1
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
2
|
Arul SS, Balakrishnan B, Handanahal SS, Venkataraman S. Viral nanoparticles: Current advances in design and development. Biochimie 2024; 219:33-50. [PMID: 37573018 DOI: 10.1016/j.biochi.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Viral nanoparticles (VNPs) are self-assembling, adaptable delivery systems for vaccines and other therapeutic agents used in a variety of biomedical applications. The potential of viruses to invade and infect various hosts and cells renders them suitable as potential nanocarriers, possessing distinct functional characteristics, immunogenic properties, and improved biocompatibility and biodegradability. VNPs are frequently produced through precise genetic or chemical engineering, which involves adding diverse sequences or functional payloads to the capsid protein (CP). Several spherical and helical plant viruses, bacteriophages, and animal viruses are currently being used as VNPs, or non-infectious virus-like particles (VLPs). In addition to their broad use in cancer therapy, vaccine technology, diagnostics, and molecular imaging, VNPs have made important strides in the realms of tissue engineering, biosensing, and antimicrobial prophylaxis. They are also being used in energy storage cells due to their binding and piezoelectric properties. The large-scale production of VNPs for research, preclinical testing, and clinical use is fraught with difficulties, such as those relating to cost-effectiveness, scalability, and purity. Consequently, many plants- and microorganism-based platforms are being developed, and newer viruses are being explored. The goal of the current review is to provide an overview of these advances.
Collapse
|
3
|
Altalbawy FMA, Ali E, N Fenjan M, Fakri Mustafa Y, Mansouri S, D O B, Gulnikhol Idiyevna S, Misra N, Alawadi AH, Alsalamy A. Aptamer-Magnetic Nanoparticle Complexes for Powerful Biosensing: A Comprehensive Review. Crit Rev Anal Chem 2024:1-14. [PMID: 38165810 DOI: 10.1080/10408347.2023.2298328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.
Collapse
Affiliation(s)
- Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Bokov D O
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- Chemistry Department, The Islamic University, Najaf, Iraq
- Chemistry Department, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Chemistry Department, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- Chemistry Department, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
4
|
Liu J, Zhang J, Zhou C, Wang G, Su X. Multi-signal aptasensor for thrombin detection based on catalytically active gold nanoparticles and fluorescent silicon quantum dots. Mikrochim Acta 2023; 190:444. [PMID: 37851103 DOI: 10.1007/s00604-023-05990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023]
Abstract
A multi-signal aptasensor for thrombin determination is proposed based on catalytically active gold nanoparticles (AuNPs) and fluorescent silicon quantum dots (SiQDs). Yellow 4-Nitrophenol (4-NP) could be converted to colorless 4-Aminophenol (4-AP) by catalytically active aptamer-modified AuNPs (S1-AuNPs). The SiQDs emitted strong blue fluorescence at 455 nm at the excitation wavelength of 367 nm. When thrombin was absent, S1-AuNPs could catalytically reduce yellow 4-NP to colorless 4-AP. When thrombin was added, the aptamer could be transformed into a G-quadruplex structure, which masked the surface-active catalytic sites of AuNPs and restrained the reduction of 4-NP. Thus, the fluorescence of SiQDs was greatly quenched by 4-NP through the inner filter effect (IFE), and the solution color remained yellow. As the concentration of thrombin increased, the catalytic activity of S1-AuNPs decreased. The concentration of 4-NP that was converted to 4-AP declined and the unconverted 4-NP increased. In this process, the absorption peak of 4-NP at 400 nm increased while the fluorescence emission of SiQDs at 455 nm decreased. The linear ranges of the fluorometric and colorimetric aptasensor were 0.5-30 nM and 0.3-30 nM, respectively. The limits of detection (LOD) for the two modes were 0.15 nM and 0.13 nM. Furthermore, a portable sensing platform was constructed by combining the smartphone-based device with the software ImageJ for the determination of thrombin. With the advantages of cost-effectiveness, simplicity of operation and broad applicability, this aptasensor provided a new perspective for on-site determination of thrombin in the clinical field.
Collapse
Affiliation(s)
- Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 2022; 157:116738. [PMID: 35874498 PMCID: PMC9293409 DOI: 10.1016/j.trac.2022.116738] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Virus threatens life health seriously. The accurate early diagnosis of the virus is vital for clinical control and treatment of virus infection. Aptamers are small single-stranded oligonucleotides (DNAs or RNAs). In this review, we summarized aptasensors for virus detection in recent years according to the classification of the viral target protein, and illustrated common detection mechanisms in the aptasensors (colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced raman spectroscopy (SERS), electrochemical detection, and field-effect transistor (FET)). Furthermore, aptamers against different target proteins of viruses were summarized. The relationships between the different biomarkers of the viruses and the detection methods, and their performances were revealed. In addition, the challenges and future directions of aptasensors were discussed. This review will provide valuable references for constructing on-site aptasensors for detecting viruses, especially the SARS-CoV-2.
Collapse
Affiliation(s)
- Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jun Chen
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.,Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China
| |
Collapse
|
6
|
Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. Int J Mol Sci 2022; 23:ijms23147552. [PMID: 35886898 PMCID: PMC9318239 DOI: 10.3390/ijms23147552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
The spontaneous interaction between human papillomavirus type 16 (HPV16) L1 virus-like particles (VLPs) and non-functionalized gold nanoparticles (nfGNPs) interferes with the nfGNPs’ salt-induced aggregation, inhibiting the red–blue color shift in the presence of NaCl. Electron microscopy and competition studies showed that color-shift inhibition is a consequence of direct nfGNP–VLP interaction and, thus, may produce a negative impact on the virus entry cell process. Here, an in vitro infection system based on the HPV16 pseudovirus (PsV) was used to stimulate the natural infection process in vitro. PsVs carry a pseudogenome with a reporter gene, resulting in a fluorescent signal when PsVs infect a cell, allowing quantification of the viral infection process. Aggregation assays showed that nfGNP-treated PsVs also inhibit color shift in the presence of NaCl. High-resolution microscopy confirmed nfGNP–PsV complex formation. In addition, PsVs can interact with silver nanoparticles, suggesting a generalized interaction of metallic nanoparticles with HPV16 capsids. The treatment of PsVs with nfGNPs produced viral infection inhibition at a higher level than heparin, the canonical inhibitor of HPV infection. Thus, nfGNPs can efficiently interfere with the HPV16 cell entry process and may represent a potential active component in prophylactic formulations to reduce the risk of HPV infection.
Collapse
|
7
|
Sun D, Xie J, Chen CJ, Liu JT. Analyzation of the binding mechanism and the isoelectric point of glycated albumin with self-assembled, aptamer-conjugated films by using surface plasmon resonance. Colloids Surf B Biointerfaces 2022; 214:112445. [PMID: 35290823 DOI: 10.1016/j.colsurfb.2022.112445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Glycated albumin(GA), a biomarker which has great potential to replace glycated hemoglobin in the diagnosis and treatment of diabetes, is being extensively studied by scientists, especially in preventive medicine. Aptamers, as novel probes, have attracted much attention due to their high specificity, wide storage conditions, and simple preparation. However, the interaction mechanism between GA and its aptamer is still unclear, hindering the progress of diabetic aptamer sensors into clinical testing. In this study, the interaction mechanism between GA and its aptamer was evaluated for the first time using surface plasmon resonance by changing the pH value, salt concentration and temperature. The successful preparation of the sensor chip is proved by the water contact angle, Atomic Force Microscope, and the X-ray photoelectron spectroscopy. This study shows that the pH can greatly affect the formation of a complex from the interaction between the aptamer and GA. The interaction mechanism between GA aptamer and GA was caused by electrostatic force. Otherwise, this is the first time to detect protein isoelectric point (pI) using SPR. This study provides an important reference for researchers of aptamer sensors from the perspective of detection environment, and promotes the use of aptamer sensors to the clinic.
Collapse
Affiliation(s)
- Dapeng Sun
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China; Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Jing Xie
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Ching-Jung Chen
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China; School of Opto-Electronic Technology, University of Chinese Academy of Sciences, China.
| | - Jen-Tsai Liu
- University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China; Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
8
|
Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: Current perspectives. Eur J Pharmacol 2022; 917:174751. [PMID: 35021110 DOI: 10.1016/j.ejphar.2022.174751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Cervical cancer is preventable yet one of the most prevalent cancers among women around the globe. Though regular screening has resulted in the decline in incidence, the disease claims a high number of lives every year, especially in the developing countries. Owing to rather aggressive and non-specific nature of the conventional chemotherapeutics, there is a growing need for newer treatment modalities. The advent of nanotechnology has assisted in this through the use of nanocarriers for targeted drug delivery. A number of nanocarriers are continuously being developed and studied for their application in drug delivery. The present review summarises the different drug delivery approaches and nanocarriers that can be useful, their advantages and limitation.
Collapse
Affiliation(s)
- Supriti Ghosh
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Rivière G, Korpi A, Sipponen MH, Zou T, Kostiainen MA, Österberg M. Agglomeration of Viruses by Cationic Lignin Particles for Facilitated Water Purification. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:4167-4177. [PMID: 32296616 PMCID: PMC7147264 DOI: 10.1021/acssuschemeng.9b06915] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Indexed: 05/07/2023]
Abstract
Virus contamination of water is a threat to human health in many countries. Current solutions for inactivation of viruses mainly rely on environmentally burdensome chemical oxidation or energy-intensive ultraviolet irradiation, which may create toxic secondary products. Here, we show that renewable plant biomass-sourced colloidal lignin particles (CLPs) can be used as agglomeration agents to facilitate removal of viruses from water. We used dynamic light scattering (DLS), electrophoretic mobility shift assay (EMSA), atomic force microscopy and transmission electron microscopy (AFM, TEM), and UV spectrophotometry to quantify and visualize adherence of cowpea chlorotic mottle viruses (CCMVs) on CLPs. Our results show that CCMVs form agglomerated complexes with CLPs that, unlike pristine virus particles, can be easily removed from water either by filtration or centrifugation. Additionally, cationic particles formed by adsorption of quaternary amine-modified softwood kraft lignin on the CLPs were also evaluated to improve the binding interactions with these anionic viruses. We foresee that due to their moderate production cost, and high availability of lignin as a side-stream from biorefineries, CLPs could be an alternative water pretreatment material in a large variety of systems such as filters, packed columns, or flocculants.
Collapse
Affiliation(s)
- Guillaume
N. Rivière
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Antti Korpi
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Mika Henrikki Sipponen
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106
91 Stockholm, Sweden
- E-mail:
| | - Tao Zou
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Mauri A. Kostiainen
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, FI-00076 Aalto, Espoo, Finland
- E-mail:
| |
Collapse
|
10
|
Li Y, Zhang Z, Tao Z, Gao X, Wang S, Liu Y. A Asp/Ce nanotube-based colorimetric nanosensor for H 2O 2-free and enzyme-free detection of cysteine. Talanta 2019; 196:556-562. [PMID: 30683405 DOI: 10.1016/j.talanta.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 01/27/2023]
Abstract
A novel colorimetric nanosensor has been developed for high sensitive and selective detection of cysteine (Cys) based on the intrinsic oxidase-like activity of cerium nanotube coordinated with aspartic acid (Asp/Ce-NT). Under the function of Asp/Ce-NT, colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) takes place within five minutes without the assistance of additional oxidizing agents (e.g. H2O2). The oxidase-like activity of Asp/Ce-NT can be modulated by adjusting the ratio of Asp to Ce(NO3)3 during preparation process as well as the chirality of Asp (levogyration/L and dextrorotation/D). Compared with D-Asp/Ce-NT, L-Asp/Ce-NT exhibits more excellent activity which can be specifically depressed by Cys. According to the developed strategy, limit of detection for Cys reaches as low as 33.2 nM. The avoiding use of H2O2 would improve the repeatability and reliability. Nice recoveries from 92.5% to 100.8% are found for Cys detection in serum samples. The developed sensing assay is cost-effective and operated in H2O2-free and enzyme-free condition, providing an effective rapid detection way for practical application in disease monitoring and diagnosis.
Collapse
Affiliation(s)
- Yunfei Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ziying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhanhui Tao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety (Ministry of Education), College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, China.
| |
Collapse
|
11
|
Mi X, Lucier EM, Turpeinen DG, Yeo ELL, Kah JCY, Heldt CL. Mannitol-induced gold nanoparticle aggregation for the ligand-free detection of viral particles. Analyst 2019; 144:5486-5496. [DOI: 10.1039/c9an00830f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addition of osmolytes causes viruses-coated AuNPs to aggregate and not protein-coated AuNPs. Ligand-free detection of virus was developed without the need for prior knowledge of the specific virus target.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering
- Michigan Technological University
- USA
| | | | | | - Eugenia Li Ling Yeo
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering
- National University of Singapore
- Singapore
| | - Caryn L. Heldt
- Department of Chemical Engineering
- Michigan Technological University
- USA
| |
Collapse
|
12
|
Jeevanandam J, Pal K, Danquah MK. Virus-like nanoparticles as a novel delivery tool in gene therapy. Biochimie 2018; 157:38-47. [PMID: 30408502 DOI: 10.1016/j.biochi.2018.11.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
Viruses are considered as natural nanomaterials as they are in the size range of 20-500 nm with a genetical material either DNA or RNA, which is surrounded by a protein coat capsid. Recently, the field of virus nanotechnology is gaining significant attention from researchers. Attention is given to the utilization of viruses as nanomaterials for medical, biotechnology and energy applications. Removal of genetic material from the viral capsid creates empty capsid for drug incorporation and coating the capsid protein crystals with antibodies, enzymes or aptamers will enhance their targeted drug deliver efficiency. Studies reported that these virus-like nanoparticles have been used in delivering drugs for cancer. It is also used in imaging and sensory applications for various diseases. However, there is reservation among researchers to utilize virus-like nanoparticles in targeted delivery of genes in gene therapy, as there is a possibility of using virus-like nanoparticles for targeted gene delivery. In addition, other biomedical applications that are explored using virus-like nanoparticles and the probable mechanism of delivering genes.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT250, Miri, Sarawak, 98009, Malaysia
| | - Kaushik Pal
- Bharath Institute of Higher Education and Research, Bharath University, Department of Nanotechnology, Research Park, 173 Agharam Road, Selaiyur, Chennai, 600073, Tamil Nadu, India.
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, 37403, United States
| |
Collapse
|