1
|
Ma G, Li X, Cai J, Wang X. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics. Food Chem 2024; 451:139385. [PMID: 38663242 DOI: 10.1016/j.foodchem.2024.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
Concern about food safety triggers demand on rapid, accurate and on-site detection of foodborne pathogens. Among various fluorescent probes for detection, carbon dots (CDs) prepared by carbonization of carbon-rich raw materials show extraordinary performance for their excellent and tailorable photoluminescence property, as well as their facilely gained specificity by surface customization and modification. CDs-based fluorescent probes play a crucial role in many pathogenic bacteria sensing systems. In addition, microfluidic technology with characteristics of portability and functional integration is expected to combine with CDs-based fluorescent probes for point-of-care testing (POCT), which can further enhance the detection property of CDs-based fluorescent probes. Here, this paper reviews CDs-based bacterial detection methods and systems, including the structural modulation of fluorescent probes and pathogenic bacteria detection mechanisms, and describes the potential of combining CDs with microfluidic technology, providing reference for the development of novel rapid detection technology for pathogenic bacteria in food.
Collapse
Affiliation(s)
- Guozhi Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
2
|
Liu B, Duan H, Liu Z, Liu Y, Chu H. DNA-functionalized metal or metal-containing nanoparticles for biological applications. Dalton Trans 2024; 53:839-850. [PMID: 38108230 DOI: 10.1039/d3dt03614f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The conjugation of DNA molecules with metal or metal-containing nanoparticles (M/MC NPs) has resulted in a number of new hybrid materials, enabling a diverse range of novel biological applications in nanomaterial assembly, biosensor development, and drug/gene delivery. In such materials, the molecular recognition, gene therapeutic, and structure-directing functions of DNA molecules are coupled with M/MC NPs. In turn, the M/MC NPs have optical, catalytic, pore structure, or photodynamic/photothermal properties, which are beneficial for sensing, theranostic, and drug loading applications. This review focuses on the different DNA functionalization protocols available for M/MC NPs, including gold NPs, upconversion NPs, metal-organic frameworks, metal oxide NPs and quantum dots. The biological applications of DNA-functionalized M/MC NPs in the treatment or diagnosis of cancers are discussed in detail.
Collapse
Affiliation(s)
- Bei Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| | - Zechao Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yuechen Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| |
Collapse
|
3
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Toehold-mediated biosensors: Types, mechanisms and biosensing strategies. Biosens Bioelectron 2022; 220:114922. [DOI: 10.1016/j.bios.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
5
|
Ding Z, He Y, Rao H, Zhang L, Nguyen W, Wang J, Wu Y, Han C, Xing C, Yan C, Chen W, Liu Y. Novel Fluorescent Probe Based on Rare-Earth Doped Upconversion Nanomaterials and Its Applications in Early Cancer Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1787. [PMID: 35683645 PMCID: PMC9181853 DOI: 10.3390/nano12111787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 01/20/2023]
Abstract
In this paper, a novel rare-earth-doped upconverted nanomaterial NaYF4:Yb,Tm fluorescent probe is reported, which can detect cancer-related specific miRNAs in low abundance. The detection is based on an upconversion of nanomaterials NaYF4:Yb,Tm, with emissions at 345, 362, 450, 477, 646, and 802 nm, upon excitation at 980 nm. The optimal Yb3+:Tm3+ doping ratio is 40:1, in which the NaYF4:Yb,Tm nanomaterials have the strongest fluorescence. The NaYF4:Yb, Tm nanoparticles were coated with carboxylation or carboxylated protein, in order to improve their water solubility and biocompatibility. The two commonly expressed proteins, miRNA-155 and miRNA-150, were detected by the designed fluorescent probe. The results showed that the probes can distinguish miRNA-155 well from partial and complete base mismatch miRNA-155, and can effectively distinguish miRNA-155 and miRNA-150. The preliminary results indicate that these upconverted nanomaterials have good potential for protein detection in disease diagnosis, including early cancer detection.
Collapse
Affiliation(s)
- Zhou Ding
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Yue He
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Hongtao Rao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Le Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - William Nguyen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (W.N.); (C.X.)
| | - Jingjing Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Ying Wu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Christina Xing
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (W.N.); (C.X.)
| | - Changchun Yan
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, USA; (W.N.); (C.X.)
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China; (Z.D.); (Y.H.); (H.R.); (L.Z.); (J.W.); (Y.W.); (C.H.); (C.Y.)
| |
Collapse
|
6
|
Wang JJ, Liu Y, Ding Z, Zhang L, Han C, Yan C, Amador E, Yuan L, Wu Y, Song C, Liu Y, Chen W. The exploration of quantum dot-molecular beacon based MoS 2 fluorescence probing for myeloma-related Mirnas detection. Bioact Mater 2022; 17:360-368. [PMID: 35386454 PMCID: PMC8964961 DOI: 10.1016/j.bioactmat.2021.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Highly sensitive and reliable detection of multiple myeloma remains a major challenge in liquid biopsy. Herein, for the first time, quantum dot-molecular beacon (QD-MB) functionalized MoS2 (QD-MB @MoS2) fluorescent probes were designed for the dual detection of multiple myeloma (MM)-related miRNA-155 and miRNA-150. The results indicate that the two probes can effectively detect miRNA-155 and miRNA-150 simultaneously with satisfactory recovery rates, and the limit of detections (LODs) of miRNA-155 and miRNA-150 in human serum are low to 7.19 fM and 5.84 fM, respectively. These results indicate that our method is the most sensitive detection so far reported and that the designed fluorescent probes with signal amplification strategies can achieve highly sensitive detection of MM-related miRNAs for MM diagnosis. Novel quantum dot-molecular beacon functionalized MoS2 (QD-MB@MoS2) fluorescent probes were designed and fabricated. The dual detection of miRNA-155 and miRNA-150 with high sensitivity, low detection limit and high recovery was realized. The fluorescence probes have a great influence on the fluorescence quenching efficiency and the sensitivity. The new MB@MoS2 fluorescent probe and dual detection strategy provide a valuable tool for the detection of miRNA.
Collapse
Affiliation(s)
- Jing Jing Wang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zhou Ding
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Le Zhang
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Changchun Yan
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Eric Amador
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA
| | - Liqin Yuan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, ChangSha, Hu'nan, 410011, China
| | - Ying Wu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chunyuan Song
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX, 76019-0059, USA.,Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK
| |
Collapse
|
7
|
Luo Y, Liu F, Song J, Luo Q, Yang Y, Mei C, Xu M, Liao B. Function-Oriented Graphene Quantum Dots Probe for Single Cell in situ Sorting of Active Microorganisms in Environmental Samples. Front Microbiol 2021; 12:659111. [PMID: 34113325 PMCID: PMC8186282 DOI: 10.3389/fmicb.2021.659111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Functional microorganisms play a vital role in removing environmental pollutants because of their diverse metabolic capability. Herein, a function-oriented fluorescence resonance energy transfer (FRET)-based graphene quantum dots (GQDs-M) probe was developed for the specific identification and accurate sorting of azo-degrading functional bacteria in the original location of environmental samples for large-scale culturing. First, nitrogen-doped GQDs (GQDs-N) were synthesized using a bottom-up strategy. Then, a GQDs-M probe was synthesized based on bonding FRET-based GQDs-N to an azo dye, methyl red, and the quenched fluorescence was recovered upon cleavage of the azo bond. Bioimaging confirmed the specific recognition capability of GQDs-M upon incubation with the target bacteria or environmental samples. It is suggested that the estimation of environmental functional microbial populations based on bioimaging will be a new method for rapid preliminary assessment of environmental pollution levels. In combination with a visual single-cell sorter, the target bacteria in the environmental samples could be intuitively screened at the single-cell level in 17 bacterial strains, including the positive control Shewanella decolorationis S12, and were isolated from environmental samples. All of these showed an azo degradation function, indicating the high accuracy of the single-cell sorting strategy using the GQDs-M. Furthermore, among the bacteria isolated, two strains of Bacillus pacificus and Bacillus wiedmannii showed double and triple degradation efficiency for methyl red compared to the positive control (strain S12). This strategy will have good application prospects for finding new species or high-activity species of specific functional bacteria.
Collapse
Affiliation(s)
- Yeshen Luo
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Jianhua Song
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Qian Luo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Yonggang Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Chengfang Mei
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangdong, China
| | - Bing Liao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Water-soluble ZnCuInSe quantum dots for bacterial classification, detection, and imaging. Anal Bioanal Chem 2020; 412:8379-8389. [PMID: 33000307 DOI: 10.1007/s00216-020-02974-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Bacteria are everywhere and pose severe threats to human health and safety. The rapid classification and sensitive detection of bacteria are vital steps of bacterial community research and the treatment of infection. Herein, we developed optical property-superior and heavy metal-free ZnCuInSe quantum dots (QDs) for achieving rapid discrimination of Gram-positive/Gram-negative bacteria by the naked eye; driven by the structural differences of bacteria, ZnCuInSe QDs are effective in binding to Gram-positive bacteria, especially Staphylococcus aureus (S. aureus), in comparison with Gram-negative bacteria and give discernable color viewed by the naked eye. Meanwhile, based on its distinctive fluorescence response, the accurate quantification of S. aureus was investigated with a photoluminescence system in the concentration ranges of 1 × 103 to 1 × 1011 CFU/mL, with a limit of detection of 1 × 103 CFU/mL. Furthermore, we demonstrated the feasibility of ZnCuInSe QDs as a fluorescence probe for imaging S. aureus. This simple strategy based on ZnCuInSe QDs provides an unprecedented step for rapid and effective bacterial discrimination, detection, and imaging.
Collapse
|
10
|
Sun J, Sun X. Recent advances in the construction of DNA nanostructure with signal amplification and ratiometric response for miRNA sensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Wu Y, Jiang S, Fu Z. Employment of teicoplanin-coated magnetic particles for quantifying gram-positive bacteria via catalase-catalyzed hydrolysis reaction of H2O2. Talanta 2020; 211:120728. [DOI: 10.1016/j.talanta.2020.120728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 11/24/2022]
|
12
|
Yang B, Zhang S, Fang X, Kong J. Double signal amplification strategy for ultrasensitive electrochemical biosensor based on nuclease and quantum dot-DNA nanocomposites in the detection of breast cancer 1 gene mutation. Biosens Bioelectron 2019; 142:111544. [PMID: 31376717 DOI: 10.1016/j.bios.2019.111544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Rapid and efficient detection of microRNA (miRNA) of breast cancer 1 gene mutation (BRCA1) at their earliest stages is one of the crucial challenges in cancer diagnostics. In this study, a highly-sensitive electrochemical DNA biosensor was fabricated by double signal amplification (DSA) strategy for the detection of ultra-trace miRNA of BRCA1. In the presence of target miRNA of BRCA1, the well-matched RNA-DNA duplexes were specifically recognized by double-strand specific nuclease (DSN), and the DNA part of the duplexes were then cleaved and miRNAs were released to trigger another following cycle, which produced a primarily amplified signal by such a cyclic enzymatic signal amplification (CESA). Then triple-CdTe quantum dot labelled DNA nanocomposites (3-QD@DNA NC) was selectively hybridized with the cleaved DNA probe on the electrode and produced multiply amplified signals. The biosensor exhibited a high sensitivity for the detection of miRNA of BRCA1 in concentrations ranging from 5 aM to 5 fM, and its detection limit of 1.2 aM was obtained, which is two or three orders of magnitude lower than those by single signal amplification strategy such as CESA or QD-labeled DNA probes. The as-prepared biosensor was successfully used to detect the miRNA of BRCA1 in human serum samples with acceptable stability, good reproducibility, and good recovery. The proposed DNA biosensor based on double signal amplification strategy provided a feasible, rapid, and sensitive platform for early clinical diagnosis and practical applications.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China
| | - Song Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China.
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
13
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhang LJ, Xia L, Xie HY, Zhang ZL, Pang DW. Quantum Dot Based Biotracking and Biodetection. Anal Chem 2018; 91:532-547. [DOI: 10.1021/acs.analchem.8b04721] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Li Xia
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| |
Collapse
|
15
|
Huang R, He N, Li Z. Recent progresses in DNA nanostructure-based biosensors for detection of tumor markers. Biosens Bioelectron 2018. [DOI: 10.1016/j.bios.2018.02.053] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Huang Y, Deng X, Lang J, Liang X. Modulation of quantum dots and clearance of Helicobacter pylori with synergy of cell autophagy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:849-861. [PMID: 29309908 DOI: 10.1016/j.nano.2017.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori (Hp) is one type of Gram-negative pathogenic bacterium that colonizes and causes a wide range of gastric diseases. Once Hp penetrates into cells, the currently recognized triple or quadruple therapy often loses effectiveness. Recent evidence suggests that autophagy is closely associated with Hp infection, and can play an important role in the eradication of Hp. More importantly, certain types of quantum dots (QDs) can induce and modulate cellular autophagy, and can be developed into conjugates making QDs potential candidates as new anti-Hp agents.
Collapse
Affiliation(s)
- Yu Huang
- Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xin Deng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Jian Lang
- Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xingqiu Liang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, PR China
| |
Collapse
|