1
|
Li T, Li Z, Wang L, Yu B, Xiao M, Zhang Z. Reproducible, Accurate, and Sensitive Food Toxin On-Site Detection with Carbon Nanotube Transistor Biosensors. ACS NANO 2024; 18:26891-26901. [PMID: 39288204 DOI: 10.1021/acsnano.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Field-effect transistor (FET) biosensors based on nanomaterials are promising in the areas of food safety and early disease diagnosis due to their ultrahigh sensitivity and rapid response. However, most academically developed FET biosensors lack real-world reproducibility and comprehensive methodological validation to meet the standards of regulatory bodies. Here, highly uniform and well-packaged semiconducting carbon nanotube (CNT) FET biosensor chips were developed and assessed for the plug-and-play sensing for the rapid and highly sensitive detection of aflatoxin B1 (AFB1) in real food samples to meet international standards. In order to meet the requirements for reproducibility and stability, a scalable residual-free passivation and packaging process was developed for CNT FET biosensors. Portable detection systems were then constructed for on-site detection. The resulting packaged chips were functionalized with nucleic aptamers to enable highly selective detection of AFB1 in food samples with a detection limit (LOD) of 0.55 fg/mL (standard) for AFB1 and cross-reactivity coefficients to interferences as low as 1.8 × 10-7 in simulated solutions. Utilizing the portable detection system, on-site real food detection was achieved with a rapid response time less than 60 s, and LOD of 0.25 pg/kg (standard) in complex corn sample matrices. Single-blind tests demonstrated the ability of the chips to detect AFB1-positive food with 100% accuracy, using a set of 30 peanut samples. Validation experiments confirmed that the detection range, stability, and repeatability met international standards. This study showcased the accuracy, reliability, and potential practical applications of CNT FET biosensor chips in areas such as food safety and rapid biomedical testing.
Collapse
Affiliation(s)
- Tingxian Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics School of Electronics, Peking University, Beijing 100871, China
| | - Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bolun Yu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics School of Electronics, Peking University, Beijing 100871, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics School of Electronics, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Tan H, Wang Z, Fu R, Zhang X, Su Z. Nanomaterials revolutionize biosensing: 0D-3D designs for ultrasensitive detection of microorganisms and viruses. J Mater Chem B 2024; 12:7760-7786. [PMID: 39036967 DOI: 10.1039/d4tb01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Various diseases caused by harmful microorganisms and viruses have caused serious harm and huge economic losses to society. Thus, rapid detection of harmful microorganisms and viruses is necessary for disease prevention and treatment. Nanomaterials have unique properties that other materials do not possess, such as a small size effect and quantum size effect. Introducing nanomaterials into biosensors improves the performance of biosensors for faster and more accurate detection of microorganisms and viruses. This review aims to introduce the different kinds of biosensors and the latest advances in the application of nanomaterials in biosensors. In particular, this review focuses on describing the physicochemical properties of zero-, one-, two-, and three-dimensional nanostructures as well as nanoenzymes. Finally, this review discusses the applications of nanobiosensors in the detection of microorganisms and viruses and the future directions of nanobiosensors.
Collapse
Affiliation(s)
- Haokun Tan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - ZhiChao Wang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Rao Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, 100083 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
3
|
Smaani B, Nafa F, Benlatrech MS, Mahdi I, Akroum H, walid Azizi M, Harrar K, Kanungo S. Recent progress on field-effect transistor-based biosensors: device perspective. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:977-994. [PMID: 39136041 PMCID: PMC11318611 DOI: 10.3762/bjnano.15.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Over the last few decades, field-effect transistor (FET)-based biosensors have demonstrated great potential across various industries, including medical, food, agriculture, environmental, and military sectors. These biosensors leverage the electrical properties of transistors to detect a wide range of biomolecules, such as proteins, DNA, and antibodies. This article presents a comprehensive review of advancements in the architectures of FET-based biosensors aiming to enhance device performance in terms of sensitivity, detection time, and selectivity. The review encompasses an overview of emerging FET-based biosensors and useful guidelines to reach the best device dimensions, favorable design, and realization of FET-based biosensors. Consequently, it furnishes researchers with a detailed perspective on design considerations and applications for future generations of FET-based biosensors. Finally, this article proposes intriguing avenues for further research on the topology of FET-based biosensors.
Collapse
Affiliation(s)
- Billel Smaani
- Abdelhafid Boussouf University Centre of Mila, Mila, Algeria
| | - Fares Nafa
- University of Jijel, Automation Department, Jijel, Algeria
| | | | - Ismahan Mahdi
- Laboratoire de Recherche Electrification des Entreprises Industrilles (LREEI), Faculté des Hydrocarbures et de la Chimie, Université M’Hamed Bougara Boumerdes, Algeria
| | - Hamza Akroum
- LIST Laboratory, University M’Hamed Bougara, Boumerdes, Algeria
| | | | - Khaled Harrar
- LIST Laboratory, University M’Hamed Bougara, Boumerdes, Algeria
| | - Sayan Kanungo
- Department of Electrical and Electronics Engineering Birla Institute of Technology and Science Pilani, Hyderabad, India
| |
Collapse
|
4
|
Al-Younis ZK, Almajidi YQ, Mansouri S, Ahmad I, Turdialiyev U, O Alsaab H, F Ramadan M, Joshi SK, Alawadi AH, Alsaalamy A. Label-Free Field Effect Transistors (FETs) for Fabrication of Point-of-Care (POC) Biomedical Detection Probes. Crit Rev Anal Chem 2024:1-22. [PMID: 38829552 DOI: 10.1080/10408347.2024.2356842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Field effect transistors (FETs)-based detection probes are powerful platforms for quantification in biological media due to their sensitivity, ease of miniaturization, and ability to function in biological media. Especially, FET-based platforms have been utilized as promising probes for label-free detections with the potential for use in real-time monitoring. The integration of new materials in the FET-based probe enhances the analytical performance of the developed probes by increasing the active surface area, rejecting interfering agents, and providing the possibility for surface modification. Furthermore, the use of new materials eliminates the need for traditional labeling techniques, providing rapid and cost-effective detection of biological analytes. This review discusses the application of materials in the development of FET-based label-free systems for point-of-care (POC) analysis of different biomedical analytes from 2018 to 2024. The mechanism of action of the reported probes is discussed, as well as their pros and cons were also investigated. Also, the possible challenges and potential for the fabrication of commercial devices or methods for use in clinics were discussed.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabiain
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Umid Turdialiyev
- Department of Technical Sciences, Andijan Machine-Building Institute, Andijan, Uzbekistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | | | - S K Joshi
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
5
|
Ren H, Yang F, Cao M, Shan B, Chen R. Seamless integration of a nickel-based metal-organic framework with three-dimensional substrates for nonenzymatic glucose sensing. Dalton Trans 2024; 53:6300-6310. [PMID: 38482906 DOI: 10.1039/d4dt00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The effective integration of nanomaterials with underlying current collectors is a key factor affecting the performance of nonenzymatic glucose sensors, where an inappropriate integration structure often leads to poor electron transport and instability. In this work, a seamless integrated electrode was constructed by the in situ immobilizing of a nickel-based metal-organic framework (Ni-MOF) on a three-dimensional (3D) conductive nickel foam (NF) for highly sensitive and durable glucose sensing. Facilitated by a rapid microwave-assisted reaction, a robust interfacial interaction between the Ni-MOF and the substrate was established through in situ conversion from nickel oxide (NiO). The fabricated Ni-MOF/NF electrode exhibits an excellent limit of detection (LOD) of 2.65 μM and an impressive sensitivity (14.31 mA cm-2 mM-1) within the linear range (4-576 μM), which is significantly boosted compared with that of an electrode prepared by a typical drop-casting method (3.56 mA cm-2 mM-1 in 4-1836 μM). Characterization and electrochemical tests reveal that this integrated structure on the one hand contributes to fast electron transport and thus has enhanced sensitivity and on the other hand leads to exceptional durability with its structural integrity maintained under bending, shaking, and ultrasonication. Moreover, this seamless integration method was also employed to immobilize the Ni-MOF converted from the pre-chemically deposited NiO layer on another type of substrate, 3D carbon paper (CP), demonstrating the versatility of this facile strategy in creating diverse electrochemical electrodes for applications beyond glucose sensing.
Collapse
Affiliation(s)
- Haonan Ren
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Fan Yang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Meng Cao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Rong Chen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| |
Collapse
|
6
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Djoulde A, He M, Liu X, Kong L, Zhao P, Rao J, Chen J, Meng L, Wang Z, Liu M. Electrical Activity and Extremes of Individual Suspended ZnO Nanowires for 3D Nanoelectronic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44433-44443. [PMID: 37682724 DOI: 10.1021/acsami.3c07418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
We explored the electrical activity and extremes inside individual suspended zinc oxide (ZnO) nanowires (NWs) (diameter: 50-550 nm, length: 5-50 μm) subjected to high forward bias-induced Joule heating using two-terminal current-voltage measurements. NWs were isolated using a reproducible nanometrology technique, employing a nanomanipulator inside a scanning electron microscope. Schottky behavior is observed between installed tips and ZnO NW. The suspended ZnO NWs exhibited an average electrical resistivity ρ (approximately 2.3 × 10-2 Ω cm) and a high electron density n (exceeding 1.89 × 1018 cm-3), comparable to that of InP NWs, GaN NWs, and InAs NWs (1018∼1019 cm-3), suggesting the potential to drive advancements in high-performance NW devices. A maximum breakdown current density (JBD) of ∼0.14 MA/cm2 and a maximum breakdown power density (PBD) of 6.93 mW/μm3 were obtained, both of which are higher than substrate-bound ZnO NWs and consistent with previously reported results obtained from probed ZnO NWs grown vertically on the substrate. Moreover, we discovered that NWs experienced thermal breakdown due to Joule heating and exploited this breakdown mechanism to further investigate the temperature distribution along the ZnO NWs, as well as its dependence on the electrical properties and thermal conductance of contact electrodes. Thermal conductance was determined to be ∼0.4 nW K-1 and ∼1.66 pW K-1 at the tungsten(W)-ZnO NW and platinum(Pt)-ZnO NW contacts, respectively. In addition, we measured the elastic modulus (130-171 GPa), which closely approximated bulk values. We also estimated the nanoindentation hardness to be between 5 and 10 GPa. This work provides valuable insights into the electrical activity and extreme mechanisms, thus providing a better understanding of the potentials and limitations associated with utilizing suspended NWs in 3D nanodevices.
Collapse
Affiliation(s)
- Aristide Djoulde
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Mengfan He
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinyue Liu
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Lingdi Kong
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengfei Zhao
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Jinjun Rao
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Jinbo Chen
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Lingjun Meng
- School of Instrument and Electronics, North University of China, Shanxi 030051, China
| | - Zhiming Wang
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Mei Liu
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Lu N, Chen J, Rao Z, Guo B, Xu Y. Recent Advances of Biosensors for Detection of Multiple Antibiotics. BIOSENSORS 2023; 13:850. [PMID: 37754084 PMCID: PMC10526323 DOI: 10.3390/bios13090850] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
The abuse of antibiotics has caused a serious threat to human life and health. It is urgent to develop sensors that can detect multiple antibiotics quickly and efficiently. Biosensors are widely used in the field of antibiotic detection because of their high specificity. Advanced artificial intelligence/machine learning algorithms have allowed for remarkable achievements in image analysis and face recognition, but have not yet been widely used in the field of biosensors. Herein, this paper reviews the biosensors that have been widely used in the simultaneous detection of multiple antibiotics based on different detection mechanisms and biorecognition elements in recent years, and compares and analyzes their characteristics and specific applications. In particular, this review summarizes some AI/ML algorithms with excellent performance in the field of antibiotic detection, and which provide a platform for the intelligence of sensors and terminal apps portability. Furthermore, this review gives a short review of biosensors for the detection of multiple antibiotics.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
9
|
Mamun AA, McGarrity M, Kim JH, Zhao F. Silicon Carbide-Based DNA Sensing Technologies. MICROMACHINES 2023; 14:1557. [PMID: 37630093 PMCID: PMC10456662 DOI: 10.3390/mi14081557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
DNA sensing is critical in various applications such as the early diagnosis of diseases and the investigation of forensic evidence, food processing, agriculture, environmental protection, etc. As a wide-bandgap semiconductor with excellent chemical, physical, electrical, and biocompatible properties, silicon carbide (SiC) is a promising material for DNA sensors. In recent years, a variety of SiC-based DNA-sensing technologies have been reported, such as nanoparticles and quantum dots, nanowires, nanopillars, and nanowire-based field-effect-transistors, etc. This article aims to provide a review of SiC-based DNA sensing technologies, their functions, and testing results.
Collapse
Affiliation(s)
| | | | | | - Feng Zhao
- School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
| |
Collapse
|
10
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
11
|
La Via F, Alquier D, Giannazzo F, Kimoto T, Neudeck P, Ou H, Roncaglia A, Saddow SE, Tudisco S. Emerging SiC Applications beyond Power Electronic Devices. MICROMACHINES 2023; 14:1200. [PMID: 37374785 PMCID: PMC10300968 DOI: 10.3390/mi14061200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
In recent years, several new applications of SiC (both 4H and 3C polytypes) have been proposed in different papers. In this review, several of these emerging applications have been reported to show the development status, the main problems to be solved and the outlooks for these new devices. The use of SiC for high temperature applications in space, high temperature CMOS, high radiation hard detectors, new optical devices, high frequency MEMS, new devices with integrated 2D materials and biosensors have been extensively reviewed in this paper. The development of these new applications, at least for the 4H-SiC ones, has been favored by the strong improvement in SiC technology and in the material quality and price, due to the increasing market for power devices. However, at the same time, these new applications need the development of new processes and the improvement of material properties (high temperature packages, channel mobility and threshold voltage instability improvement, thick epitaxial layers, low defects, long carrier lifetime, low epitaxial doping). Instead, in the case of 3C-SiC applications, several new projects have developed material processes to obtain more performing MEMS, photonics and biomedical devices. Despite the good performance of these devices and the potential market, the further development of the material and of the specific processes and the lack of several SiC foundries for these applications are limiting further development in these fields.
Collapse
Affiliation(s)
| | - Daniel Alquier
- GREMAN, UMR 7347, Université de Tours, CNRS, 37071 Tours, France;
| | | | - Tsunenobu Kimoto
- Department of Electronic Science and Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan;
| | - Philip Neudeck
- NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, USA;
| | - Haiyan Ou
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 343, DK-2800 Kgs. Lyngby, Denmark;
| | | | - Stephen E. Saddow
- Electrical Engineering Department, University of South Florida, 4202 E. Fowler Avenue, ENG 030, Tampa, FL 33620, USA;
| | | |
Collapse
|
12
|
Goren AY, Recepoglu YK, Vatanpour V, Yoon Y, Khataee A. Insights into engineered graphitic carbon nitride quantum dots for hazardous contaminants degradation in wastewater. ENVIRONMENTAL RESEARCH 2023; 223:115408. [PMID: 36740151 DOI: 10.1016/j.envres.2023.115408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/07/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Increased environmental pollution is a critical issue that must be addressed. Photocatalytic, adsorption, and membrane filtration methods are suitable in environmental governance because of their high selectivity, low cost, environment-friendly nature, and excellent treatment efficiency. Graphitic carbon nitride (g-C3N4) quantum dots (QDs) have been considered as photocatalysts, adsorbents, and membrane materials for wastewater treatments, owing to their stability, adsorption capacity, photochemical properties, and low toxicity and cost. This review summarizes g-C3N4 QD synthesis techniques, operating parameters affecting the removal performance in the treatment process, modification effects with other semiconductors, and benefits and drawbacks of g-C3N4 QD-based materials. Furthermore, this review discusses the practical applications of g-C3N4 QDs as adsorbents, photocatalysts, and membrane materials for organic and inorganic contaminant treatments and their value-added product formation potential. Modified g-C3N4 QD-based material adsorbents, photocatalysts, and membranes present potentially applicable effects, such as removal of most waterborne contaminants. Excellent results were obtained for the reduction of methyl orange, bisphenol A, tetracycline, ciprofloxacin, phenol, rhodamine B, E. coli, and Hg. Overall, this paper provides comprehensive background on g-C3N4 QD-based materials and their diverse applications in wastewater treatment, and it presents a foundation for the enhancement of similar unique materials in the future.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Yasar K Recepoglu
- Department of Chemical Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; Department of Environmental Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, 1, Yonseidae-gil, Wonju-si, 26493, Gangwon-do, Republic of Korea.
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| |
Collapse
|
13
|
Nagal V, Masrat S, Khan M, Alam S, Ahmad A, Alshammari MB, Bhat KS, Novikov SM, Mishra P, Khosla A, Ahmad R. Highly Sensitive Electrochemical Non-Enzymatic Uric Acid Sensor Based on Cobalt Oxide Puffy Balls-like Nanostructure. BIOSENSORS 2023; 13:375. [PMID: 36979587 PMCID: PMC10046517 DOI: 10.3390/bios13030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Early-stage uric acid (UA) abnormality detection is crucial for a healthy human. With the evolution of nanoscience, metal oxide nanostructure-based sensors have become a potential candidate for health monitoring due to their low-cost, easy-to-handle, and portability. Herein, we demonstrate the synthesis of puffy balls-like cobalt oxide nanostructure using a hydrothermal method and utilize them to modify the working electrode for non-enzymatic electrochemical sensor fabrication. The non-enzymatic electrochemical sensor was utilized for UA determination using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The puffy balls-shaped cobalt oxide nanostructure-modified glassy carbon (GC) electrode exhibited excellent electro-catalytic activity during UA detection. Interestingly, when we compared the sensitivity of non-enzymatic electrochemical UA sensors, the DPV technique resulted in high sensitivity (2158 µA/mM.cm2) compared to the CV technique (sensitivity = 307 µA/mM.cm2). The developed non-enzymatic electrochemical UA sensor showed good selectivity, stability, reproducibility, and applicability in the human serum. Moreover, this study indicates that the puffy balls-shaped cobalt oxide nanostructure can be utilized as electrode material for designing (bio)sensors to detect a specific analyte.
Collapse
Affiliation(s)
- Vandana Nagal
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Sakeena Masrat
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Marya Khan
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street & Carlton Street, Buffalo, NY 14263, USA
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way 138602, Singapore
| | - Sergey M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Prabhash Mishra
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
14
|
Li Z, Xiao M, Jin C, Zhang Z. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors. BIOSENSORS 2023; 13:326. [PMID: 36979538 PMCID: PMC10046102 DOI: 10.3390/bios13030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The development of biosensors based on field-effect transistors (FETs) using atomically thick carbon nanotubes (CNTs) as a channel material has the potential to revolutionize the related field due to their small size, high sensitivity, label-free detection, and real-time monitoring capabilities. Despite extensive research efforts to improve the sensitivity, selectivity, and practicality of CNT FET-based biosensors, their commercialization has not yet been achieved due to the non-uniform and unstable device performance, difficulties in their fabrication, the immaturity of sensor packaging processes, and a lack of reliable modification methods. This review article focuses on the practical applications of CNT-based FET biosensors for the detection of ultra-low concentrations of biologically relevant molecules. We discuss the various factors that affect the sensors' performance in terms of materials, device architecture, and sensor packaging, highlighting the need for a robust commercial process that prioritizes product performance. Additionally, we review recent advances in the application of CNT FET biosensors for the ultra-sensitive detection of various biomarkers. Finally, we examine the key obstacles that currently hinder the large-scale deployment of these biosensors, aiming to identify the challenges that must be addressed for the future industrialization of CNT FET sensors.
Collapse
Affiliation(s)
- Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Jihua Laboratory, Foshan 528200, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| |
Collapse
|
15
|
Electrical biosensing system utilizing ion-producing enzymes conjugated with aptamers for the sensing of severe acute respiratory syndrome coronavirus 2. SENSING AND BIO-SENSING RESEARCH 2023; 39:100549. [PMID: 36686588 PMCID: PMC9847365 DOI: 10.1016/j.sbsr.2023.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
Viral outbreaks, which include the ongoing coronavirus disease 2019 (COVID-19) pandemic provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are a major global crisis that enormously threaten human health and social activities worldwide. Consequently, the rapid and repeated treatment and isolation of these viruses to control their spread are crucial to address the COVID-19 pandemic and future epidemics of novel emerging viruses. The application of cost-efficient, rapid, and easy-to-operate detection devices with miniaturized footprints as a substitute for the conventional optic-based polymerase chain reaction (PCR) and immunoassay tests is critical. In this context, semiconductor-based electrical biosensors are attractive sensing platforms for signal readout. Therefore, this study aimed to examine the electrical sensing of patient-derived SARS-CoV-2 samples by harnessing the activity of DNA aptamers directed against spike proteins on viral surfaces. We obtained rapid and sensitive virus detection beyond the Debye length limitation by exploiting aptamers coupled with alkaline phosphatases, which catalytically generate free hydrogen ions which can readily be measured on pH meters or ion-sensitive field-effect transistors. Furthermore, we demonstrated the detection of the viruses of approximately 100 copies/μL in 10 min, surpassing the capability of typical immunochromatographic assays. Therefore, our newly developed technology has great potential for point-of-care testing not only for SARS-CoV-2, but also for other types of pathogens and biomolecules.
Collapse
|
16
|
Xie L, Zhang Z, Wu Q, Gao Z, Mi G, Wang R, Sun HB, Zhao Y, Du Y. Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. NANOSCALE 2023; 15:405-433. [PMID: 36519286 DOI: 10.1039/d2nr04551f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emerging classes of flexible electronic sensors as alternatives to conventional rigid sensors offer a powerful set of capabilities for detecting and quantifying physiological and physical signals from human skin in personal healthcare. Unfortunately, the practical applications and commercialization of flexible sensors are generally limited by certain unsatisfactory aspects of their performance, such as biocompatibility, low sensing range, power supply, or single sensory function. This review intends to provide up-to-date literature on wearable devices for smart healthcare. A systematic review is provided, from sensors based on nanomaterials and nanostructures, algorithms, to multifunctional integrated devices with stretchability, self-powered performance, and biocompatibility. Typical electromechanical sensors are investigated with a specific focus on the strategies for constructing high-performance sensors based on nanomaterials and nanostructures. Then, the review emphasizes the importance of tailoring the fabrication techniques in order to improve stretchability, biocompatibility, and self-powered performance. The construction of wearable devices with high integration, high performance, and multi-functionalization for multiparameter healthcare is discussed in depth. Integrating wearable devices with appropriate machine learning algorithms is summarized. After interpretation of the algorithms, intelligent predictions are produced to give instructions or predictions for smart implementations. It is desired that this review will offer guidance for future excellence in flexible wearable sensing technologies and provide insight into commercial wearable sensors.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Zelin Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Qiushuo Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Zhuxuan Gao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Gaotian Mi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Renqiao Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Hong-Bin Sun
- Department of Chemistry, Northeastern University, Shenyang, 110819, China
| | - Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Leonardi AA, Sciuto EL, Lo Faro MJ, Fazio B, Rizzo MG, Calabrese G, Francioso L, Picca R, Nastasi F, Mancuso G, Spinella C, Knoll W, Irrera A, Conoci S. SARS-CoV-2 and omicron variant detection with a high selectivity, sensitivity, and low-cost silicon bio-nanosensor. NANO SELECT 2022; 4:NANO202200188. [PMID: 36721465 PMCID: PMC9880655 DOI: 10.1002/nano.202200188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 12/30/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has highlighted the urgent need for novel point-of-care devices to be promptly used for a rapid and reliable large screening analysis of several biomarkers like genetic sequences and antibodies. Currently, one of the main limitations of rapid tests is the high percentage of false negatives in the presence of variants and, in particular for the Omicron one. We demonstrate in this work the detection of SARS-CoV-2 and the Omicron variant with a cost-effective silicon nanosensor enabling high sensitivity, selectivity, and fast response. We have shown that a silicon (Si) nanowires (NW) platform detects both Sars-CoV-2 and its Omicron variant with a limit of detection (LoD) of four effective copies (cps), without any amplification of the genome, and with high selectivity. This ultrasensitive detection of 4 cps allows to obtain an extremely early diagnosis paving the way for efficient and widespread tracking. The sensor is made with industrially compatible techniques, which in perspective may allow easy and cost-effective industrialization.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia “Ettore Majorana”Università degli studi di CataniaCataniaItaly
- CNR‐IMM Catania UniversitàIstituto per la Microelettronica e MicrosistemiCataniaItaly
| | - Emanuele Luigi Sciuto
- Lab SENS Beyond NanoCNRMessinaItaly
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia “Ettore Majorana”Università degli studi di CataniaCataniaItaly
- CNR‐IMM Catania UniversitàIstituto per la Microelettronica e MicrosistemiCataniaItaly
| | | | - Maria Giovanna Rizzo
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Giovanna Calabrese
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Luca Francioso
- CNR‐IMMIstituto per la Microelettronica e MicrosistemiVia MonteroniUniversity CampusLecceItaly
| | - Rosaria Picca
- Dipartimento di ChimicaUniversità degli studi di BariBariItaly
| | - Francesco Nastasi
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
| | - Giuseppe Mancuso
- Dipartimento di Patologia Umana dell'adulto e dell'età evolutiva Gaetano BarresiUniversità degli studi MessinaGazzi (Me)Italy
| | - Corrado Spinella
- Lab SENS Beyond NanoCNRMessinaItaly
- CNR‐IMM Istituto per la Microelettronica e MicrosistemiZona IndustrialeCataniaItaly
| | - Wolfgang Knoll
- Department of Scientific Coordination and ManagementDanube Private UniversityKremsAustria
| | | | - Sabrina Conoci
- Lab SENS Beyond NanoCNRMessinaItaly
- Dipartimento di Scienze ChimicheBiologiche, Farmaceutiche, ed AmbientaliUniversità degli studi di MessinaMessinaItaly
- CNR‐IMM Istituto per la Microelettronica e MicrosistemiZona IndustrialeCataniaItaly
- Dipartimento di Chimica "G. Ciamician"Università degli studi di BolognaBolognaItaly
| |
Collapse
|
18
|
Masrat S, Nagal V, Khan M, Moid I, Alam S, Bhat KS, Khosla A, Ahmad R. Electrochemical Ultrasensitive Sensing of Uric Acid on Non-Enzymatic Porous Cobalt Oxide Nanosheets-Based Sensor. BIOSENSORS 2022; 12:1140. [PMID: 36551107 PMCID: PMC9775216 DOI: 10.3390/bios12121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Transition metal oxide (TMO)-based nanomaterials are effectively utilized to fabricate clinically useful ultra-sensitive sensors. Different nanostructured nanomaterials of TMO have attracted a lot of interest from researchers for diverse applications. Herein, we utilized a hydrothermal method to develop porous nanosheets of cobalt oxide. This synthesis method is simple and low temperature-based. The morphology of the porous nanosheets like cobalt oxide was investigated in detail using FESEM and TEM. The morphological investigation confirmed the successful formation of the porous nanosheet-like nanostructure. The crystal characteristic of porous cobalt oxide nanosheets was evaluated by XRD analysis, which confirmed the crystallinity of as-synthesized cobalt oxide nanosheets. The uric acid sensor fabrication involves the fixing of porous cobalt oxide nanosheets onto the GCE (glassy carbon electrode). The non-enzymatic electrochemical sensing was measured using CV and DPV analysis. The application of DPV technique during electrochemical testing for uric acid resulted in ultra-high sensitivity (3566.5 µAmM-1cm-2), which is ~7.58 times better than CV-based sensitivity (470.4 µAmM-1cm-2). Additionally, uric acid sensors were tested for their selectivity and storage ability. The applicability of the uric acid sensors was tested in the serum sample through standard addition and recovery of known uric acid concentration. This ultrasensitive nature of porous cobalt oxide nanosheets could be utilized to realize the sensing of other biomolecules.
Collapse
Affiliation(s)
- Sakeena Masrat
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Vandana Nagal
- Quantum and Nanophotonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Marya Khan
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Iqra Moid
- Department of Life Science, Shakuntala Memorial Educational Institute, Bahraich 271870, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street & Carlton Street, Buffalo, NY 14263, USA
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way 138602, Singapore
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Rafiq Ahmad
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
19
|
Deng CF, Su YY, Yang SH, Jiang QR, Xie R, Ju XJ, Liu Z, Pan DW, Wang W, Chu LY. Designable microfluidic ladder networks from backstepping microflow analysis for mass production of monodisperse microdroplets. LAB ON A CHIP 2022; 22:1702-1713. [PMID: 36420612 DOI: 10.1039/d1lc01056e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Controllable mass production of monodisperse droplets plays a key role in numerous fields ranging from scientific research to industrial application. Microfluidic ladder networks show great potential in mass production of monodisperse droplets, but their design with uniform microflow distribution remains challenging due to the lack of a rational design strategy. Here an effective design strategy based on backstepping microflow analysis (BMA) is proposed for the rational development of microfluidic ladder networks for mass production of controllable monodisperse microdroplets. The performance of our BMA rule for rational microfluidic ladder network design is demonstrated by using an existing analogism-derived rule that is widely used for the design of microfluidic ladder networks as the control group. The microfluidic ladder network designed by the BMA rule shows a more uniform flow distribution in each branch microchannel than that designed by the existing rule, as confirmed by single-phase flow simulation. Meanwhile, the microfluidic ladder network designed by the BMA rule allows mass production of droplets with higher size monodispersity in a wider window of flow rates and mass production of polymeric microspheres from such highly monodisperse droplet templates. The proposed BMA rule provides new insights into the microflow distribution behaviors in microfluidic ladder networks based on backstepping microflow analysis and provides a rational guideline for the efficient development of microfluidic ladder networks with uniform flow distribution for mass production of highly monodisperse droplets. Moreover, the BMA method provides a general analysis strategy for microfluidic networks with parallel multiple microchannels for rational scale-up.
Collapse
Affiliation(s)
- Chuan-Fu Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yao-Yao Su
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Shi-Hao Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Qing-Rong Jiang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
20
|
Khaksarinejad R, Arabpour Z, RezaKhani L, Parvizpour F, Rasmi Y. Biomarker based biosensors: An opportunity for diagnosis of COVID-19. Rev Med Virol 2022; 32:e2356. [PMID: 35478470 PMCID: PMC9111147 DOI: 10.1002/rmv.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
Early diagnosis and treatment of diseases are crucial research areas of human health. For early diagnosis, one method that has proven efficient is the detection of biomarkers which can provide real-time and accurate biological information. Most biomarker detection is currently carried out at localised dedicated laboratories using large and automated analysers, increasing waiting time and costs. Smaller, faster, and cheaper devices could potentially replace these time-consuming laboratory analyses and make analytical results available as point-of-care diagnostics. Innovative biosensor-based strategies could allow biomarkers to be tested reliably in a decentralised setting. Early diagnosis of COVID-19 patients has a key role in order to use quarantine and treatment strategies in a timely manner. Raised levels of several biomarkers in COVID-19 patients are associated with respiratory infections or dysfunction of various organs. Through clinical studies of COVID-19 patient biomarkers such as ferritin, Interleukins, albumin and …are found to reveals significant differences in their excretion ranges from healthy patients and patients with SARS-CoV-2, in addition to the development of biomarkers based biosensor such as stated biomarkers can be used and to investigate more specific biomarkers further proteomic analysis can be performed. This review presents several biomarker alterations in COVID-19 patients such as salivary, circulatory, coagulation, cardiovascular, renal, liver, C-reactive protein (CRP), immunological and inflammatory biomarkers. Also, biomarker sensors based on electrochemical, optical, and lateral flow characteristics which have potential applications for SARS-COV-2 in the recent COVID-19 pandemic, will be discussed.
Collapse
Affiliation(s)
- Reza Khaksarinejad
- Department of ToxicologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Zohreh Arabpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Leila RezaKhani
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
- Department of Tissue EngineeringSchool of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Yousef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
- Cellular and Molecular Research CenterUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
21
|
Khan M, Nagal V, Masrat S, Tuba T, Alam S, Bhat KS, Wahid I, Ahmad R. Vertically Oriented Zinc Oxide Nanorod-Based Electrolyte-Gated Field-Effect Transistor for High-Performance Glucose Sensing. Anal Chem 2022; 94:8867-8873. [PMID: 35699939 DOI: 10.1021/acs.analchem.1c05630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterial-based biosensors are a promising fit for portable and field-deployable diagnosis sensor devices due to their mass production, miniaturization, and integration capabilities. However, the fabrication of highly stable and reproducible biosensor devices is challenging. In this work, we grow a vertically oriented architecture of zinc oxide nanorods onto the active working area (i.e., the channel between the source and drain) of a field-effect transistor (FET) using a low-temperature hydrothermal method. The glucose oxidase enzyme was immobilized on the zinc oxide nanorod surface by a physical adsorption method to fabricate the electrolyte-gated FET-based glucose biosensor. The electrical properties of the electrolyte-gated FET biosensor were measured with different glucose concentrations. We found a linear increase in current up to 80 mM glucose concentration with high sensitivity (74.78 μA/mMcm2) and a low detection limit (∼0.05 mM). We illustrate a highly reproducible fabrication process of zinc oxide nanorod-based FETs, where vertically grown nanorods with a higher surface-to-volume ratio enhance the enzyme immobilization, provide a microenvironment for longer enzyme activity, and translate to better glucose sensing parameters. Additionally, our electrolyte-gated FET biosensor showed promising application in freshly drawn mouse blood samples. These findings suggest a great opportunity to translate into practical high-performance biosensors for a broad range of analytes.
Collapse
Affiliation(s)
- Marya Khan
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Vandana Nagal
- Quantum and Nano Photonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Sakeena Masrat
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Talia Tuba
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street and Carlton Street, Buffalo, New York 14263, United States
| | - Kiesar Sideeq Bhat
- HP-NTU Digital Manufacturing Laboratory and Department of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798.,Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
| | - Iram Wahid
- Department of Biosciences, Integral University, Lucknow 226026, India
| | - Rafiq Ahmad
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
22
|
Lu Z, Liu T, Zhou X, Yang Y, Liu Y, Zhou H, Wei S, Zhai Z, Wu Y, Sun F, Wang Z, Li T, Hong J. Rapid and quantitative detection of tear MMP-9 for dry eye patients using a novel silicon nanowire-based biosensor. Biosens Bioelectron 2022; 214:114498. [DOI: 10.1016/j.bios.2022.114498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
|
23
|
A Fast and Label-Free Potentiometric Method for Direct Detection of Glutamine with Silicon Nanowire Biosensors. BIOSENSORS 2022; 12:bios12060368. [PMID: 35735517 PMCID: PMC9221423 DOI: 10.3390/bios12060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
In this paper, a potentiometric method is used for monitoring the concentration of glutamine in the bioprocess by employing silicon nanowire biosensors. Just one hydrolyzation reaction was used, which is much more convenient compared with the two-stage reactions in the published papers. For the silicon nanowire biosensor, the Al2O3 sensing layer provides a highly sensitive to solution-pH, which has near-Nernstian sensitivity. The sensitive region to detect glutamine is from ≤40 μM to 20 mM. The Sigmoidal function was used to model the pH-signal variation versus the glutamine concentration. Compared with the amperometric methods, a consistent result from different devices could be directly obtained. It is a fast and direct method achieved with our real-time setup. Also, it is a label-free method because just the pH variation of the solution is monitored. The obtained results show the feasibility of the potentiometric method for monitoring the glutamine concentrations in fermentation processes. Our approach in this paper can be applied to various analytes.
Collapse
|
24
|
Manimekala T, Sivasubramanian R, Dharmalingam G. Nanomaterial-Based Biosensors using Field-Effect Transistors: A Review. JOURNAL OF ELECTRONIC MATERIALS 2022; 51:1950-1973. [PMID: 35250154 PMCID: PMC8881998 DOI: 10.1007/s11664-022-09492-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Field-effect transistor biosensors (Bio-FET) have attracted great interest in recent years owing to their distinctive properties like high sensitivity, good selectivity, and easy integration into portable and wearable electronic devices. Bio-FET performance mainly relies on the constituent components such as the bio-recognition layer and the transducer, which ensures device stability, sensitivity, and lifetime. Nanomaterial-based Bio-FETs are excellent candidates for biosensing applications. This review discusses the basic concepts, function, and working principles of Bio-FETs, and focuses on the progress of recent research in Bio-FETs in the sensing of neurotransmitters, glucose, nucleic acids, proteins, viruses, and cancer biomarkers using nanomaterials. Finally, challenges in the development of Bio-FETs, as well as an outlook on the prospects of nano Bio-FET-based sensing in various fields, are discussed.
Collapse
Affiliation(s)
- T. Manimekala
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
- Electrochemical Sensors and Energy Materials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| | - R. Sivasubramanian
- Electrochemical Sensors and Energy Materials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| | - Gnanaprakash Dharmalingam
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| |
Collapse
|
25
|
Côté S, Bouilly D, Mousseau N. The molecular origin of the electrostatic gating of single-molecule field-effect biosensors investigated by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:4174-4186. [PMID: 35113103 DOI: 10.1039/d1cp04626h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Field-effect biosensors (bioFETs) offer a novel way to measure the kinetics of biomolecular events such as protein function and DNA hybridization at the single-molecule level on a wide range of time scales. These devices generate an electrical current whose fluctuations are correlated to the kinetics of the biomolecule under study. BioFETs are indeed highly sensitive to changes in the electrostatic potential (ESP) generated by the biomolecule. Here, using all-atom solvent explicit molecular dynamics simulations, we further investigate the molecular origin of the variation of this ESP for two prototypical cases of proteins or nucleic acids attached to a carbon nanotube bioFET: the function of the lysozyme protein and the hybridization of a 10-nt DNA sequence, as previously done experimentally. Our results show that the ESP changes significantly on the surface of the carbon nanotube as the state of these two biomolecules changes. More precisely, the ESP distributions calculated for these molecular states explain well the magnitude of the conductance fluctuations measured experimentally. The dependence of the ESP with salt concentration is found to agree with the reduced conductance fluctuations observed experimentally for the lysozyme, but to differ for the case of DNA, suggesting that other mechanisms might be at play in this case. Furthermore, we show that the carbon nanotube does not impact significantly the structural stability of the lysozyme, corroborating that the kinetic rates measured using bioFETs are similar to those measured by other techniques. For DNA, we find that the structural ensemble of the single-stranded DNA is significantly impacted by the presence of the nanotube, which, combined with the ESP analysis, suggests a stronger DNA-device interplay. Overall, our simulations strengthen the comprehension of the inner working of field-effect biosensors used for single-molecule kinetics measurements on proteins and nucleic acids.
Collapse
Affiliation(s)
- Sébastien Côté
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada. .,Département de Physique, Cégep de Saint-Jérôme, Saint-Jérôme, Canada
| | - Delphine Bouilly
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada. .,Institut de recherche en immunologie et cancérologie (IRIC), Université de Montréal, Montréal, Canada.
| | - Normand Mousseau
- Département de Physique, Faculté des Arts et des Sciences, Université de Montréal, Montréal, Canada.
| |
Collapse
|
26
|
Li W, Deng X, Wu Z, Zhang L, Jiao J. An Electrochemical Sensor for Quantitation of the Oral Health Care Agent Chlorogenic Acid Based on Bimetallic Nanowires with Functionalized Reduced Graphene Oxide Nanohybrids. ACS OMEGA 2022; 7:4614-4623. [PMID: 35155952 PMCID: PMC8829851 DOI: 10.1021/acsomega.1c06612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Chlorogenic acid (CGA), a phenolic acid from coffee, has been regarded as a powerful ingredient against oxidative stress and inflammation. Meanwhile, its healing feature to interfere with periodontal disease (PD) makes it a promising drug candidate. However, the existing methods for chlorogenic acid detection limit its practical application in purification and further pharmacological study in stomatology due to their lack of accuracy and productivity. Therefore, it is crucial to find a forceful approach to precisely evaluate CGA for an in-depth anti-PD study. In this work, we reported a facile and controllable synthesis of Pt@Pd nanowires (NWs) in a non-compacted core-shell structure with high electrocatalytic activity. In addition, polyethylenimine (PEI)-capped reduced graphene oxide (rGO) nanoflakes provided large binding sites for a network structure composed of interweaved Pt@Pd nanowires and protected hemin from self-destruction, which empowered Pt@Pd NWs-Hemin-PEI-rGO nanohybrids to own a large electroactive surface area and great electrochemical property for CGA detection. The enzyme-free electrochemical sensor based on Pt@Pd NWs-Hemin-PEI-rGO displayed a favorable capacity for trace CGA detection with a detection limit of 7.8 nM and a wide linear range of 0.5 μM to 4 mM. The exceptional sensitivity and selectivity of the sensor made it accomplish the measurements of chlorogenic acid in soft drinks and coffee with high consistency of HPLC results. The satisfactory performance of the obtained sensor enables it to be used for quality control and study of drug metabolism in PD treatments.
Collapse
Affiliation(s)
- Wei Li
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
| | - Xiuli Deng
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Tianjin
Beichen Traditional Chinese Medicine Hospital, Tianjin 300400, China
| | - Ziyu Wu
- Tianjin
Beichen Traditional Chinese Medicine Hospital, Tianjin 300400, China
| | - Louqiang Zhang
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
| | - Jian Jiao
- Department
of Stomatology, Tianjin Medical University
General Hospital, Tianjin 300052, China
- School
of Dentistry, Stomatological Hospital, Tianjin
Medical University, Tianjin 300070, China
| |
Collapse
|
27
|
Wide-Linear Range Cholesterol Detection Using Fe2O3 Nanoparticles Decorated ZnO Nanorods Based Electrolyte-Gated Transistor. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022. [DOI: 10.1149/1945-7111/ac51f6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Electrolyte-gated transistor (EGT)-based biosensors are created with nanomaterials to harness the advantages of miniaturization and excellent sensing performance. A cholesterol EGT biosensor based on iron oxide (Fe2O3) nanoparticles decorated ZnO nanorods is proposed here. ZnO nanorods are directly grown on the seeded channel using a hydrothermal method, keeping in mind the stability of nanorods on the channel during biosensor measurements in an electrolyte. Most importantly, ZnO nanorods can be effectively grown and modified with Fe2O3 nanoparticles to enhance stability, surface roughness, and performance. The cholesterol oxidase (ChOx) enzyme is immobilized over Fe2O3 nanoparticles decorated ZnO nanorods for cholesterol detection. With cholesterol addition in buffer solution, the electro-oxidation of cholesterol on enzyme immobilized surface led to increased the biosensor’s current response. The cholesterol EGT biosensor detected cholesterol in wide-linear range (i.e., 0.1 to 60.0 mM) with high sensitivity (37.34 µA/mMcm2) compared to conventional electrochemical sensors. Furthermore, we obtained excellent selectivity, fabrication reproducibility, long-term storage stability, and practical applicability in real serum samples. The demonstrated EGT biosensor can be extended with changing enzymes or nanomaterials or hybrid nanomaterials for specific analyte detection.
Collapse
|
28
|
Sensory analysis of hepatitis B virus DNA for medicinal clinical diagnostics based on molybdenum doped ZnO nanowires field effect transistor biosensor; a comparative study to PCR test results. Anal Chim Acta 2022; 1195:339442. [DOI: 10.1016/j.aca.2022.339442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
|
29
|
Ma J, Jiang G, Ma Q, Du M, Wang H, Wu J, Wang C, Xie X, Li T, Chen S, Zhang L, Wu M. Portable immunosensor directly and rapidly detects Mycobacterium tuberculosis in sputum. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:438-448. [PMID: 35022623 DOI: 10.1039/d1ay01561c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tuberculosis (TB) remains a public health problem that cannot be ignored. The portable and efficient detection of Mycobacterium tuberculosis (MTB) is important for the effective control of this disease. However, current detection techniques do not meet the requirements for MTB detection in the actual environment and often require cumbersome detection steps that are time consuming and inflexible. In this study, a portable immunosensor to detect MTB in sputum was prepared and then subjected to interface characterizations, such as scanning electron microscopy, hydrophilic angle test, and fluorescence characterization. The source and gate voltage of the device were optimized and tested using a non-contact photoresponse. The results showed that the sensitivity of the sensor to luminance increases with the decrease in source voltage. The gate voltage can substantially improve the response of the immunosensor to the normalized current of protein and amplify the signal at least 1.6 times. The optimal voltage detection conditions of source voltage (0.3 V) and gate voltage (0.1 V) were also determined. Several common proteins present in simulated saliva were used for anti-interference tests, and the sensor exhibited good specificity. Finally, the dilution gradient of an actual TB sputum sample was optimized. In the absence of preconditioning, a double-blind experiment was used to distinguish between the sputum from patients with TB and healthy individuals to shorten the TB detection time to a few minutes. Compared with the hospital's conventional detection method using cultures, the proposed method can complete the detection in a shorter time. This study provides a new strategy for the portable diagnosis of TB.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Guanyu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Qingqing Ma
- Department of Respiratory Medicine, Shandong Public Health Clinical Center (Shandong Province Chest Hospital), Jinan, 250013, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Jianguo Wu
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin, 300222, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, PR China.
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin, 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, 300161, PR China.
- National Bio-Protection Engineering Center, Tianjin, 300161, PR China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Lixia Zhang
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| | - Min Wu
- Tianjin Haihe Hospital, Tianjin, 300350, PR China
| |
Collapse
|
30
|
Halima HB, Errachid A, Jaffrezic‐Renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamdi Ben Halima
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | - Abdelhamid Errachid
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | | |
Collapse
|
31
|
Furlan de Oliveira R, Montes-García V, Ciesielski A, Samorì P. Harnessing selectivity in chemical sensing via supramolecular interactions: from functionalization of nanomaterials to device applications. MATERIALS HORIZONS 2021; 8:2685-2708. [PMID: 34605845 DOI: 10.1039/d1mh01117k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical sensing is a strategic field of science and technology ultimately aiming at improving the quality of our lives and the sustainability of our Planet. Sensors bear a direct societal impact on well-being, which includes the quality and composition of the air we breathe, the water we drink, and the food we eat. Pristine low-dimensional materials are widely exploited as highly sensitive elements in chemical sensors, although they suffer from lack of intrinsic selectivity towards specific analytes. Here, we showcase the most recent strategies on the use of (supra)molecular interactions to harness the selectivity of suitably functionalized 0D, 1D, and 2D low-dimensional materials for chemical sensing. We discuss how the design and selection of receptors via machine learning and artificial intelligence hold a disruptive potential in chemical sensing, where selectivity is achieved by the design and high-throughput screening of large libraries of molecules exhibiting a set of affinity parameters that dictates the analyte specificity. We also discuss the importance of achieving selectivity along with other relevant characteristics in chemical sensing, such as high sensitivity, response speed, and reversibility, as milestones for true practical applications. Finally, for each distinct class of low-dimensional material, we present the most suitable functionalization strategies for their incorporation into efficient transducers for chemical sensing.
Collapse
Affiliation(s)
| | - Verónica Montes-García
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Artur Ciesielski
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| | - Paolo Samorì
- Université de Strasbourg and CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France.
| |
Collapse
|
32
|
Ma J, Du M, Wang C, Xie X, Wang H, Li T, Chen S, Zhang L, Mao S, Zhou X, Wu M. Rapid and Sensitive Detection of Mycobacterium tuberculosis by an Enhanced Nanobiosensor. ACS Sens 2021; 6:3367-3376. [PMID: 34470206 DOI: 10.1021/acssensors.1c01227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) mostly spreads from person to person through Mycobacterium tuberculosis (MTB). However, the majority of conventional detection methods for MTB cannot satisfy the requirements for actual TB detection. As one of the most promising powerful platforms, a silicon nanowire field-effect transistor (SiNW-FET) biosensor shows good prospect in TB detection. In this study, an enhanced SiNW-FET biosensor was developed for the rapid and sensitive detection of MTB. The surface functional parameters of the biosensor were explored and optimized. The SiNW-FET biosensor has good sensitivity with a detection limit of 0.01 fg/mL toward protein. The current change value shows a linear upward trend with the increase in protein concentration in the range of 1 fg/mL to 100 μg/mL. One whole test cycle can be accomplished within only 30 s. More importantly, a good distinction was realized in the sputum without pretreatment between normal people and TB patients, which greatly shortened the TB detection time (only 2-5 min, considering the dilution of sputum). Compared with other methods, the SiNW-FET biosensor can detect MTB with a remarkably broad dynamic linear range in a shorter time.
Collapse
Affiliation(s)
- Jinbiao Ma
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
- Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, PR China
| | - Xinwu Xie
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, PR China
- National Bio-Protection Engineering Center, Tianjin 300161, PR China
| | - Hao Wang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin 300161, PR China
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, PR China
| | - Tie Li
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Shixing Chen
- Science and Technology on Micro-system Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
- State Key Laboratories of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Lixia Zhang
- Tianjin Haihe Hospital, Tianjin 300350, PR China
| | - Shun Mao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Min Wu
- Tianjin Haihe Hospital, Tianjin 300350, PR China
| |
Collapse
|
33
|
Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. BIOSENSORS 2021; 11:336. [PMID: 34562926 PMCID: PMC8472208 DOI: 10.3390/bios11090336] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 05/11/2023]
Abstract
The electrochemical biosensors are a class of biosensors which convert biological information such as analyte concentration that is a biological recognition element (biochemical receptor) into current or voltage. Electrochemical biosensors depict propitious diagnostic technology which can detect biomarkers in body fluids such as sweat, blood, feces, or urine. Combinations of suitable immobilization techniques with effective transducers give rise to an efficient biosensor. They have been employed in the food industry, medical sciences, defense, studying plant biology, etc. While sensing complex structures and entities, a large data is obtained, and it becomes difficult to manually interpret all the data. Machine learning helps in interpreting large sensing data. In the case of biosensors, the presence of impurity affects the performance of the sensor and machine learning helps in removing signals obtained from the contaminants to obtain a high sensitivity. In this review, we discuss different types of biosensors along with their applications and the benefits of machine learning. This is followed by a discussion on the challenges, missing gaps in the knowledge, and solutions in the field of electrochemical biosensors. This review aims to serve as a valuable resource for scientists and engineers entering the interdisciplinary field of electrochemical biosensors. Furthermore, this review provides insight into the type of electrochemical biosensors, their applications, the importance of machine learning (ML) in biosensing, and challenges and future outlook.
Collapse
Affiliation(s)
- Anoop Singh
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Asha Sharma
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Aamir Ahmed
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ashok K. Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Hidemitsu Furukawa
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu 180006, India; (A.S.); (A.S.); (A.A.)
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata 992-8510, Japan;
| |
Collapse
|
34
|
Xu L, Zhang X, Wang Z, Haidry AA, Yao Z, Haque E, Wang Y, Li G, Daeneke T, McConville CF, Kalantar-Zadeh K, Zavabeti A. Low dimensional materials for glucose sensing. NANOSCALE 2021; 13:11017-11040. [PMID: 34152349 DOI: 10.1039/d1nr02529e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosensors are essential components for effective healthcare management. Since biological processes occur on molecular scales, nanomaterials and nanosensors intrinsically provide the most appropriate landscapes for developing biosensors. Low-dimensional materials have the advantage of offering high surface areas, increased reactivity and unique physicochemical properties for efficient and selective biosensing. So far, nanomaterials and nanodevices have offered significant prospects for glucose sensing. Targeted glucose biosensing using such low-dimensional materials enables much more effective monitoring of blood glucose levels, thus providing significantly better predictive diabetes diagnostics and management. In this review, recent advances in using low dimensional materials for sensing glucose are summarized. Sensing fundamentals are discussed, as well as invasive, minimally-invasive and non-invasive sensing methods. The effects of morphological characteristics and size-dependent properties of low dimensional materials are explored for glucose sensing, and the key performance parameters such as selectivity, stability and sensitivity are also discussed. Finally, the challenges and future opportunities that low dimensional materials can offer for glucose sensing are outlined.
Collapse
Affiliation(s)
- Linling Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Xianfei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhe Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Yichao Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Gang Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia.
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| |
Collapse
|
35
|
Ivanov YD, Romanova TS, Malsagova KA, Pleshakova TO, Archakov AI. Use of Silicon Nanowire Sensors for Early Cancer Diagnosis. Molecules 2021; 26:3734. [PMID: 34207397 PMCID: PMC8234636 DOI: 10.3390/molecules26123734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
The review covers some research conducted in the field of medical and biomedical application of devices based on silicon sensor elements (Si-NW-sensors). The use of Si-NW-sensors is one of the key methods used in a whole range of healthcare fields. Their biomedical use is among the most important ones as they offer opportunities for early diagnosis of oncological pathologies, for monitoring the prescribed therapy and for improving the people's quality of life.
Collapse
Affiliation(s)
| | | | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.S.R.); (T.O.P.); (A.I.A.)
| | | | | |
Collapse
|
36
|
Leonardi AA, Lo Faro MJ, Irrera A. Biosensing platforms based on silicon nanostructures: A critical review. Anal Chim Acta 2021; 1160:338393. [PMID: 33894957 DOI: 10.1016/j.aca.2021.338393] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022]
Abstract
Biosensors are revolutionizing the health-care systems worldwide, permitting to survey several diseases, even at their early stage, by using different biomolecules such as proteins, DNA, and other biomarkers. However, these sensing approaches are still scarcely diffused outside the specialized medical and research facilities. Silicon is the undiscussed leader of the whole microelectronics industry, and novel sensors based on this material may completely change the health-care scenario. In this review, we will show how novel sensing platforms based on Si nanostructures may have a disruptive impact on applications with a real commercial transfer. A critical study for the main Si-based biosensors is herein presented with a comparison of their advantages and drawbacks. The most appealing sensing devices are discussed, starting from electronic transducers, with Si nanowires field-effect transistor (FET) and porous Si, to their optical alternatives, such as effective optical thickness porous silicon, photonic crystals, luminescent Si quantum dots, and finally luminescent Si NWs. All these sensors are investigated in terms of working principle, sensitivity, and selectivity with a specific focus on the possibility of their industrial transfer, and which ones may be preferred for a medical device.
Collapse
Affiliation(s)
- Antonio Alessio Leonardi
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy; CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy
| | - Maria José Lo Faro
- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Via Santa Sofia 64, 95123, Catania, Italy; CNR-IMM UoS Catania, Istituto per La Microelettronica e Microsistemi, Via Santa Sofia 64, Italy
| | - Alessia Irrera
- CNR-IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, 98158, Messina, Italy.
| |
Collapse
|
37
|
Guliy O, Zaitsev B, Teplykh A, Balashov S, Fomin A, Staroverov S, Borodina I. Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection. SENSORS 2021; 21:s21051822. [PMID: 33807879 PMCID: PMC7961855 DOI: 10.3390/s21051822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/02/2022]
Abstract
A method for the rapid detection of coronaviruses is presented on the example of the transmissible gastroenteritis virus (TGEV) directly in aqueous solutions with different conductivity. An acoustic sensor based on a slot wave in an acoustic delay line was used for the research. The addition of anti-TGEV antibodies (Abs) diluted in an aqueous solution led to a change in the depth and frequency of resonant peaks on the frequency dependence of the insertion loss of the sensor. The difference in the output parameters of the sensor before and after the biological interaction of the TGE virus in solutions with the specific antibodies allows drawing a conclusion about the presence/absence of the studied viruses in the analyzed solution. The possibility for virus detection in aqueous solutions with the conductivity of 1.9–900 μs/cm, as well as in the presence of the foreign viral particles, has been demonstrated. The analysis time did not exceed 10 min.
Collapse
Affiliation(s)
- Olga Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Boris Zaitsev
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
| | - Andrey Teplykh
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
| | - Sergey Balashov
- Information Technology Center Renato Archer, Campinas CEP, SP 13069-901, Brazil;
| | - Alexander Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Sergey Staroverov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Irina Borodina
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
- Correspondence: ; Tel.: +7-8452-272401
| |
Collapse
|
38
|
Lei Z, Jian M, Li X, Wei J, Meng X, Wang Z. Biosensors and bioassays for determination of matrix metalloproteinases: state of the art and recent advances. J Mater Chem B 2021; 8:3261-3291. [PMID: 31750853 DOI: 10.1039/c9tb02189b] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are closely associated with various physiological and pathological processes, and have been regarded as potential biomarkers for severe diseases including cancer. Accurate determination of MMPs would advance our understanding of their roles in disease progression, and is of great significance for disease diagnosis, treatment and prognosis. In this review, we present a comprehensive overview of the developed bioassays/biosensors for detection of MMPs, and highlight the recent advancement in nanomaterial-based immunoassays for MMP abundance measurements and nanomaterial-based biosensors for MMP activity determination. Enzyme-linked immunosorbent assay (ELISA)-based immunoassays provide information about total levels of MMPs with high specificity and sensitivity, while target-based biosensors measure the amounts of active MMPs, and allow imaging of MMP activities in vivo. For multiplex and high-throughput analysis of MMPs, microfluidics and microarray-based assays are described. Additionally, we put forward the existing challenges and future prospects from our perspective.
Collapse
Affiliation(s)
- Zhen Lei
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | | | | | | | | | | |
Collapse
|
39
|
Sarmah D, Banerjee M, Datta A, Kalia K, Dhar S, Yavagal DR, Bhattacharya P. Nanotechnology in the diagnosis and treatment of stroke. Drug Discov Today 2021; 26:585-592. [PMID: 33242696 DOI: 10.1016/j.drudis.2020.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 01/28/2023]
Abstract
Increasing developments in the field of nanotechnology have ignited its use in stroke diagnosis and treatment. The benefits of structural modification, ease of synthesis, and biocompatibility support the use of nanomaterials in the clinic. The pathophysiology of stroke is complex, involving different brain regions; hence, therapeutic agents are required to be delivered to specific regions. Nanoparticles (NPs) can be engineered to help improve the delivery and release of therapeutic agents in a localized manner, especially in the penumbra. This contributes not only to therapy, but also to neurosurgery and neuroimaging. Nanomaterials also offer high efficacy with few adverse effects. In this review, we provide a concise summary of the caveats associated with nanotechnology with respect to stroke therapy and diagnosis.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Mainak Banerjee
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
40
|
Lovley DR, Yao J. Intrinsically Conductive Microbial Nanowires for 'Green' Electronics with Novel Functions. Trends Biotechnol 2021; 39:940-952. [PMID: 33419586 DOI: 10.1016/j.tibtech.2020.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Intrinsically conductive protein nanowires, microbially produced from inexpensive, renewable feedstocks, are a sustainable alternative to traditional nanowire electronic materials, which require high energy inputs and hazardous conditions/chemicals for fabrication and can be highly toxic. Pilin-based nanowires can be tailored for specific functions via the design of synthetic pilin genes to tune wire conductivity or introduce novel functionalities. Other microbially produced nanowire options for electronics may include cytochrome wires, curli fibers, and the conductive fibers of cable bacteria. Proof-of-concept protein nanowire electronics that have been successfully demonstrated include biomedical sensors, neuromorphic devices, and a device that generates electricity from ambient humidity. Further development of applications will require interdisciplinary teams of engineers, biophysicists, and synthetic biologists.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China; Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Jun Yao
- Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA; Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
41
|
Sheikhzadeh E, Eissa S, Ismail A, Zourob M. Diagnostic techniques for COVID-19 and new developments. Talanta 2020; 220:121392. [PMID: 32928412 PMCID: PMC7358765 DOI: 10.1016/j.talanta.2020.121392] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022]
Abstract
COVID-19 pandemic is a serious global health issue today due to the rapid human to human transmission of SARS-CoV-2, a new type of coronavirus that causes fatal pneumonia. SARS -CoV-2 has a faster rate of transmission than other coronaviruses such as SARS and MERS and until now there are no approved specific drugs or vaccines for treatment. Thus, early diagnosis is crucial to prevent the extensive spread of the disease. The reverse transcription-polymerase chain reaction (RT-PCR) is the most routinely used method until now to detect SARS-CoV-2 infections. However, several other faster and accurate assays are being developed for the diagnosis of COVID-19 aiming to control the spread of infection through the identification of patients and immediate isolation. In this review, we will discuss the various detection methods of the SARS-CoV-2 virus including the recent developments in immunological assays, amplification techniques as well as biosensors.
Collapse
Affiliation(s)
- Elham Sheikhzadeh
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia16150 Kubang Kerian, Kelantan, Malaysia
| | - Shimaa Eissa
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia; King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 12713, Saudi Arabia.
| |
Collapse
|
42
|
Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. Biosensing based on field-effect transistors (FET): Recent progress and challenges. Trends Analyt Chem 2020; 133:116067. [PMID: 33052154 PMCID: PMC7545218 DOI: 10.1016/j.trac.2020.116067] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of field-Effect-Transistor (FET) type biosensing arrangements has been highlighted by researchers in the field of early biomarker detection and drug screening. Their non-metalized gate dielectrics that are exposed to an electrolyte solution cover the semiconductor material and actively transduce the biological changes on the surface. The efficiency of these novel devices in detecting different biomolecular analytes in a real-time, highly precise, specific, and label-free manner has been validated by numerous research studies. Considerable progress has been attained in designing FET devices, especially for biomedical diagnosis and cell-based assays in the past few decades. The exceptional electronic properties, compactness, and scalability of these novel tools are very desirable for designing rapid, label-free, and mass detection of biomolecules. With the incorporation of nanotechnology, the performance of biosensors based on FET boosts significantly, particularly, employment of nanomaterials such as graphene, metal nanoparticles, single and multi-walled carbon nanotubes, nanorods, and nanowires. Besides, their commercial availability, and high-quality production on a large-scale, turn them to be one of the most preferred sensing and screening platforms. This review presents the basic structural setup and working principle of different types of FET devices. We also focused on the latest progression regarding the use of FET biosensors for the recognition of viruses such as, recently emerged COVID-19, Influenza, Hepatitis B Virus, protein biomarkers, nucleic acids, bacteria, cells, and various ions. Additionally, an outline of the development of FET sensors for investigations related to drug development and the cellular investigation is also presented. Some technical strategies for enhancing the sensitivity and selectivity of detection in these devices are addressed as well. However, there are still certain challenges which are remained unaddressed concerning the performance and clinical use of transistor-based point-of-care (POC) instruments; accordingly, expectations about their future improvement for biosensing and cellular studies are argued at the end of this review.
Collapse
Affiliation(s)
- Deniz Sadighbayan
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Faculty of Science, Dept. of Biology, York University, Toronto, Canada
- Dept. of Elecrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada
| |
Collapse
|
43
|
Zhang H, Kikuchi N, Ohshima N, Kajisa T, Sakata T, Izumi T, Sone H. Design and Fabrication of Silicon Nanowire-Based Biosensors with Integration of Critical Factors: Toward Ultrasensitive Specific Detection of Biomolecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51808-51819. [PMID: 33142064 DOI: 10.1021/acsami.0c13984] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As critical factors affecting the sensing performance of silicon nanowire (SiNW) biosensors, the structure, functional interface, and detection target were analyzed and designed to improve sensing performance. For an improved understanding of the dependence of sensor structure on sensitivity, a simple theoretical analysis was proposed to predict the sensitivity of biosensors with different SiNW types, widths, and doping concentrations. Based on the theoretical analysis, a biosensor integrating optimized critical factors was designed and fabricated. Optimizations focusing on the following aspects are considered: (1) employing n-type SiNW and controlling the impurity doping concentration of SiNW at approximately 2 × 1016-6 × 1016 atoms/cm3 to obtain a suitable charge density, (2) minimizing the SiNW width to 16.0 nm to increase the surface area-to-volume ratio, (3) using a native oxide layer on SiNW as a gate insulator to transport the captured charge molecules closer to the SiNW surface, (4) modifying the SiNW surface by 2-aminoethylphosphonic acid coupling to form a high-density self-assembled monolayer for enhancing the stability bound molecules, and (5) functionalizing the SiNW with ovalbumin molecules for specifically capturing the target immunoglobulin G (IgG) molecules. The sensing performance was evaluated by detecting IgG with concentrations ranging from 6 aM to 600 nM and control experiments. The SiNW biosensor revealed ultrahigh sensitivity and specific detection of target IgG with a measured limit of detection of 6 aM. The integration of the critical SiNW biosensor factors provides a significant possibility of a rapid and ultrasensitive diagnosis of diseases at their early stages.
Collapse
Affiliation(s)
- Hui Zhang
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Naoki Kikuchi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Taira Kajisa
- Institute of Post-LED Photonics, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hayato Sone
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
44
|
Liu Y, Cai Q, Qin C, Jin Y, Wang J, Chen Y, Ouyang Y, Li H, Liu S. Field-effect transistor bioassay for ultrasensitive detection of folate receptor 1 by ligand-protein interaction. Mikrochim Acta 2020; 187:637. [PMID: 33146801 DOI: 10.1007/s00604-020-04630-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/28/2020] [Indexed: 02/05/2023]
Abstract
A miniaturized and integrated bioassay was developed based on molybdenum disulfide (MoS2) field-effect transistor (FET) functionalized with bovine serum albumin-folic acid (BSA-FA) for monitoring FOLR1. We performed the electrical test of FOLR1 within the range 100 fg/mL to 10 ng/mL, and the limit of detection was 0.057 pg/mL. The ultrahigh sensitivity of the bioassay was realized by ligand-protein interaction between FA and FOLR1, with a ligand-protein binding ratio of 3:1. The formation of FA-FOLR1 was confirmed with ELISA. The binding affinity dissociation constant KD was 12 ± 6 pg/mL. This device can work well for FOLR1 detection in human serum, which presents its promising application in point-of-care diagnosis. This study supports the future applications of such ligand-protein-based bioassays in the clinical practices. Graphical abstract MoS2-based FET device for detecting folate receptor 1 (FOLR1) was fabricated. The molecular folic acid as a probe can specifically bound to FOLR1 with a high affinity.
Collapse
Affiliation(s)
- Yeru Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Qiyong Cai
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Chaopeng Qin
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410082, People's Republic of China
| | - Yuanyuan Jin
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Jianxue Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yang Chen
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.
| |
Collapse
|
45
|
Vallejo-Perez M, Ternon C, Spinelli N, Morisot F, Theodorou C, Jayakumar G, Hellström PE, Mouis M, Rapenne L, Mescot X, Salem B, Stambouli V. Optimization of GOPS-Based Functionalization Process and Impact of Aptamer Grafting on the Si Nanonet FET Electrical Properties as First Steps towards Thrombin Electrical Detection. NANOMATERIALS 2020; 10:nano10091842. [PMID: 32942692 PMCID: PMC7559082 DOI: 10.3390/nano10091842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Field effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported. The biofunctionalized devices were analyzed by atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM), proving that TBA-15 probes were properly grafted on the surface of the devices, and by means of epifluorescence microscopy it was possible to demonstrate that the UV-assisted GOPS-based functionalization notably improves the homogeneity of the surface DNA distribution. Later, the electrical characteristics of 80 devices were analyzed before and after the biofunctionalization process, indicating that the results are highly dependent on the experimental protocol. We found that the TBA-15 hybridization capacity with its complementary strand is time dependent and that the transfer characteristics of the Si NN-FETs obtained after the TBA-15 probe grafting are also time dependent. These results help to elucidate and define the experimental precautions that must be taken into account to fabricate reproducible devices.
Collapse
Affiliation(s)
- Monica Vallejo-Perez
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France;
| | - Céline Ternon
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- Correspondence: (C.T.); (V.S.)
| | - Nicolas Spinelli
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France;
| | - Fanny Morisot
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Christoforos Theodorou
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Ganesh Jayakumar
- KTH Royal Institute of Technology, Department of Electronics, School of Electrical Engineering and Computer Science, Electrum 229, SE-164 40 Kista, Sweden; (G.J.); (P.-E.H.)
| | - Per-Erik Hellström
- KTH Royal Institute of Technology, Department of Electronics, School of Electrical Engineering and Computer Science, Electrum 229, SE-164 40 Kista, Sweden; (G.J.); (P.-E.H.)
| | - Mireille Mouis
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Laetitia Rapenne
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
| | - Xavier Mescot
- University Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LAHC, F-38000 Grenoble, France; (C.T.); (M.M.); (X.M.)
| | - Bassem Salem
- University Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, F-38054 Grenoble, France;
| | - Valérie Stambouli
- University Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-38000 Grenoble, France; (M.V.-P.); (F.M.); (L.R.)
- Correspondence: (C.T.); (V.S.)
| |
Collapse
|
46
|
Long J, Xiong W, Wei C, Lu C, Wang R, Deng C, Liu H, Fan X, Jiao B, Gao S, Deng L. Directional Assembly of ZnO Nanowires via Three-Dimensional Laser Direct Writing. NANO LETTERS 2020; 20:5159-5166. [PMID: 32479087 DOI: 10.1021/acs.nanolett.0c01378] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The precise placement of semiconductor nanowires (NWs) into two- or three-dimensional (2D/3D) micro-/nanoarchitectures is a key for the construction of integrated functional devices. However, long-pending challenges still exist in high-resolution 3D assembly of semiconductor NWs. Here, we have achieved directional assembly of zinc oxide (ZnO) NWs into nearly arbitrary 3D architectures with high spatial resolution using two-photon polymerization. The NWs can regularly align in any desired direction along the laser scanning pathway. Through theoretical calculation and control experiments, we unveiled the laser-induced assembly mechanism and found that the nonoptical forces are the dominant factor leading to the directional assembly of ZnO NWs. A ZnO-NW-based polarization-resolved UV photodetector of excellent photoresponsivity was fabricated to demonstrate the potential application of the assembled ZnO NWs. This work is expected to promote the research on NW-based integrated devices such as photonic integrated circuits, sensors, and metamaterial with unprecedented controllability of the NW's placement in three dimensions.
Collapse
Affiliation(s)
- Jing Long
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengyiran Wei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chengchangfeng Lu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruiqing Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunsan Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Liu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuhao Fan
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Binzhang Jiao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shan Gao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Leimin Deng
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
47
|
Sun Y, Dong T, Yu L, Xu J, Chen K. Planar Growth, Integration, and Applications of Semiconducting Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903945. [PMID: 31746050 DOI: 10.1002/adma.201903945] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Silicon and other inorganic semiconductor nanowires (NWs) have been extensively investigated in the last two decades for constructing high-performance nanoelectronics, sensors, and optoelectronics. For many of these applications, these tiny building blocks have to be integrated into the existing planar electronic platform, where precise location, orientation, and layout controls are indispensable. In the advent of More-than-Moore's era, there are also emerging demands for a programmable growth engineering of the geometry, composition, and line-shape of NWs on planar or out-of-plane 3D sidewall surfaces. Here, the critical technologies established for synthesis, transferring, and assembly of NWs upon planar surface are examined; then, the recent progress of in-plane growth of horizontal NWs directly upon crystalline or patterned substrates, constrained by using nanochannels, an epitaxial interface, or amorphous thin film precursors is discussed. Finally, the unique capabilities of planar growth of NWs in achieving precise guided growth control, programmable geometry, composition, and line-shape engineering are reviewed, followed by their latest device applications in building high-performance field-effect transistors, photodetectors, stretchable electronics, and 3D stacked-channel integration.
Collapse
Affiliation(s)
- Ying Sun
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Taige Dong
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
48
|
Tseng C, Wen C, Huang D, Lai C, Chen S, Hu Q, Chen X, Xu X, Zhang S, Tao Y, Zhang Z. Synergy of Ionic and Dipolar Effects by Molecular Design for pH Sensing beyond the Nernstian Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901001. [PMID: 31993278 PMCID: PMC6974946 DOI: 10.1002/advs.201901001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Knowledge of interfacial interactions between analytes and functionalized sensor surfaces, from where the signal originates, is key to the development and application of electronic sensors. The present work explores the tunability of pH sensitivity by the synergy of surface charge and molecular dipole moment induced by interfacial proton interactions. This synergy is demonstrated on a silicon-nanoribbon field-effect transistor (SiNR-FET) by functionalizing the sensor surface with properly designed chromophore molecules. The chromophore molecules can interact with protons and lead to appreciable changes in interface dipole moment as well as in surface charge state. In addition, the dipole moment can be tuned not only by the substituent on the chromophore but also by the anion in the electrolyte interacting with the protonated chromophore. By designing surface molecules to enhance the surface dipole moment upon protonation, an above-Nernstian pH sensitivity is achieved on the SiNR-FET sensor. This finding may bring an innovative strategy for tailoring the sensitivity of the SiNR-FET-based pH sensor toward a wide range of applications.
Collapse
Affiliation(s)
- Chiao‐Wei Tseng
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Chenyu Wen
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | | | - Chin‐Hung Lai
- Department of Medical Applied ChemistryChung Shan Medical UniversityTaichung40201Taiwan
| | - Si Chen
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Qitao Hu
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Xi Chen
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Xingxing Xu
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Shi‐Li Zhang
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| | - Yu‐Tai Tao
- Institute of ChemistryAcademia SinicaTaipei115Taiwan
| | - Zhen Zhang
- Division of Solid‐State ElectronicsThe Ångström LaboratoryUppsala UniversitySE‐751 21UppsalaSweden
| |
Collapse
|
49
|
Gas-Phase Synthesis for Label-Free Biosensors: Zinc-Oxide Nanowires Functionalized with Gold Nanoparticles. Sci Rep 2019; 9:17370. [PMID: 31758054 PMCID: PMC6874558 DOI: 10.1038/s41598-019-53960-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
Metal oxide semiconductor nanowires have important applications in label-free biosensing due to their ease of fabrication and ultralow detection limits. Typically, chemical functionalization of the oxide surface is necessary for specific biological analyte detection. We instead demonstrate the use of gas-phase synthesis of gold nanoparticles (Au NPs) to decorate zinc oxide nanowire (ZnO NW) devices for biosensing applications. Uniform ZnO NW devices were fabricated using a vapor-solid-liquid method in a chemical vapor deposition (CVD) furnace. Magnetron-sputtering of a Au target combined with a quadrupole mass filter for cluster size selection was used to deposit Au NPs on the ZnO NWs. Without additional functionalization, we electrically detect DNA binding on the nanowire at sub-nanomolar concentrations and visualize individual DNA strands using atomic force microscopy (AFM). By attaching a DNA aptamer for streptavidin to the biosensor, we detect both streptavidin and the complementary DNA strand at sub-nanomolar concentrations. Au NP decoration also enables sub-nanomolar DNA detection in passivated ZnO NWs that are resilient to dissolution in aqueous solutions. This novel method of biosensor functionalization can be applied to many semiconductor materials for highly sensitive and label-free detection of a wide range of biomolecules.
Collapse
|
50
|
Napi MLM, Sultan SM, Ismail R, How KW, Ahmad MK. Electrochemical-Based Biosensors on Different Zinc Oxide Nanostructures: A Review. MATERIALS 2019; 12:ma12182985. [PMID: 31540160 PMCID: PMC6766311 DOI: 10.3390/ma12182985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Electrochemical biosensors have shown great potential in the medical diagnosis field. The performance of electrochemical biosensors depends on the sensing materials used. ZnO nanostructures play important roles as the active sites where biological events occur, subsequently defining the sensitivity and stability of the device. ZnO nanostructures have been synthesized into four different dimensional formations, which are zero dimensional (nanoparticles and quantum dots), one dimensional (nanorods, nanotubes, nanofibers, and nanowires), two dimensional (nanosheets, nanoflakes, nanodiscs, and nanowalls) and three dimensional (hollow spheres and nanoflowers). The zero-dimensional nanostructures could be utilized for creating more active sites with a larger surface area. Meanwhile, one-dimensional nanostructures provide a direct and stable pathway for rapid electron transport. Two-dimensional nanostructures possess a unique polar surface for enhancing the immobilization process. Finally, three-dimensional nanostructures create extra surface area because of their geometric volume. The sensing performance of each of these morphologies toward the bio-analyte level makes ZnO nanostructures a suitable candidate to be applied as active sites in electrochemical biosensors for medical diagnostic purposes. This review highlights recent advances in various dimensions of ZnO nanostructures towards electrochemical biosensor applications.
Collapse
Affiliation(s)
- Muhammad Luqman Mohd Napi
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia
| | - Suhana Mohamed Sultan
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia.
| | - Razali Ismail
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia
| | - Khoo Wei How
- Computational Nanoelectronic Research Lab, School of Electrical Engineering, Universiti Teknologi Malaysia Johor Bahru, Skudai 81310, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronics and Nanotechnology-Shamsuddin Research Centre, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Malaysia
| |
Collapse
|