors are reviewed from research activities on active materials/NPG composites to demonstrations of all-solid-state flexible supercapacitors using NPG electrodes. Third, research activities using NPG for battery applications are reviewed, mainly about fundamental studies on Li-air and Na-air batteries and some model studies on improving Li ion battery anodes. Although NPG based studies are the main subject of this review, some of meaningful studies using nanoporous metals are also discussed where relevant. Finally, summary and future outlook are given based on the survey on the research activities.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Korea, Division of Nano & Information Technology at KIST School, University of Science and Technology, Daejeon, 34113, Korea
| |
Collapse
|
8
|
Yan X, Jansen CU, Diao F, Qvortrup K, Tanner D, Ulstrup J, Xiao X. Surface-confined redox-active monolayers of a multifunctional anthraquinone derivative on nanoporous and single-crystal gold electrodes. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Xiao S, Wang S, Wang X, Xu P. Nanoporous gold: A review and potentials in biotechnological and biomedical applications. NANO SELECT 2021. [DOI: 10.1002/nano.202000291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sa Xiao
- State Key Laboratory of Microbial Technology Shandong University Qingdao PR China
| | - Shuangjue Wang
- State Key Laboratory of Microbial Technology Shandong University Qingdao PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology Shandong University Qingdao PR China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai PR China
| |
Collapse
|
10
|
Xiao X, Ryan MP, Leech D, Zhang J, Magner E. Antimicrobial enzymatic biofuel cells. Chem Commun (Camb) 2020; 56:15589-15592. [PMID: 33245301 DOI: 10.1039/d0cc07472a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A compact antibiotic delivery system based on enzymatic biofuel cells was prepared, in which ampicillin was released when discharged in the presence of glucose and O2. The release of ampicillin was effective in inhibiting the growth of bacterium Escherichia coli as confirmed by ex situ and in situ release studies in culture media.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | | | | | | | | |
Collapse
|
11
|
Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers. Catalysts 2020. [DOI: 10.3390/catal10121458] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Self-assembled molecular monolayers (SAMs) have long been recognized as crucial “bridges” between redox enzymes and solid electrode surfaces, on which the enzymes undergo direct electron transfer (DET)—for example, in enzymatic biofuel cells (EBFCs) and biosensors. SAMs possess a wide range of terminal groups that enable productive enzyme adsorption and fine-tuning in favorable orientations on the electrode. The tunneling distance and SAM chain length, and the contacting terminal SAM groups, are the most significant controlling factors in DET-type bioelectrocatalysis. In particular, SAM-modified nanostructured electrode materials have recently been extensively explored to improve the catalytic activity and stability of redox proteins immobilized on electrochemical surfaces. In this report, we present an overview of recent investigations of electrochemical enzyme DET processes on SAMs with a focus on single-crystal and nanoporous gold electrodes. Specifically, we consider the preparation and characterization methods of SAMs, as well as SAM applications in promoting interfacial electrochemical electron transfer of redox proteins and enzymes. The strategic selection of SAMs to accord with the properties of the core redox protein/enzymes is also highlighted.
Collapse
|
12
|
Xiao X, Leech D, Zhang J. An oxygen-reducing biocathode with "oxygen tanks". Chem Commun (Camb) 2020; 56:9767-9770. [PMID: 32701109 DOI: 10.1039/d0cc04031b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polytetrafluoroethylene submicro-rod materials, serving as micro-scaled "oxygen tanks" and binders, have been mixed into Os redox polymer-based bilirubin oxidase cathodes, leading to both enhanced limiting current density of the oxygen reduction reaction in neutral pH and operational stability over 16 hours.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, Ireland
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
13
|
Xiao X, McGourty KD, Magner E. Enzymatic Biofuel Cells for Self-Powered, Controlled Drug Release. J Am Chem Soc 2020; 142:11602-11609. [PMID: 32510936 DOI: 10.1021/jacs.0c05749] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Self-powered drug-delivery systems based on conductive polymers (CPs) that eliminate the need for external power sources are of significant interest for use in clinical applications. Osmium redox polymer-mediated glucose/O2 enzymatic biofuel cells (EBFCs) were prepared with an additional CP-drug layer on the cathode. On discharging the EBFCs in the presence of glucose and dioxygen, model drug compounds incorporated in the CP layer were rapidly released with negligible amounts released when the EBFCs were held at open circuit. Controlled and ex situ release of three model compounds, ibuprofen (IBU), fluorescein (FLU), and 4',6-diamidino-2-phenylindole (DAPI), was achieved with this self-powered drug-release system. DAPI released in situ in cell culture media was incorporated into retinal pigment epithelium (RPE) cells. This work demonstrates a proof-of-concept responsive drug-release system that may be used in implantable devices.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kieran Denis McGourty
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.,Department of Chemical Sciences and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
14
|
Otero F, Magner E. Biosensors-Recent Advances and Future Challenges in Electrode Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3561. [PMID: 32586032 PMCID: PMC7349852 DOI: 10.3390/s20123561] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Electrochemical biosensors benefit from the simplicity, sensitivity, and rapid response of electroanalytical devices coupled with the selectivity of biorecognition molecules. The implementation of electrochemical biosensors in a clinical analysis can provide a sensitive and rapid response for the analysis of biomarkers, with the most successful being glucose sensors for diabetes patients. This review summarizes recent work on the use of structured materials such as nanoporous metals, graphene, carbon nanotubes, and ordered mesoporous carbon for biosensing applications. We also describe the use of additive manufacturing (AM) and review recent progress and challenges for the use of AM in biosensing applications.
Collapse
Affiliation(s)
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
15
|
Tang J, Yan X, Engelbrekt C, Ulstrup J, Magner E, Xiao X, Zhang J. Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry 2020; 134:107537. [PMID: 32361268 DOI: 10.1016/j.bioelechem.2020.107537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022]
Abstract
Enzymatic biofuel cells (EBFCs) have attracted increasing attention due to their potential to harvest energy from a wide range of fuels under mild conditions. Fabrication of effective bioelectrodes is essential for the practical application of EBFCs. Graphene possesses unique physiochemical properties making it an attractive material for the construction of EBFCs. Despite these promising properties, graphene has not been used for EBFCs as frequently as carbon nanotubes, another nanoscale carbon allotrope. This review focuses on current research progress in graphene-based electrodes, including electrodes modified with graphene derivatives and graphene composites, as well as free-standing graphene electrodes. Particular features of graphene-based electrodes such as high conductivity, mechanical flexibility and high porosity for bioelectrochemical applications are highlighted. Reports on graphene-based EBFCs from the last five years are summarized, and perspectives for graphene-based EBFCs are offered.
Collapse
Affiliation(s)
- Jing Tang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xiaomei Yan
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Christian Engelbrekt
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark; Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| | - Jingdong Zhang
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
16
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
17
|
Effect of individual plasma components on the performance of a glucose enzyme electrode based on redox polymer mediation of a flavin adenine dinucleotide-dependent glucose dehydrogenase. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosens Bioelectron 2019; 126:275-291. [DOI: 10.1016/j.bios.2018.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
19
|
Xiao X, Siepenkoetter T, Whelan R, Salaj-Kosla U, Magner E. A continuous fluidic bioreactor utilising electrodeposited silica for lipase immobilisation onto nanoporous gold. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Xiao X, Siepenkoetter T, Conghaile PÓ, Leech D, Magner E. Nanoporous Gold-Based Biofuel Cells on Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7107-7116. [PMID: 29406691 DOI: 10.1021/acsami.7b18708] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A lactate/O2 enzymatic biofuel cell (EBFC) was prepared as a potential power source for wearable microelectronic devices. Mechanically stable and flexible nanoporous gold (NPG) electrodes were prepared using an electrochemical dealloying method consisting of a pre-anodization process and a subsequent electrochemical cleaning step. Bioanodes were prepared by the electrodeposition of an Os polymer and Pediococcus sp. lactate oxidase onto the NPG electrode. The electrocatalytic response to lactate could be tuned by adjusting the deposition time. Bilirubin oxidase from Myrothecium verrucaria was covalently attached to a diazonium-modified NPG surface. A flexible EBFC was prepared by placing the electrodes between two commercially available contact lenses to avoid direct contact with the eye. When tested in air-equilibrated artificial tear solutions (3 mM lactate), a maximum power density of 1.7 ± 0.1 μW cm-2 and an open-circuit voltage of 380 ± 28 mV were obtained, values slightly lower than those obtained in phosphate buffer solution (2.4 ± 0.2 μW cm-2 and 455 ± 21 mV, respectively). The decrease was mainly attributed to interference from ascorbate. After 5.5 h of operation, the EBFC retained 20% of the initial power output.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Till Siepenkoetter
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Peter Ó Conghaile
- School of Chemistry & Ryan Institute, National University of Ireland Galway , Galway H91 TK33, Ireland
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway , Galway H91 TK33, Ireland
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick V94 T9PX, Ireland
| |
Collapse
|
21
|
Pankratov D, Shen F, Ortiz R, Toscano MD, Thormann E, Zhang J, Gorton L, Chi Q. Fuel-independent and membrane-less self-charging biosupercapacitor. Chem Commun (Camb) 2018; 54:11801-11804. [DOI: 10.1039/c8cc06688d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A fuel-independent self-charging biosupercapacitor consisting of an enzymatic biocathode and a bioelectrode employing supercapacitive features of immobilized myoglobin is described.
Collapse
Affiliation(s)
- Dmitry Pankratov
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Fei Shen
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Roberto Ortiz
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | | | - Esben Thormann
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Jingdong Zhang
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Lo Gorton
- Department of Biochemistry and Structural Biology
- Lund University
- SE-22100 Lund
- Sweden
| | - Qijin Chi
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| |
Collapse
|
22
|
Xiao X, Magner E. A quasi-solid-state and self-powered biosupercapacitor based on flexible nanoporous gold electrodes. Chem Commun (Camb) 2018; 54:5823-5826. [DOI: 10.1039/c8cc02555j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A quasi-solid-state and flexible biofuel cell using a hydrogel electrolyte preloaded with sugar as a fuel is described.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemical Sciences and Bernal Institute
- University of Limerick
- Limerick V94 T9PX
- Ireland
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute
- University of Limerick
- Limerick V94 T9PX
- Ireland
| |
Collapse
|