1
|
Mou X, Miao W, Zhang W, Wang W, Ma Q, Du Z, Li X, Huang N, Yang Z. Zwitterionic polymers-armored amyloid-like protein surface combats thrombosis and biofouling. Bioact Mater 2024; 32:37-51. [PMID: 37810990 PMCID: PMC10556425 DOI: 10.1016/j.bioactmat.2023.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Proteins, cells and bacteria adhering to the surface of medical devices can lead to thrombosis and infection, resulting in significant clinical mortality. Here, we report a zwitterionic polymers-armored amyloid-like protein surface engineering strategy we called as "armored-tank" strategy for dual functionalization of medical devices. The "armored-tank" strategy is realized by decoration of partially conformational transformed LZM (PCTL) assembly through oxidant-mediated process, followed by armoring with super-hydrophilic poly-2-methacryloyloxyethyl phosphorylcholine (pMPC). The outer armor of the "armored-tank" shows potent and durable zone defense against fibrinogen, platelet and bacteria adhesion, leading to long-term antithrombogenic properties over 14 days in vivo without anticoagulation. Additionally, the "fired" PCTL from "armored-tank" actively and effectively kills both Gram-positive and Gram-negative bacterial over 30 days as a supplement to the lacking bactericidal functions of passive outer armor. Overall, this "armored-tank" surface engineering strategy serves as a promising solution for preventing biofouling and thrombotic occlusion of medical devices.
Collapse
Affiliation(s)
- Xiaohui Mou
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Wan Miao
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qing Ma
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Zeyu Du
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan 610072, China
| | - Nan Huang
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, Chengdu, Sichuan 610072, China
| |
Collapse
|
2
|
Zheng A, Guo Z, Li C, Zhang Z, Li C, Yao J, Wang X, Li J, Zhao S, Wang W, Zhang W, Zhou L. A wide-range UAC sensor for the classification of hyperuricemia in spot samples. Talanta 2024; 266:125102. [PMID: 37651905 DOI: 10.1016/j.talanta.2023.125102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/03/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Hyperuricemia (HUA) has received wide attention as an independent risk factor for various chronic diseases. HUA is usually asymptomatic, and the related damage can be reduced by effective classification and treatment according to uric acid clearance (UAC). UAC is a calculated ratio based on the uric acid level in blood and urine. This important method is not universally used due to the inconvenience of collecting 24-h urine samples in the clinic, and most sensors are limited by the need for wide ranges and for two testing samples. In this study, a pH-sensitive urate oxidase-modified electrochemical sensor with filter membrane was proposed to calculate UAC by detecting uric acid in blood and urine. The results demonstrated that the sensor had high selectivity for uric acid with a detection limit of 0.25 μM in 5 μL spot sample, the wide linear range was 2.5-7000 μM, and the impact of the sample pH was calibrated. The linear correlation of the measurement results between the UAC sensor and clinical instrument was higher than 0.980 for 87 patients. The change in UAC in spot urine may reflect alteration in body-transport mechanisms. Thus, the UAC sensor may open a new window for the management of HUA and broaden its application in point-of-care testing.
Collapse
Affiliation(s)
- Anran Zheng
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Chao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Shasha Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Weiguo Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, Jiangsu Province, China.
| | - Wei Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Lianqun Zhou
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China.
| |
Collapse
|
3
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Tripathi A, Bonilla-Cruz J. Review on Healthcare Biosensing Nanomaterials. ACS APPLIED NANO MATERIALS 2023; 6:5042-5074. [DOI: 10.1021/acsanm.3c00941] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alok Tripathi
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Rajpur 382715, Gujarat India
| | - José Bonilla-Cruz
- Advanced Functional Materials and Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Avenida Alianza Norte Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León, México C.P. 66628
| |
Collapse
|
5
|
Recent Progresses in Development of Biosensors for Thrombin Detection. BIOSENSORS 2022; 12:bios12090767. [PMID: 36140153 PMCID: PMC9496736 DOI: 10.3390/bios12090767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/11/2022]
Abstract
Thrombin is a serine protease with an essential role in homeostasis and blood coagulation. During vascular injuries, thrombin is generated from prothrombin, a plasma protein, to polymerize fibrinogen molecules into fibrin filaments. Moreover, thrombin is a potent stimulant for platelet activation, which causes blood clots to prevent bleeding. The rapid and sensitive detection of thrombin is important in biological analysis and clinical diagnosis. Hence, various biosensors for thrombin measurement have been developed. Biosensors are devices that produce a quantifiable signal from biological interactions in proportion to the concentration of a target analyte. An aptasensor is a biosensor in which a DNA or RNA aptamer has been used as a biological recognition element and can identify target molecules with a high degree of sensitivity and affinity. Designed biosensors could provide effective methods for the highly selective and specific detection of thrombin. This review has attempted to provide an update of the various biosensors proposed in the literature, which have been designed for thrombin detection. According to their various transducers, the constructions and compositions, the performance, benefits, and restrictions of each are summarized and compared.
Collapse
|
6
|
Biomimetic synthesis of protein-DNA-CaHPO 4 hybrid nanosheets for biosensing: Detection of thrombin as an example. Anal Chim Acta 2022; 1225:340227. [PMID: 36038237 DOI: 10.1016/j.aca.2022.340227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Traditional strategies for coupling of proteins with DNA involve the additional modifications on protein or DNA to construct protein-DNA conjugates, resulting in complex or time-consuming coupling process. This study presented a biomimetic synthesis strategy to elaborately synthesize a new type of biomolecule-inorganic hybrid nanosheets. Horseradish peroxidase (HRP) and DNA aptamer can be easily combined with CaHPO4 via coprecipitation simultaneously to form all-inclusive HRP-aptamer-CaHPO4 hybrid (HAC) nanosheets integrating bifunction of biorecognition and signal amplification, which was proceeded in the green environment at room temperature and required no additional modifications on CaHPO4, protein and DNA. Therefore, it avoided tedious linking and purification procedures. The HAC nanosheets were then employed as the signal labels and showed excellent performance for detecting thrombin. This bioinspired approach provides great possibilities to facile and efficient immobilization of protein, DNA or even other types of biomolecules (e.g., RNA and peptide) on inorganic nanomaterials and endows great potential in the preparation of a variety of multifunctional biomolecule-CaHPO4 two-dimensional (2D) nanobiohybrids for various applications extending from biosensing to energy, biomedicine, environmental science and catalysis.
Collapse
|
7
|
Li M, Tang S, Chu M, Xue Y, Mao J, Guo W, Mao C, Zhou M. Magnetic Nanosorbents for Adsorption of Blood Mercury. ChemistrySelect 2022. [DOI: 10.1002/slct.202201779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minghai Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Shuwan Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Meilin Chu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Jiazhou Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University No.1, Wenyuan Road Nanjing 210023 China
| | - Min Zhou
- Department of Vascular Surgery Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School No.22, Hankou Road Nanjing 210008 China
| |
Collapse
|
8
|
Yousef H, Liu Y, Zheng L. Nanomaterial-Based Label-Free Electrochemical Aptasensors for the Detection of Thrombin. BIOSENSORS 2022; 12:bios12040253. [PMID: 35448312 PMCID: PMC9025199 DOI: 10.3390/bios12040253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 05/06/2023]
Abstract
Thrombin plays a central role in hemostasis and its imbalances in coagulation can lead to various pathologies. It is of clinical significance to develop a fast and accurate method for the quantitative detection of thrombin. Electrochemical aptasensors have the capability of combining the specific selectivity from aptamers with the extraordinary sensitivity from electrochemical techniques and thus have attracted considerable attention for the trace-level detection of thrombin. Nanomaterials and nanostructures can further enhance the performance of thrombin aptasensors to achieve high sensitivity, selectivity, and antifouling functions. In highlighting these material merits and their impacts on sensor performance, this paper reviews the most recent advances in label-free electrochemical aptasensors for thrombin detection, with an emphasis on nanomaterials and nanostructures utilized in sensor design and fabrication. The performance, advantages, and limitations of those aptasensors are summarized and compared according to their material structures and compositions.
Collapse
Affiliation(s)
- Hibba Yousef
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Lianxi Zheng
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Correspondence:
| |
Collapse
|
9
|
Zheng A, Zhang W, Li C, Guo Z, Li C, Zhang C, Yao J, Zhang Z, Li J, Zhao S, Zhou L. The heparinase-linked differential time method allows detection of heparin potency in whole blood with high sensitivity and dynamic range. Biosens Bioelectron 2022; 198:113856. [PMID: 34871836 DOI: 10.1016/j.bios.2021.113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022]
Abstract
Anticoagulation therapy with heparin is an effective treatment against thrombosis. Heparin tends to cause spontaneous bleeding and requires regular monitoring during therapy. Most high-sensitivity heparin sensors have focused on the concentration detection in clarified buffer solution. However, the pharmacodynamics of heparin vary depending on individual patient or disease, while potency detection with high sensitivity and dynamic range outperforms concentration detection in clinical diagnosis. In this study, a novel heparinase-linked differential time (HLDT) method was established with a two-zone of Graphene modified Carbon (GR-C) sensor, which was utilized to evaluate heparin potency in whole blood. It was based on electrochemical measurement of clotting time shifting associated with presence or absence of heparinase. Heparinase inhibits the anticoagulant ability of heparin by forming a heparin-antithrombin-thrombin complex during coagulation. And the intensity and peak time of electrochemical current were associated with thrombin activity and clotting on the electrode. The results demonstrated that the sensor had high selectivity for heparin potency in 10 μL of whole blood with a detection limit of 0.1 U/mL, and the linear detection range was 0.1-5 U/mL. The coefficient of variation (CV) of the peak time was less than 5%, and linear correlation between the GR-C sensor and the TEG-5000 instrument was 0.987. Thus, the HLDT method has better clinical application due to its good repeatability, high sensitivity and wide range in heparin potency evaluation.
Collapse
Affiliation(s)
- Anran Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Ji Hua Laboratory, Foshan, 528000, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China; Ji Hua Laboratory, Foshan, 528000, China
| | - Chuanyu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Suzhou CASENS Co., Ltd, Suzhou, 215163, China
| | - Changsong Zhang
- Department of Laboratory Medicine, The Affiliated Suzhou Science and Technology Town Hospital, Nanjing Medical University, Suzhou 215153, Jiangsu Province, China
| | - Jia Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jinze Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Shasha Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China; Ji Hua Laboratory, Foshan, 528000, China.
| |
Collapse
|
10
|
Wang Q, Shi T, Wan M, Wei J, Wang F, Mao C. Research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. J Mater Chem B 2021; 9:283-294. [PMID: 33241834 DOI: 10.1039/d0tb02055a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro/nanomotors bring new possibilities for the detection and therapy of diseases related to the blood environment with their unique motion effect. This work reviews the research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. First, we outline the advantages of using micro/nanomotors in blood-related disease detection. To be specific, the motion capability of micro/nanomotors can increase plasma or blood fluid convection and accelerate the interaction between the sample and the capture probe. This allows the effective reduction of the amount of reagents and treatment steps. Therefore, the application of micro/nanomotors significantly improves the analytical performance. Second, we discuss the key challenges and future prospects of micro/nanomotors in the treatment of blood-environment related diseases. It is very important to design a unique treatment plan according to the etiology and specific microenvironment of the disease. The next generation of micro/nanomotors is expected to bring exciting progress to the detection and therapy of blood-environment related diseases.
Collapse
Affiliation(s)
- Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China. and School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fenghe Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Jamei HR, Rezaei B, Ensafi AA. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C 60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry 2020; 138:107701. [PMID: 33254052 DOI: 10.1016/j.bioelechem.2020.107701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
In this study, an ultra-sensitive and selective Thrombin biosensor with aptamer-recognition surface is introduced based on carbon nanocomposite. To prepare the this biosensor, screen-printed carbon electrodes (SPCE) were modified with a nanocomposite made from fullerene (C60), multi-walled carbon nanotubes (MWCNTs), polyethylenimine (PEI) and polymer quantum dots (PQdot). The unique characteristics of each component of the C60/MWCNTs-PEI/PQdot nanocomposite allow for synergy between nanoparticles while polymer quantum dots resulted in characteristics such as high stability, high surface to volume ratio, high electrical conductivity, high biocompatibility, and high mechanical and chemical stability. The large number of amine groups in C60/MWCNTs-PEI/PQdot nanocomposite created more sites for better covalent immobilization of amino-linked aptamer (APT) which improved the sensitivity and stability of the aptasensor. Differential Pulse Voltammetry (DPV) method with probe solution was used as the measurment method. Binding of thrombin protein to aptamers immobilized on the transducer resulted in reduced electron transfer at the electrode/electrolyte interface which reduces the peak current (IP) in DPV. The calibration curve was drawn using the changes in the peak current (ΔIP),. The proposed aptasensor has a very low detection limit of 6 fmol L-1, and a large linear range of 50 fmol L-1 to 20 nmol L-1. Furthermore, the proposed C60/MWCNTs-PEI/PQdot/APT aptasensor has good reproducibility, great selectivity, low response time and a good stability during its storage. Finally, the application of the proposed aptasensor for measuring thrombin on human blood serum samples was investigated. This aptasensor can be useful in bioengineering and biomedicine applications as well as for clinical studies.
Collapse
Affiliation(s)
- Hamid Reza Jamei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
12
|
Konari M, Heydari-Bafrooei E, Dinari M. Efficient immobilization of aptamers on the layered double hydroxide nanohybrids for the electrochemical proteins detection. Int J Biol Macromol 2020; 166:54-60. [PMID: 33075340 DOI: 10.1016/j.ijbiomac.2020.10.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
Despite the use of layered double hydroxides (LDH) in different electrochemical (bio)sensors, the construction of aptasensors using LDH-based surfaces was not reported to the best of our knowledge. This may be due to the lack of a suitable linker to attach aptamers to the LDH-modified surface. LDH-based aptasensors are established here as very sensitive and reliable devices in serum and cerebrospinal fluid (CSF) analysis. 5'-NH2 DNA aptamer probes were immobilized on the LDH-based surfaces in a vertical conformation without any linker materials. Due to the low electron conductivity of the LDH, carbon nanotubes (CNT) with high electronic conductivity and high surface area were combined with LDH. Thrombin was used as a model protein for aptasensing. The sensor shows a linear range of 0.005-12,000 pmol L-1 and a limit of detection of 0.1 fmol L-1. Moreover, the aptasensor was used for the sensing of thrombin in CSF and serum samples acquired from both healthy and patients with different disease.
Collapse
Affiliation(s)
- Maryam Konari
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, 77188-97111, Iran
| | - Esmaeil Heydari-Bafrooei
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, 77188-97111, Iran.
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
13
|
Abstract
The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.
Collapse
|
14
|
Yu J, Niu H, Yang K, Yu H, Wang J, Li T, Li Y. Synthesis of Hyperbranched Polyisoprene by Isoprene/Dimethyl‐di‐2,4‐Pentadieneyl‐(
E
,
E
)‐Silane Copolymerization Catalyzed with Half‐Sandwich Scandium Complex. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jialin Yu
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Hui Niu
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Ke Yang
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Hui Yu
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Jing Wang
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Tingting Li
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| | - Yang Li
- Department of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of Technology Dalian 116024 China
| |
Collapse
|
15
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
16
|
Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem Rev 2020; 120:3852-3889. [DOI: 10.1021/acs.chemrev.9b00739] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Cheng Jiang
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Robert Hein
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Nianzu Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
17
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
18
|
Wang C, Chen M, Wu J, Mo F, Fu Y. Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum ion-doped cadmium sulfide quantum dots. Anal Chim Acta 2019; 1086:66-74. [DOI: 10.1016/j.aca.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/03/2019] [Indexed: 12/31/2022]
|
19
|
Xiong Y, Liang M, Cheng Y, Zou J, Li Y. An "off-on" phosphorescent aptasensor for the detection of thrombin based on PRET. Analyst 2019; 144:161-171. [PMID: 30371694 DOI: 10.1039/c8an01571f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thrombin plays an important role in the blood coagulation cascade and it stimulates the process of platelet aggregation. Herein, we developed a highly efficient and sensitive phosphorescent aptasensor system for the quantitative analysis of thrombin. The phosphorescence of 3-mercaptopropionic acid capped Mn-doped ZnS quantum dots (MPA-Mn:ZnS QDs) was gradually quenched with the addition of thrombin binding aptamers-BHQ2 (TBA-BHQ2) based on phosphorescence resonance energy transfer (PRET). With the addition of the target analyte thrombin into the system, TBA-BHQ2 could change its spatial structure from a random coil to an antiparallel G-quadruplex which resulted from the combination of thrombin and TBA-BHQ2, leading to the phosphorescence recovery. Finally, the concentration of thrombin could be accurately determined by means of measuring the phosphorescence intensity change value (ΔP). The limit of detection (LOD) was obtained as low as 15.26 pM with wide linear ranges both from 60 to 2000 pM and from 2 to 900 nM. The proposed strategy was also successfully applied for thrombin detection in human serum samples and plasma samples with satisfactory recoveries from 96% to 99% and 95% to 104%, respectively. The long lifetime of phosphorescent QDs possessed a suitable time delay to eliminate autofluorescence and scattered light interference from biological matrices effectively. Thus, the signal to noise ratio of the phosphorescent aptasensor was improved visibly for the analysis of target analytes.
Collapse
Affiliation(s)
- Yan Xiong
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Meiyu Liang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Yue Cheng
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Jiarui Zou
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Yan Li
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China.
| |
Collapse
|
20
|
He B. Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles. Mikrochim Acta 2018; 185:344. [DOI: 10.1007/s00604-018-2872-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
|