1
|
Lee S, Lee H, Yeon SY, Chung TD. Enhanced adhesion of functional layers by controlled electrografting of ethylenediamine on ITO for electrochemical immunoassay in microfluidic channel. Biosens Bioelectron 2023; 229:115201. [PMID: 36947919 DOI: 10.1016/j.bios.2023.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Two-electrode (2E) system of the interdigitated electrode array (IDA), which operates neither reference nor counter electrodes, has great potential to miniaturize multiplex immunoassay in a microfluidic chip for point-of-care testing. However, it is necessary to firmly immobilize the mediator layer on IDA made of indium tin oxide (ITO) which is chemically inert. It is important because the mediator determines the electrochemical potential in the 2E system, but the layer is easy to be detached during the washing processes of immunoassay. Here, we controlled the concentration of ethylenediamine (EDA) to generate a permeable and robust film to adhere to mediators on the ITO IDA chip. Electrooxidation of EDA yielded thin oligomeric ethyleneimine (OEI) film and it provided amine groups for immobilizing the mediator, poly(toluidine blue) (pTB), via common conjugation reaction. Despite repeated flows in the microchannel, which are essential for sensitive immunoassay, the pTB/OEI layer was hardly washed and still remained on the ITO IDA. Myoglobin was measured down to ∼ pg/mL level. Therefore, the ITO IDA modified with the OEI film in the 2E system constituted a stable platform that withstands washing steps for sensitive electrochemical detection in the miniaturized immunoassay.
Collapse
Affiliation(s)
- Sunmi Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea
| | - Haeyeon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Song Yi Yeon
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taek Dong Chung
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea; Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea; Advanced Institute of Convergence Technology, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
2
|
Kosri E, Ibrahim F, Thiha A, Madou M. Micro and Nano Interdigitated Electrode Array (IDEA)-Based MEMS/NEMS as Electrochemical Transducers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234171. [PMID: 36500794 PMCID: PMC9741053 DOI: 10.3390/nano12234171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 05/28/2023]
Abstract
Micro and nano interdigitated electrode array (µ/n-IDEA) configurations are prominent working electrodes in the fabrication of electrochemical sensors/biosensors, as their design benefits sensor achievement. This paper reviews µ/n-IDEA as working electrodes in four-electrode electrochemical sensors in terms of two-dimensional (2D) planar IDEA and three-dimensional (3D) IDEA configurations using carbon or metal as the starting materials. In this regard, the enhancement of IDEAs-based biosensors focuses on controlling the width and gap measurements between the adjacent fingers and increases the IDEA's height. Several distinctive methods used to expand the surface area of 3D IDEAs, such as a unique 3D IDEA design, integration of mesh, microchannel, vertically aligned carbon nanotubes (VACNT), and nanoparticles, are demonstrated and discussed. More notably, the conventional four-electrode system, consisting of reference and counter electrodes will be compared to the highly novel two-electrode system that adopts IDEA's shape. Compared to the 2D planar IDEA, the expansion of the surface area in 3D IDEAs demonstrated significant changes in the performance of electrochemical sensors. Furthermore, the challenges faced by current IDEAs-based electrochemical biosensors and their potential solutions for future directions are presented herein.
Collapse
Affiliation(s)
- Elyana Kosri
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre of Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Marc Madou
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, NL, Mexico
- Academia Mexicana de Ciencias, Ciudad de México 14400, CDMX, Mexico
| |
Collapse
|
3
|
Soranzo T, Ben Tahar A, Chmayssem A, Zelsmann M, Vadgama P, Lenormand JL, Cinquin P, K. Martin D, Zebda A. Electrochemical Biosensing of Glucose Based on the Enzymatic Reduction of Glucose. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197105. [PMID: 36236202 PMCID: PMC9572614 DOI: 10.3390/s22197105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/12/2023]
Abstract
In this work, the enzyme aldehyde reductase, also known as aldose reductase, was synthesized and cloned from a human gene. Spectrophotometric measurements show that in presence of the nicotinamide adenine dinucleotide phosphate cofactor (NADPH), the aldehyde reductase catalyzed the reduction of glucose to sorbitol. Electrochemical measurements performed on an electrodeposited poly(methylene green)-modified gold electrode showed that in the presence of the enzyme aldehyde reductase, the electrocatalytic oxidation current of NADPH decreased drastically after the addition of glucose. These results demonstrate that aldehyde reductase is an enzyme that allows the construction of an efficient electrochemical glucose biosensor based on glucose reduction.
Collapse
Affiliation(s)
- Thomas Soranzo
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Awatef Ben Tahar
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Ayman Chmayssem
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Marc Zelsmann
- Univ. Grenoble Alpes, CNRS, CEA-LETI, Grenoble INP, LTM, F-38054 Grenoble, France
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jean-Luc Lenormand
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Phillipe Cinquin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Donald K. Martin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Abdelkader Zebda
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| |
Collapse
|
4
|
A portable papertronic sensing system for rapid, high-throughput, and visual screening of bacterial electrogenicity. Biosens Bioelectron 2020; 165:112348. [DOI: 10.1016/j.bios.2020.112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023]
|
5
|
Han SH, Rho J, Lee S, Kim M, Kim SI, Park S, Jang W, Lee CH, Chang BY, Chung TD. In Situ Real-Time Monitoring of ITO Film under a Chemical Etching Process Using Fourier Transform Electrochemical Impedance Spectroscopy. Anal Chem 2020; 92:10504-10511. [PMID: 32489093 DOI: 10.1021/acs.analchem.0c01294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a novel approach to the in situ real-time investigation of an ITO electrode during the wet etching process, step-excitation Fourier-transform electrochemical impedance spectroscopy (FT-EIS) was implemented. The equivalent circuit parameters (e.g., Rct, Cdl) continuously obtained by the FT-EIS measurements during the entire etching process showed an electrode activation at the initial period as well as the completion of etching. The FT-EIS results were further validated by cyclic voltammograms and impedance measurements of partially etched ITO films using ferri- and ferrocyanide solution in combination with FESEM imaging, EDS, XRD analyses, and COMSOL simulation. We also demonstrated that this technique can be further utilized to obtain intact interdigitated array (IDA) electrodes in a reproducible manner, which is generally considered to be quite tricky due to delicacy of the pattern. Given that the FT-EIS allows for instantaneous snapshots of the electrode at every moment, this work may hold promise for in situ real-time examination of structural, electrokinetic, or mass transfer-related information on electrochemical systems undergoing constantly changing, transient processes including etching, which would be impossible with conventional electroanalytical techniques.
Collapse
Affiliation(s)
- Seok Hee Han
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jihun Rho
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sunmi Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea
| | - Moonjoo Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sung Il Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sangmee Park
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea
| | - Woohyuk Jang
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chang Heon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Byoung-Yong Chang
- Department of Chemistry, Pukyong University, Busan 48513, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.,Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do 16229, South Korea.,Advanced Institute of Convergence Technology, Suwon-Si, Gyeonggi-do 16229, South Korea
| |
Collapse
|